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Abstract: Singular value decomposition (SVD) is an effective method used in bearing fault diagnosis.
Ideally two important problems should be solved in any diagnosis: one is how to decide the dimension
embedding of the trajectory matrix (TM); the other is how to select the singular value (SV) representing
the intrinsic information of the bearing condition. In order to solve such problems, this study
proposed an effective method to find the optimal TM and SV and perform fault signal filtering based
on false nearest neighbors (FNN) and statistical information criteria. First of all, the embedded
dimension of the trajectory matrix is determined with the FNN according to the chaos theory.
Then the trajectory matrix is subjected to SVD, which is helpful to acquire all the combinations of
SV and decomposed signals. According to the similarities of the signal changed back and signal in
normal state based on statistical information criteria, the SV representing fault signal can be obtained.
The spectrum envelope demodulation method can be used to perform effective analysis on the
fault. The effectiveness of the proposed method is verified with simulation signals and low-speed
bearing fault signals, and compared with the published SVD-based method and Fast Kurtogram
diagnosis method.

Keywords: false nearest neighbors; statistical information criteria; selection of effective singular
value; low-speed bearing fault diagnosis

1. Introduction

Bearings are widely used in rotating machinery, and bearing failures are the most frequent
problem. Failures may be catastrophic or may cause major downtime, which will result in production
loss and even personal injury or death [1,2], hence, it is significant to analyze and diagnose bearing
faults. In bearing fault diagnosis, the fault signal is always non-linear and non-stationary, and the
fault signal collected is always submerged in background noise, and the energy distribution of the
fault signals is unknown, so it’s hard to make a diagnosis due to the weak energy distribution of fault
signals. Therefore, it is of vital significance to carry out effective fault diagnosis on the bearings.

For bearing fault diagnosis, the mainstream methods are to analyze the vibration signals
collected from the time domain, frequency domain, time-frequency domain, phase-space dissimilarity
measurement and other methods [3–7]. Previous studies indicated that there are mainly two bearing

Sensors 2018, 18, 2235; doi:10.3390/s18072235 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-4297-1668
http://www.mdpi.com/1424-8220/18/7/2235?type=check_update&version=1
http://dx.doi.org/10.3390/s18072235
http://www.mdpi.com/journal/sensors


Sensors 2018, 18, 2235 2 of 22

diagnosis methods: one is discriminant model-based, and the other one is fault characteristic
frequency-based. The general process of model-based involves collecting the vibration signals in
the fault state, and setting up an effective discriminant model for fault diagnosis by means of signal
filtering [8] and feature extraction [9]. This method will usually combine some statistics and machine
learning methods, such as PCA, CDA, neural networks (NN), support vector machine (SVM) etc. and
other intelligent methods [10]. With constant development of deep learning, some methods such as
CNN and DBN, etc. are employed to build discriminant models of bearing faults, and good effects are
achieved [11,12]. However, in engineering applications, such methods also show their deficiencies:
whether the fault can be effectively diagnosed or not depends on the accuracy of the discriminant
model, and the accuracy of discriminant model in turn largely depends on the effective extraction of
features, and the effective extraction of features is based on good signal filtering. During the whole
procedure, if any link of the procedure is not ideal it will seriously affect the fault diagnosis result.

Another fault diagnosis method is a fault characteristic frequency-based method, namely the
signal demodulation method. The general process of characteristic frequency-based methods is: filter
the acquired signal first, then decompose the signal to extract fault signals or strengthen the fault signals.
After that, a demodulation method such as envelope demodulation or morphological demodulation,
is used to demodulate the signal to identify the fault characteristic frequencies for fault diagnosis.
The signal decomposition is the basis of this method, and the empirical mode decomposition (EMD) is
one of the most classical decomposition methods [13,14]. As further studies on decomposition method
were carried out, researchers have proposed a series of decomposition methods, such as variational
model decomposition [15], intrinsic time-scale decomposition [16], singular value decomposition,
singular spectrum decomposition [17,18], multifractal detrended fluctuation analysis [19] etc. Among
these decomposition methods, the singular value decomposition (SVD) method is an effective fault
diagnosis method. It is a non-linear filtering method, which is able to eliminate random noise
components from a signal and obtain a relatively pure fault signal. Additionally, SVD has superior
stability and invariability, and the singular value decomposed by it can reflect the intrinsic properties
of signals and improve the Signal to Noise Ratio (SNR). It is suitable for fault diagnosis against
strong background noise signals. At present, this method has good effectiveness in bearing fault
diagnosis [13,17,18]. However, there are two problems not well solved yet: one is how to decide the
embedded dimension (length of time window) of the trajectory matrix, and the other is how to choose
the best singular value. The embedded dimension is used to construct the trajectory matrix, based
on which the SVD, feature recombination and signal restoration are performed; the quality of the
embedded dimension affects the final analysis results to a large extent, and currently the selection
mainly relies on experience. In SVD fault diagnosis, the improper selection of singular values will
significantly influence the final result. The singular value representing background and noise signals
is set to zero to achieve the effect of background noise elimination. However, in the example of
bearing faults at low-speed rotation, the SNR is low, and the fault signal energy is weak, so the energy
distribution of fault signals and background noise are unknown; therefore, it is important to effectively
select the singular value. Previously, the singular value selection depended on experiments or trial
and error, which always generated relatively large errors. Some studies have elaborated on this
problem [20–22]. Some researchers tried to seek the singular value by constructing a proper singular
spectrum and identifying the turning point. For example, Zhao et al. [23] proposed selecting a singular
value using difference spectra. The performance of this method, however, will be reduced against a
strong background of noisy signals, as the method mainly focuses on the maximum peak position
of the constructed singular spectrum, which may result in the loss of important information about
other peaks. Other researchers proposed selecting an effective singular value based on the asymptotic
relationship between singular values and vectors of the signal matrix and the observed matrix [20].
The filtered signal matrix is reconstructed by minimizing the asymptotic loss. Its performance is
superior to the conventional reduction of singular values accomplished by thresholding methods [24].
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However, some assumptions must be met to use this method, such as the orthogonally invariance of
the signal noise. The assumption is difficult to satisfy in engineering applications.

In view of the aforementioned issues, the discussed fault methods are not ideal against the
background of strong noise. Due to the above problems, this study proposes an effective method to
select singular values and applied it in fault diagnosis under low-speed rotation. First of all, according
to the reconstruction theory of chaos phase space, the embedded dimension of the trajectory matrix
can be reconstructed with the FNN method. The phase space reconstructed with this method can be
used to characterize the dynamic features of the motive power system. After the trajectory matrix is
determined, the trajectory matrix is subject to SVD, and different SVs acquired from SVD are combined
to change the decomposed signals back to one-dimensional signals, which are compared with signals
in a normal state; the designed evaluation function of statistical information is used to compare
paired signals as well as the similarities between restored signal and signal in normal state. The SV
combination with maximum similarities is considered to represent the background signal and noise
signal, and the remaining SVs are considered to represent the fault signal. The SV representing the
fault signal changes the decomposed signal back to a one-dimensional signal, and effective analysis can
be performed on the faults using spectrum envelope modulation. This method has been verified with
simulation experiments and engineering experiment, and compared with the published SVD-based
method and Fast Kurtogram method to verify the effectiveness of the method.

The remainder of the study is organized as follows: Section 2 describes the mechanism of SVD
filtering; Section 3 describes the importance of SV selection for the diagnosis and bearing envelope
analysis; Section 4 describes the methods proposed in the study; Section 5 proves the effectiveness of the
methods proposed with simulation experiments and engineering experiments, as well as comparison
with the published SVD-based method and Fast Kurtogram; Section 6 presents the conclusions.

2. Mechanism of SVD Filtering

This section illustrates the mechanism of SVD filtering: The signal trajectory matrix is
reconstructed based on the embedded dimension obtained from FNN. Then the trajectory matrix is
subject to SVD, which is helpful to acquire all the combinations of SV and decomposed signals. SV
combination changes the decomposed signal back to one-dimensional signals; if the SV combination
can represent the fault signal information, the signal changed back only contains the fault signal
information, which is the whole process of signal filtering. A schematic diagram is shown in Figure 1.
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Figure 1. Singular spectrum analysis filtering schematic diagram. 
Figure 1. Singular spectrum analysis filtering schematic diagram.
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The raw signal X with noise was measured first. The reconstructed trajectory matrix of a raw
signal can be used to characterize the dynamic features of the motive system in the reconstructed
phase space. A filter can be designed based on the SVD filtering mechanism to reduce the effect of
noise on the reconstructed trajectory matrix of phase space and thus reduce the noise in the observed
time series, which corresponds exactly to the SVD filtering mechanism. Based on the SVD filtering
mechanism, the background signal and noise signal can be eliminated to generate fault signal shown
and identify the fault.

3. Description of the Problems in SV Selection and Bearing Envelope Analysis

3.1. Bearing Envelope Analysis

Bearing envelope analysis [25] is based on demodulation of high frequency resonance associated
with bearing element impacts. For rolling element bearings, impacts are produced when the rolling
element strikes the inner or outer race. These impacts modulate a signal at the associated bearing pass
frequencies. It is also called fault characteristic frequency. According to [26,27], suppose that Nb is the
number of rollers, Db is the roller diameter, Dc is the bearing pitch diameter. α is the contact angle
which can be found in the bearing specifications offered by bearing manufacturer. Even if the contact
angle is different, when bearing has faults, the signal features are same. ff is the sampling frequency.

The inner race fault characteristic frequency is fI, the ball passing frequency on the inner race can
be given by:

f I =
Nb fr

2

(
1 +

Db
Dc

cos α

)
(1)

The outer race fault characteristic frequency is fo, the ball passing frequency on the outer race can
be given by:

fO =
Nb fr

2

(
1− Db

Dc
cos α

)
(2)

The roller fault characteristic frequency is fB, the ball passing frequency on the outer race can be
given by:

fB =
Dc fr

2Db

(
1−

(
Db
Dc

cos α

)2
)

(3)

According to the fault characteristic frequency, it can diagnose bearing faults accurately.

3.2. Problems in SV Selection

As the energy distribution in background information, intrinsic information about the condition of
the bearings and noise information is unknown, and the selection of effective SV has a direct effect on
the fault diagnosis at a low rotational speed, medium rotational speed and even a high rotational speed.
With the bearing outer race fault experiment as an example, this study elaborates on this problem.
The analysis data is from a static load outer race fault experiment. The fault depth: d = 0.05 mm;
width: w = 0.3 mm. The number of rollers: 11; sampling frequency; 50 kHz, rotational speed: 500 rpm.
The fault data is measured under above conditions. The rotation rate measured in normal state is
500 rpm. The number of measurements is 262,144 (time: 5.2429 s). The time domain waveform and
envelope spectrum of the original signal is shown in Figure 2.

According to the bearing fault characteristic frequency computation formula, the outer race fault
characteristic frequency is 36.59 Hz. From the envelope spectrum modulation, this fault characteristic
frequency cannot be identified for the diagnosis. For the reconstruction trajectory matrix of this data,
the embedded dimension number is set at 8, and it is obtained by FNN method, and the reconstructed
trajectory matrix is subject to SVD, and the decomposed SV is as shown in Table 1.
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Figure 2. Waveform of time domain and envelope spectrum. (a) Time domain waveform; (b) Envelope
spectrum waveform.

Table 1. Singular value of trajectory matrix.

No. λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

Singular Value 9,374,507 398,303.5 7884.488 255.2365 12.57116 10.81382 10.46487 4.535536

As shown in the Table 1, the maximum SV is much larger than the minimum SV. According to the
energy distribution analysis, compared with the first one, the energy of the last few SVs is negligible.
According to conventional analysis, the last few SVs are set to zero. According to the singular values
difference spectrum method [23], the fifth to eighth SVs are set at zero, and the envelope spectrum
obtained is as shown in Figure 3.
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Wherein, fo is the outer race fault characteristic frequency. According to Figure 3, some trends can
be observed in the fault characteristic frequency, but the effect is not obvious. When the first few larger
SVs are set at zero (the first SV to fourth SV), the envelope spectrum obtained is as shown in Figure 4.
If we set the first two SVs and last two SVs at the same time (the 1st, 2nd, 7th and 8th SV), the effect on
the envelope spectrum is as shown in Figure 5.

As shown in Figures 4 and 5, the fault characteristic frequency cannot be identified in the envelope
spectrum, and the diagnosis fails. It can be seen from the analysis in the presence of the combination
of 2, 3, 5, 6, 7 and 8, the effective fault characteristic frequency can be extracted. For example:



Sensors 2018, 18, 2235 6 of 22
Sensors 2018, 18, x FOR PEER REVIEW  6 of 22 

 

 
Figure 4. Envelope spectrum (singular values 1~4 set to 0). 

 

Figure 5. Envelope spectrum (singular values 1, 2, 7, 8 set to 0). 

As shown in Figures 4 and 5, the fault characteristic frequency cannot be identified in the 
envelope spectrum, and the diagnosis fails. It can be seen from the analysis in the presence of the 
combination of 2, 3, 5, 6, 7 and 8, the effective fault characteristic frequency can be extracted. For 
example: 

It can be seen from the Figure 6 that the above combinations can effectively obtain outer race 
fault feature frequencies by modulation, and the energy is maximum (12,110) when the SV 
combination is 2, 3, 5, 6, 7 and 8, so this combination is the combination with optimal filtering effects. 
It can be seen from the example that the SV selection brings a large effect to the modulation results 
of rotating bearings. 

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3 x 10
4

Frequency(Hz)

A
m

pl
itu

de

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5 x 10
4

Frequency(Hz)

A
m

pl
itu

de

0 50 100 150 200 250 300
0

500

1000

1500

2000

Frequency(Hz)

A
m

pl
itu

de

of
2 of

3 of 4 of

of

2 of

3 of
4 of

of
2 of

3 of
4 of

 
Figure 6. Envelope spectrum under different singular values. 

4. Trajectory Reconstruction of Fault Signals Based on Chaos Theory 

4.1. False Nearest Neighbors 

False nearest neighbors [28] is an effective method for calculating the embedding dimension. 
According to the geometric theory, the chaos time series can be regarded as the projection of chaotic 

0 50 100 150 200 250 300
0

1

2

3

4

5 x 10
5

Frequency(Hz)

A
m

pl
itu

de

0 50 100 150 200 250 300
0

1

2

3

4

5 x 10
5

Frequency(Hz)

A
m

pl
itu

de

Figure 4. Envelope spectrum (singular values 1~4 set to 0).

Sensors 2018, 18, x FOR PEER REVIEW  6 of 22 

 

 
Figure 4. Envelope spectrum (singular values 1~4 set to 0). 

 

Figure 5. Envelope spectrum (singular values 1, 2, 7, 8 set to 0). 

As shown in Figures 4 and 5, the fault characteristic frequency cannot be identified in the 
envelope spectrum, and the diagnosis fails. It can be seen from the analysis in the presence of the 
combination of 2, 3, 5, 6, 7 and 8, the effective fault characteristic frequency can be extracted. For 
example: 

It can be seen from the Figure 6 that the above combinations can effectively obtain outer race 
fault feature frequencies by modulation, and the energy is maximum (12,110) when the SV 
combination is 2, 3, 5, 6, 7 and 8, so this combination is the combination with optimal filtering effects. 
It can be seen from the example that the SV selection brings a large effect to the modulation results 
of rotating bearings. 

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3 x 10
4

Frequency(Hz)

A
m

pl
itu

de

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5 x 10
4

Frequency(Hz)

A
m

pl
itu

de

0 50 100 150 200 250 300
0

500

1000

1500

2000

Frequency(Hz)

A
m

pl
itu

de

of
2 of

3 of 4 of

of

2 of

3 of
4 of

of
2 of

3 of
4 of

 
Figure 6. Envelope spectrum under different singular values. 

4. Trajectory Reconstruction of Fault Signals Based on Chaos Theory 

4.1. False Nearest Neighbors 

False nearest neighbors [28] is an effective method for calculating the embedding dimension. 
According to the geometric theory, the chaos time series can be regarded as the projection of chaotic 

0 50 100 150 200 250 300
0

1

2

3

4

5 x 10
5

Frequency(Hz)

A
m

pl
itu

de

0 50 100 150 200 250 300
0

1

2

3

4

5 x 10
5

Frequency(Hz)

A
m

pl
itu

de

Figure 5. Envelope spectrum (singular values 1, 2, 7, 8 set to 0).

It can be seen from the Figure 6 that the above combinations can effectively obtain outer race fault
feature frequencies by modulation, and the energy is maximum (12,110) when the SV combination is 2,
3, 5, 6, 7 and 8, so this combination is the combination with optimal filtering effects. It can be seen from
the example that the SV selection brings a large effect to the modulation results of rotating bearings.
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4. Trajectory Reconstruction of Fault Signals Based on Chaos Theory

4.1. False Nearest Neighbors

False nearest neighbors [28] is an effective method for calculating the embedding dimension.
According to the geometric theory, the chaos time series can be regarded as the projection of chaotic
motion of high-dimension phase space on low-dimension space-time. In the projection process,
the chaotic motion trajectory will be distorted, and after projection, two original nonadjacent points in
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high dimensional phase space may become two adjacent points in low-dimension space-time, namely
false nearest neighbor points. Phase space reconstruction is a method to recover chaotic motion
trajectories from chaotic time series, which can be used to evaluate the existence of nearest neighbor
points. Specifically, in m-dimensional space, the phase point is x(t) = {x(t), x(t + τ), . . . , x(t + (m − 1) τ)},
t = 1, 2, . . . , m; τ is time delay; each phase point has nearest neighbor point at certain distance Xf, with
distance of Rm(t) = ‖X(t)− X f (t)‖. When the dimensional number of phase space is increased from m
to m + 1, the distance between the two phase points will change, and the distance is changed to:

R2
m+1(t) = R2

m + ‖X(t + mτ)− X f (t + mτ)‖2 (4)

When there is relatively large change in the ratio of Rm+1(t) against Rm(t), it can be considered as
the two neighbor points in high-dimension singular attractor turns into false neighbor points. Make:

Sm =
‖X(t + mτ)− X f (t + mτ)‖

Rm(t)
(5)

If Sm > St, Xf(t) is the false neighbor point of X(t). For actually measured time series, when the
embedding dimension m is increased with the ratio of nearest neighbor point lower than 5% or the
false nearest neighbor point no longer decreases with the increase of embedding dimension m, it can
be considered that the singular attractor is fully unfolded, and m is the optimal embedding dimension.

4.2. Signal Trajectory Matrix Reconstruction and SVD

According to the trajectory matrix [29], when the embedding dimension is determined, the
trajectory matrix of the restored signal is a Hankel matrix, and the construction of the Hankel matrix is
shown as Equation (6):

H =


x1 x2 · · · xn−m

x2 x3 · · · xn−m+1
...

...
. . .

...
xm xm+1 · · · xn

 (6)

wherein, n is the length of experiment data, m is the embedding dimension. The SVD of trajectory
matrix is as Equation (7):

H = U ×∑×VT (7)

wherein, U is a m × m orthogonal matrices, and U × UT = I, V is a n × n orthogonal matrix, and V ×
VT = I; ∑ = diag(σ1, σ2, . . . , σn) is a diagonal matrix by descending order, and the diagonal elements
are the singular values of H.

4.3. Statistical Information Criteria

In this paper, the purpose of the statistical information criterion is to select the optimal singular
values which can produce the maximum similarity between the rebuilt signal and the normal condition
signal. To select and design a reliable criterion, the following two conditions should be taken into
consideration:

(1) The similarity of the probability density distribution between the rebuilt signal and normal
condition signal should be as high as possible.

(2) The similarity of the frequency density distribution between the rebuilt signal and normal
condition signal should be as high as possible.

The statistical information criterion schematic diagram is shown in Figure 7.
The proposed condition requires that the criterion have a strong capability to control the similarity

of the probability density distribution and frequency density distribution between the rebuilt signal
and the normal condition signal.
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For serving the above requirements, a “statistical information criterion” is proposed in this paper.
The probability density distribution function can be described as:

qj =
1
π

√√√√∫ ∞
0 (2πt)2Px(t)dt∫ ∞

0 Px(t)dt
e−j2/2σ2

x (8)

and the frequency density distribution function can be described as follows:

pj =
qj
√

2π

2
∫ ∞

0 (2πt)2 px(t)dt
(9)

The statistical information criterion can combine probability density distribution function with
frequency density distribution function, and be expressed as:

Ipq =
n
∑

j=1

∣∣∣log
{(

p∗j /pj

)
×
(

q∗j /qj

)}∣∣∣/n

=
n
∑

j=1

∣∣∣log
{(

p∗j /pj

)}∣∣∣/n +
n
∑

j=1

∣∣∣log
{(

q∗j /qj

)}∣∣∣/n

= Ip + Iq

(10)

where Px(t) is the probability density function value at t, p∗j is probability density distribution function
of the rebuilt signals, Pj is a probability density distribution function of normal condition signal, q∗j
is a frequency density distribution function of the rebuilt signals, qj is frequency density distribution
function of normal condition signal, j from 1 to n.

According to the Equation (10), when the value of Ipq is small, it means the similarity is high,
the selected singular value combination is considered to represent the background noises information
and the rest of the singular value that are out of combination are considered to represent the intrinsic
information about the condition of the bearings. The rest of the singular values combined with the
decomposed signals for rebuilding the one-dimensional signal can obtain the filtered fault signal.

4.4. Procedure of the Proposed Method

The signal trajectory matrix is reconstructed according to the false nearest neighbor theory of
chaotic phase space reconstruction, and the SVD and statistical information criteria can be used to
effectively filter the signals. The procedure is as shown in Figure 8.

Detailed steps of proposed method:

1. Collect abnormal signals and signals in normal state to be diagnosed;
2. Obtain the optimal embedding dimensions from abnormal signals with the false nearest

neighbor method;
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3. Construct the signal trajectory matrix based on the obtained embedding dimensions;
4. Perform SVD for the trajectory matrix to acquire the corresponding SV;
5. When the number of SVs is less than 5, all combinations are performed for the SVs; when it is

higher than 5, the SVs are turned back into one-dimensional signals and compared with that of
normal signals, and all combinations are performed for the five SVs with the largest similarities
from low to high (the function value evaluated with statistical information is maximum).
The number 5 is selected, because there are 30 combinations that should be calculated, and if the
number >6 is selected, there are so many combinations, that the efficacy will decrease.

6. The decomposed signals are restored with different combinations and analyzed with the normal
signals; evaluation function calculation is performed with statistical information to obtain the
similarity of each combination.

7. The SV combination with the maximum similarities is obtained, and the remaining SVs and
decomposed signals are turned back into one-dimensional signals, which are demodulated with
the envelope spectrum to obtain the fault characteristic frequency and diagnose the fault.

According to the proposed method steps, this is an automatic process which can detect bearing
health conditions.Sensors 2018, 18, x FOR PEER REVIEW  9 of 22 
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5. Experiment and Result Analysis

5.1. Simulation Test

In order to verify the effectiveness of the proposed method, an early stage local bearing inner race
fault is simulated with the following model:

x(t) = m(t)
∞

∑
−∞

x1(t) · x2(t) · x3(t) + n(t) (11)

m(t) = A(1− B cos(2π fs f t)) (12)
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x1(t) = e−c(t−kT−τk) (13)

x2(t) = cos(2π fn(t− kT − τk)) (14)

x3(t) = U(t− kT − τk) (15)

k = 1, 2, 3, · · · .

wherein, m(t) is the amplitude modulation of shock signal (A = 4 and B = 0.5 in this study). The speed
frequency fsf is set to 20 Hz. Signal damped exponent C is 1000, and resonance frequency fn is 5000 Hz.
τk is the tiny fluctuation of the k-th shock relative to feature cycle T, and the random fluctuation
complies with standard normal distribution, and the standard deviation is 0.5% of rotational speed
frequency, and fault characteristic frequency fi = 1/T is 120 Hz. U(t) is heavyside function, and n(t) is
Gaussian noise with standard deviation of 2, and the simulation signal can be obtained by adding the
noise signal. Here, sampling frequency fs is 12,000 Hz, and sampling data length is 4096. The simulated
signal waveform figure and envelope spectrum signal are as shown in Figure 9.
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Figure 9. Time domain and envelope spectrum waveform of simulated signal. (a) Time domain
waveform; (b) Envelope spectrum waveform.

As shown in the Figure 9, the signal is completely surrounded by noise signal, and the signal
shock cannot be identified, and the fault characteristic frequency cannot be identified in the envelope
spectrum. The signal is calculated with the proposed method, and embedding dimension number is
calculated first. The delay time set here is 1, and the maximum embedding dimension number is 20,
and the embedding dimension number is obtained for the signal with false nearest neighbor method.
The result is as shown in Figure 10.
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Figure 10. Embedded dimension by the false nearest neighbor point method.
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As shown in the Figure 10, the optimal embedding dimension numbers are 5 or 16. When the
embedding dimension number is 5, the SVD obtained after the SV decomposition of reconstructed
trajectory matrix is as listed in Table 2.

Table 2. Singular values of the trajectory matrix.

No. λ1 λ2 λ3 λ4 λ5

Singular Value 19,942.18 18,697.51 16,517.66 15,683.62 15,296.79

Different combinations of feature values are analyzed with an evaluation function of statistical
information; the values obtained with the evaluation function of statistical information are as shown
in Table 3 and Figure 11.

Table 3. Statistics information criteria value.

Singular Value 1 2 3 4 5

Ipq 6.4299 6.9418 6.9639 7.0401 6.5273

Singular Value 1, 2 1, 3 1, 4 1, 5 2, 3

Ipq 4.3887 5.5665 5.4538 5.8543 5.819

Singular Value 2, 4 2, 5 3, 4 3, 5 4, 5

Ipq 5.5942 5.4714 5.3488 5.8284 5.2938

Singular Value 1, 2, 3 1, 2, 4 1, 2, 5 1, 3, 4 1, 3, 5

Ipq 3.8968 3.9179 3.9657 4.2053 5.1614

Singular Value 1, 4, 5 2, 3, 4 2, 3, 5 2, 4, 5 3, 4, 5

Ipq 4.8399 4.4298 4.0966 4.114 4.1387

Singular Value 1, 2, 3, 4 1, 2, 3, 5 1, 2, 4, 5 1, 3, 4, 5 2, 3, 4, 5

Ipq 3.4388 3.313 2.9331 3.1753 2.8386
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Figure 11. Statistics information criteria value.

According to the Table 3 and Figure 11, when the SV combination is 2, 3, 4 and 5, the value of the
evaluation function of statistical information is the minimum, with maximum similarity, therefore, the
decomposed signal is turned back into a one-dimensional signal with the rest SV 1 and the envelope
spectrum of the restored signal is calculated. As shown in Figure 12, the fault characteristic frequency
is obvious and the frequency multiplication can be well distinguished.
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with embedding dimension number of 16 is evaluated. When the embedding dimension number is 16,
the data size is very large, and it will be very time consuming if the full combinations are analyzed,
therefore, the similarities are calculated with an evaluation function of statistical information for the
signals after restoration of each SV and decomposed signal and signals in normal state. The SVs
are sequenced from high to low with the values of evaluation function of statistical information.
The sequencing results are as shown in Table 4.

Table 4. SVs are listed in ascending order based on statistical information.

No. 1 2 3 4 5 6 7 8

Singular Value λ1 λ2 λ3 λ5 λ7 λ4 λ6 λ8
Ipq 2.0746 2.1745 2.3433 2.5632 2.8324 3.1023 3.3723 4.2113

No. 9 10 11 12 13 14 15 16

Singular Value λ9 λ10 λ11 λ12 λ13 λ14 λ15 λ16
Ipq 4.2452 4.2514 4.8346 5.2146 5.7246 5.8532 6.0123 6.3468

As shown in Table 4, the SV 1, 2, 3, 5 and 7 are the most similar five values, and all combinations
are made with λ1, λ2, λ3, λ5, λ7; according to the analysis with the one-dimension signal restored
from decomposed signal by the combinations and signals in normal state, the energy of the envelope
spectrum is the maximum when the SV is 1, 2 and 5, see Figure 13.
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5.2. Engineering Applications

5.2.1. Experiment Conditions

In order to verify the effectiveness of the proposed method, an experimental verification is
performed with an inner race fault, outer race fault and roller fault under low-speed operation as well
as a signal in normal state. Figure 14 shows an experimental platform for a fault diagnosis test.
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Here, the balls number is 12, contact angle 0, ball diameter 18 mm, inner diameter 87.5 mm, outer 
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Figure 14. Bearing fault diagnosis experimental system.

The outer race flaw type is N312, and the type of normal bearing, inner race flaw and roller flaw
type is NU312, the difference between N312 and NU312 is only the position of the flaw, and other
properties are the same. As shown in Figure 15, three different types fault, which are outer race
flaw, inner race flaw, and the roller flaw were artificially made by using electro discharge machining,
which fault width is 5.0 mm, and depth is 0.03 mm. The original vibration signals of each state were
measured by an accelerometer (PCB MA352A60, PCB Piezotronics Inc., New York, NY, USA) with
50,000 Hz sampling frequency. The accelerometer was fixed on the vertical direction of the bearing.
While obtaining the vibration signals, the speed of the servo motor was 100 RPM. All the data were
stored and recorded and transformed by a collection system that includes a sensor signal conditioner
(PCB ICP Model 480C02, PCB Piezotronics Inc.) and a signal recorder (Scope Coder DL750, Yokogawa
Co. Ltd., Tokyo, Japan). The fault characteristic frequency at 100 RPM is obtained as shown in Table 5
with the fault characteristic frequency computational formula.
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Figure 15. Bearing flaw of outer race, inner race and roller.

Table 5. Fault characteristic frequency of inner race fault, outer race fault and roller fault.

Fault Fault Characteristic Frequency

Outer Race Flaw 8.00 Hz
Inner Race Flaw 11.9 Hz

Roller Flaw 8.02 Hz

Here, the balls number is 12, contact angle 0, ball diameter 18 mm, inner diameter 87.5 mm, outer
diameter 113 mm and RPM 100.
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5.2.2. Out Race Fault

The data selected is 262,144 (5.24288 s). The comparison of outer race fault and normal state in
the time-domain waveform, envelope spectrum and the results obtained with false nearest neighbor
(maximum dimension number is 20 and delay time is 1) are as shown in Figure 16.
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Figure 16. Outer race fault (a) time domain waveform, (b) envelope spectrum (c) embedded dimension.

As shown in the Figure 16, the embedding dimension number is optimal at 4, so the embedding
dimension number 4 is selected to perform the trajectory matrix reconstruction on the signals and
perform SVD on the matrix. The SVs obtained are as shown in Figure 17.
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Figure 17. Singular value of trace matrix.

It can be seen that the first two SVs are the largest, and the restored signals and signals in
normal state are analyzed with the evaluation function of statistical information with different SV
combinations, and the values of evaluation function of statistical information obtained are as shown in
Table 6.

Table 6. Statistics information criteria value.

Singular Value 1 2 3 4 1, 2

Ipq 11.6379 80.4025 101.7774 118.157 11.7015
Singular Value 1, 3 1, 4 2, 3 2, 4 3, 4

Ipq 11.6448 11.6845 93.3342 109.9708 46.8683
Singular Value 1, 2, 3 1, 2, 4 1, 3, 4 2, 3, 4

Ipq 11.722 11.7602 11.6945 180.0193

As shown in the Table 6, when the SV is 1, the similarity is the maximum, and the optimal SV
combination at this time is 2, 3 and 4. The verification of its combination is as shown in Figure 18.
As shown in the Figure 18, where the three figures can be used to accurately distinguish fault
characteristic frequencies, in which the energy corresponding to combination 2, 3 and 4 is the strongest
(20.55), and it also has the optimal filtering effect, and the fault is accurately diagnosed.
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5.2.3. Roller Fault 

The data length selected is 262,144 (5.24288 s). The comparisons between roller fault signal and 
signal in normal state in time-domain waveform, envelope spectrum and the results obtained with false 
nearest neighbor (maximum dimension number of 20 and delay time of 1) are as shown in Figure 19. 
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Figure 18. Filtering effective under different singular values.

5.2.3. Roller Fault

The data length selected is 262,144 (5.24288 s). The comparisons between roller fault signal and
signal in normal state in time-domain waveform, envelope spectrum and the results obtained with false
nearest neighbor (maximum dimension number of 20 and delay time of 1) are as shown in Figure 19.
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5.2.3. Roller Fault 

The data length selected is 262,144 (5.24288 s). The comparisons between roller fault signal and 
signal in normal state in time-domain waveform, envelope spectrum and the results obtained with false 
nearest neighbor (maximum dimension number of 20 and delay time of 1) are as shown in Figure 19. 
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Figure 19. Roller fault (a) time domain waveform, (b) envelope spectrum (c) Embedded dimension.

As shown in the Figure 19, the embedding dimension number is optimal at 5. Trajectory matrix
reconstruction and SVD are performed with embedding dimension number of 5. The SVs obtained are
as shown in Figure 20.
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Figure 20. Singular value of the trace matrix.

According to the analysis of evaluation function of statistical information, the optimal SV
combination obtained is 2, see Figure 21.
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As shown in the Figure 21, the three figures above can all accurately distinguish the fault
characteristic frequency, in which the energy is the strongest for the combination that only contains
singular value 2 (the first subfigure in Figure 21), also with optimal filtering effect, and the fault is
accurately diagnosed at the same time.

5.2.4. Inner Race Fault

The data length selected is 262,144 (5.24288 s). The comparison between inner race fault signal
and signal in normal state in time-domain waveform, envelope spectrum and the results obtained
with false nearest neighbor (maximum dimension number of 20 and delay time of 1) are as shown in
Figure 22.
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As shown in the Figure 22, the embedding dimension number is optimal at 5. Trajectory matrix
reconstruction and SVD are performed with embedding dimension number of 5. The SVs obtained are
as shown in Figure 23.
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According to the analysis of statistical information criteria, the optimal SV combinations obtained
are 2, 3, 4 and 5. The verification of the effects of the combinations is as shown in Figure 24.
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Figure 24. Filtering effective under different singular value.

As shown in the Figure 24, the three figures above can all accurately distinguish the fault
characteristic frequencies, in which the combination 2, 3, 4 and 5 has the strongest energy, also
with optimal filtering effect, and the fault is accurately diagnosed. The detection rate of different
bearing health conditions (outer race flaw, inner race flaw and roll flaw) in the experiment is 100%.
All of bearing flaws in the experiment can be diagnosed successfully.

5.3. Case Western Reserve University Bearing Data

Case Western Reserve University (CWRU) Bearing Data is a publicly available dataset for bearing
fault diagnosis [30]. The details of the data production are available on the website and in [31].
The experiment data number is IR007-0 (inner race flaw), fault depth 2.7940 mm, fault diameter 0.1777mm,
motor load 0 and rotating speed 1797 per minute. According to Equation (10), the fault characteristic
frequency is 162 Hz. Applying the proposed method, the envelope spectrum is as shown in Figure 25.
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As shown in Figure 25, the fault characteristic frequency of the proposed method (161.9 Hz) can
be identified and is identical to the calculated result, so the effectiveness of the developed method has
been verified successfully.

5.4. Comparison with the DCSISE Method

To verify the advancement of the proposed method, this section compares it with the method
published in [20]. The paper used a difference curvature spectrum of incremental singular entropy
(DCSISE) to determine the number of effective singular values. The detailed algorithm steps are shown
in the reference. The experiment data is the same as Section 5.2.2 (outer race fault). The envelope
spectrum of two methods is shown in Figure 26.
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As shown in the Figure 26, the proposed method SV combination is 2, 3 and 4, the DCSISE method
is 1 and 2. The fault characteristic frequency of the proposed method can be identified, but the DCSISE
method can’t identify the fault characteristic frequency, which indicates the proposed method has
effectiveness and represents a notable advancement.
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5.5. Comparison with Fast Kurtogram Method

In order to furtherly verify the effectiveness of the proposed method, this study compared the
inner race at low-speed bearing fault signal with the Fast Kurtogram diagnosis method. The method is
described in [32], and the Fast Kurtogram is shown in Figure 27.
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Figure 27. Fast Kurtogram.

As shown in the Figure 27, the spectrum kurtosis is the maximum when the central frequency is
7291.6667 Hz, and the bandwidth is 2083.33 Hz. The filtering is performed with such data to obtain
the filtered original waveform (time domain), envelope signal and envelope spectrum, see Figure 28.
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As shown in Figure 28, the inner race fault characteristic frequency cannot be effectively
demodulated with the Fast Kurtogram method, so this method has poor effect in low-speed
bearing diagnosis.

6. Conclusions

This study proposed an effective SV selection filtering method based on false nearest neighbor
and statistical information criteria, and applied it to bearing fault diagnosis. False nearest neighbor
can be used to calculate the optimal embedded dimension to reconstruct original signal trajectory
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matrix. Different SV combinations are selected, and the one-dimension signal restored from SVD signal
and signal in normal state are compared, so as to obtain effective SV combinations with statistical
information criteria as basis, and this SV combination is the most representative of fault signals. Based
on the envelope spectrum method, the signal restored from the optimal SV can be demodulated to
effectively analyze fault characteristic frequencies. Experimental verification has been performed
for this method through simulation experiments and engineering experiments, which are compared
with the DCSISE and Fast Kurtogram methods to demonstrate the fault diagnosis effectiveness of the
proposed method against background of strong noise. The SV selection filtering method proposed in
the study could be applied further in the fault signal diagnosis of other rotating machinery.
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