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Abstract: Wireless Power Transfer (WPT) technology is considered as a promising approach to make
Wireless Rechargeable Sensor Network (WRSN) work perpetually. In WRSN, a vehicle exists, termed
a mobile charger, which can move close to sensor nodes and charge them wirelessly. Due to the mobile
charger’s limited traveling distance and speed, not every node that needs to be charged may be
serviced in time. Thus, in such scenario, how to make a route plan for the mobile charger to determine
which nodes should be charged first is a critical issue related to the network’s Quality of Service
(QoS). In this paper, we propose a mobile charger’s scheduling algorithm to mitigate the data loss of
network by considering the node’s criticality in connectivity and energy. First, we introduce a novel
metric named criticality index to measure node’s connectivity contribution, which is computed as
a summation of node’s neighbor dissimilarity. Furthermore, to reflect the node’s charging demand,
an indicator called energy criticality is adopted to weight the criticality index, which is a normalized
ratio of the node’s consumed energy to its total energy. Then, we formulate an optimization problem
with the objective of maximizing total weighted criticality indexes of nodes to construct a charging
tour, subject to the mobile charger’s traveling distance constraint. Due to the NP-hardness of the
problem, a heuristic algorithm is proposed to solve it. The heuristic algorithm includes three steps,
which is spanning tree growing, tour construction and tour improvement. Finally, we compare the
proposed algorithm to the state-of-art scheduling algorithms. The obtained results demonstrate that
the proposed algorithm is a promising one.

Keywords: wireless rechargeable sensor network; mobile charger; recharge schedule; criticality index;
heuristic algorithm

1. Introduction

Wireless Sensor Network (WSN) is widely used in many applications, such as environmental
monitoring, target tracking, security surveillance, etc. [1]. As nodes in a network are powered by
energy-limited batteries, the network lifetime is always limited by nodes’ energy [2]. Owing to
recent advances in Wireless Power Transfer (WPT) technology [3], a novel application named Wireless
Rechargeable Sensor Network (WRSN) provides a promising approach to make sensor nodes work
perpetually and has drawn growing attention from the research community [4–8].

In WRSN, when the battery of a node is depleted, a wireless charging vehicle called a mobile
charger, which is equipped with an energy transceiver and high capacity battery, can move close to the
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node and charge it for a period of time. The maximal travel distance of the mobile charger is bounded
due to its limited fuel capacity. After charging a number of nodes, the mobile charger has to return to
the base station for refueling. Thus, due to the mobile charger’s refueling time and limited traveling
speed, not every node which needs to be charged is serviced in time. In such a scenario, it is necessary
to make a route plan for the mobile charger to determine which nodes should be charged first within
the limited travel distance.

In WSN, a node usually behaves as both a data source and a data router [9–11]. The sensory
data traffic follows a many-to-one pattern, where relay nodes tend to be congested as they are not
only collecting and processing but also relaying data from nodes farther away. A node can be called
critical node if it plays an irreplaceable role as a relay node in some routing paths. When a critical node
depletes its energy, some other nodes that send their sensory data to the base station via this node
can’t find an alternative routing path and become disconnected from the base station, which will make
the network suffer data loss. In practical WSN, although the critical nodes are rare due to the dense
deployment of nodes, there still exist some nodes that have a potential to be critical nodes, which are
referred to as high criticality nodes in this paper. For example, as shown in Figure 1, there are the
two paths A-B-C-E and A-B-D-E from node A to node E. Obviously, node B is a critical node that
is irreplaceable in two paths. Node C and Node D are the high criticality nodes which will become
critical node when the other is inactive. Thus, the high criticality node can also play a ‘bridging’ role in
keeping the network connected, and the higher the criticality of a node is, the greater possibility to
become critical node it owns. In order to decrease the risk of data loss, for the mobile charger, it is vital
to charge as many high criticality nodes include critical nodes as possible before their batteries are
depleted. To realize this, there is a question needed to be answered: How to quantify the criticality of
nodes that the mobile charger can be scheduled to charge them effectively?
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Betweenness centrality metric [12] is one of most commonly used direct measurement to
characterize the criticality of nodes, by estimating the node’s contribution to the shortest routing
paths construction. A node that participates in most of the shortest path is considered to be the highest
criticality node. Since the betweenness centrality is computed by counting all of the paths through
each node in the network, its computation is too costly to be adopted in the large network. Besides,
the betweenness centrality of an edge node in the network is zero, which can’t determine the source
node’s contribution. In the existing studies [13,14], to schedule the mobile charger, the node’s energy
consumption rate is used as an indirect measurement of the node’s criticality. However, it is hard to
accurately estimate node’s energy consumption rate in the practical WSN. Unlike previous metrics,
a simple metric named criticality index is introduced in our work to quantify the criticality of nodes.
The criticality index is the summation of node’s neighbor dissimilarity ratios. According to this index,
a node is deemed as the high criticality node if it not only has many neighbors, but also is one of the
few bridge nodes among its neighbors.

In this paper, a mobile charger is employed to charge the sensor nodes in WRSN. Due to the
limited travel distance of the mobile charger, it can only serve a part of nodes during a single charging
tour. The uncharged node will enter into a sleep mode when its battery is depleted and then wakes up
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after it gets charged. If the high criticality nodes become inactive, the network may suffer data loss.
Therefore, in order to mitigate data loss in the network, we formulate an optimization problem with
the objective of maximizing the sum of criticality indexes of nodes to be charged, subject to the mobile
charger’s traveling distance constraint. Then, we propose a heuristic algorithm to solve this problem.

The main contributions of this paper are summarized as follows:

• To the best of our knowledge, this is the first work to consider the node’s disjointed state in the
mobile charger scheduling problem. Compared to the state-of-arts, we distinguish the inactive
nodes into two groups, the sleep nodes whose energy is exhausted and the disjointed nodes
which are active but can’t send data to the base station via any available routing path. Most
existing works only consider how to decrease the sleep node’s nonfunctional time with the help
of a mobile charger, but ignore the disjointed node’s data loss. In our work, to maintain network
connectivity as long as possible and mitigate the data loss, we consider reducing the inactive time
of both sleep nodes and disjointed nodes via the mobile charger with limited charging ability.

• We introduce a metric called the criticality index to quantify the node’s criticality, which indicates
a node’s contribution to network connectivity. It measures the dissimilarity between the node’s
neighboring set and its neighbors’ neighboring sets. A node has a higher index if it plays a more
important role as a bridge between two or more node sets. In addition, energy criticality is also
considered, which indicates a node’s consumed energy ratio and can be used to measure the
node’s desire for charging. We use this ratio to weight the criticality index to reduce the possibility
of charging the full energy nodes. Otherwise, some higher criticality nodes will always be selected
to be charged even if they have a great amount of residual energy.

• We formulate the charging scheduling problem as a novel optimization problem, with an objective
of maximizing the total criticality indexes of nodes selected in the charging tour and subject to
the mobile charger’s traveling distance constraint. To solve this NP-hard problem, we propose
a heuristic algorithm. The heuristic algorithm includes three steps, which are spanning tree
growing, tour construction, and tour improvement.

The rest of the paper is organized as follows. Section 2 gives brief overviews of the literature.
In Section 3, we introduce the system model and define the problems. Section 4 proposes the heuristic
algorithm for the charging scheduling problems. In Section 5, we conduct some simulations to compare
the proposed algorithm with a state-of-art scheduling algorithm Nearest-Job Next with Preemption and
a traditional Travel-Salesman-Problem based algorithm. Finally, we conclude this paper in Section 6.

2. Related Works

2.1. Wireless Power Transfer Technology

In this section, we mainly introduce three major technologies of WPT [15,16]: inductive coupling,
electromagnetic radiation and magnetic resonant coupling.

Inductive coupling is driven by magnetic field induction [15]. Due to its simplicity and
high-efficiency, it has been used in many applications and devices (e.g., medical implants, RFID
tags, electric toothbrush). But it can’t be used to charge a sensor node in WRSN because it needs short
charging distance and accurate alignment in charging direction.

Electromagnetic radiation [17], which is a radiative technology that transfers power on a radio
frequency (RF), has the advantages of long distance power transfer. It can support the unidirectional
and omnidirectional radiation. However, in unidirectional radiation, it requires Line-Of-Sight (LOS)
and complex tracking mechanisms, leading to large scale of devices. And in omnidirectional radiation,
its power transfer efficiency is very low.

Magnetic resonant coupling [3] works by having magnetic resonant coils operating at the same
resonant frequency and generating a magnetic resonant induction for efficiently power transferring
from a source coil to a receiver coil. Due to its high-efficiency and medium transfer distance, it becomes
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the most used WPT technology in WRSN [5–7,13,15,16]. For this reason, in the rest of this paper,
we mainly focus on the magnetic resonant charging.

2.2. Mobile Charger Schedule

In recent years, a lot of efforts have been made on exploring the mobility-assisted energy
replenishment in WRSN, in which the charging scheduling schemes for the mobile charger is
a prominent issue. In general, charging scheduling schemes for WRSN can fall into two categories:
Periodical scheme and on-demand scheme.

Periodical scheduling scheme converts the energy charging problem into a TSP based on nodes’
distribution model and energy consumption model, where the mobile charger knows all nodes’ statuses
in advance and carries out the charging tour periodically. For example, Xie et al. [15] focused on the
scenario where the mobile charger has to accomplish the charging tasks by visiting all the nodes in the
network with the objective of maximizing the ratio of the mobile charger’s vacation time over the cycle
time. The mobile charger’s shortest traveling path is decided in advance before its departing from
the service station due to the energy consumption rates of nodes are unchanged. They [16] extended
their work to a multiple-node charging case, in which the nodes around the mobile charger’s wireless
power transmission range can be charged at the same time, thus greatly improving the charging
efficiency. Fu et al. [18] proposed an optimal movement strategy for the mobile RFID reader to charge
all nodes in the network, such that the charging delay is minimized. They used the concepts of the
smallest enclosing space and a space discretization method to find the optimal stop locations for the
mobile reader. They also a proposed energy synchronized mobile charging (ESync) protocol [19]
with the assumption that nodes’ energy consumptions are already known by the mobile charger.
They synchronized the charging request sequence of nodes with their sequence on charging tour to
minimize the nodes’ charging delay and constructed a set of nested TSP tours involving the nodes
with low residual energy to reduce the mobile charger’s moving distances. Guo et al. [20] proposed
a framework of joint wireless energy replenishment and anchor-point based mobile data gathering
in WRSN. They formulated the problem into a network utility maximization problem and presented
a distributed algorithm to solve it. Shu et al. [21] formulated a mobile charger’s velocity control
problem under the constraints of patrolling cycle and acceleration limit to maximize the network
lifetime, and developed a near-optimal heuristic solution with a provable upper bound. Liang et al. [22]
formulated a multiple mobile charger scheduling problem to charge life-critical sensors in the network
with an objective to minimize the number of mobile chargers and then they proposed an approximation
algorithm with a provable performance guarantee. The periodical scheduling schemes, which address
the charging problem as an optimization path planning problem with the assumption that the node’s
energy consumption rate is constant and known in advance by the mobile charger, are not suitable for
the dynamic network, in which the node’s energy consumption rate is difficult to accurately estimate.

In contrast, the on-demand scheduling scheme is carried out in an on-demand manner, where the
mobile charger doesn’t know all nodes’ charging requests in advance. In practice, due to the dynamic
variations of the node’s energy consumption, the mobile charger’s traveling path can’t be globally
planned. In the on-demand scheme, node’s charging request is dynamically sent to the mobile charger
only when the node’s residual energy falls below a predefined threshold. Then, the mobile charger will
select one request to service and put others into a waiting queue. For example, He et al. [23] proposed
an on-demand path planning method based on the discipline of Near Job Next with Preemption
(NJNP), in which the mobile charger always greedily selects the nearest requesting node to charge.
In Reference [24], Lin et al. proposed Double Warning thresholds with a Double Preemption (DWDP)
charging scheme, in which double warning thresholds are used for activating the nodes’ charging
requests. In Reference [25], a temporal and distantial priority scheduling method has been proposed
for the on-demand charging architecture, in which distance between nodes and the mobile charger
and arrival time of requests are considered to achieve better performance. The existing on-demand
charging approaches adapt better to the variations in nodes’ energy consumptions compared to the
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periodical scheduling schemes, however they only address the problem for a single charging cycle
without taking into account the fact that the mobile charger possesses limited traveling energy and has
to return to the base station for energy replenishment periodically. Besides, the charging requests need
to be sent to the mobile charger in time, which would occupy the channel resources.

3. Network Model and Charging Scheme

In this paper, we propose a scheduling algorithm based on the periodical scheme to meet the
mobile charger’s energy replenish requirement. Unlike the aforementioned periodical approaches,
the proposed scheduling algorithm does not depend on the accurate energy consumption rate of
nodes, but takes into account the node’s criticality. In this section, we introduce the network model
and criticality definition. At last, a novel criticality maximization problem is formulated.

3.1. Network Model

Figure 2 illustrates the network model in this paper. We consider a WRSN consisting of
a set N = {1, 2, · · · , |N|} of sensor nodes randomly deployed in a rectangle area for environmental
monitoring, where |·| denotes the cardinality of the set. A stationary base station is located at the
center of rectangle area for data gathering and acts as a mobile charger’s depot. Each sensor node
is powered by a rechargeable battery with a capacity of Emax and consumes energy on sensing and
wireless data transmission. We assume that each node uploads its sensory data to the base station via
a routing path determined by a shortest multi-hop routing algorithm, e.g., Dijkstra’s routing algorithm.
When the residual energy level of a node falls below Emin, the node will enter into a sleep mode and
turn off most functions, including sensing and data transmission, until it gets the mobile charger’s
energy replenishment.

To recharge the battery at each node, a mobile charger equipped with a powerful wireless energy
transfer device is employed in the network. We assume that the mobile charger is driven by petrol or
electricity, it can travel at a constant speed v and its traveling distance per tour is bounded by a given
value L. The mobile charger is equipped with a high capacity battery that is sufficient to charge all
sensor nodes on its charging tour. Due to the large scale of devices and the higher energy loss in the
omnidirectional radiation pattern [13,26], in this paper, we adopt the point-to-point (direct) wireless
power transfer pattern to maximize the energy wireless transfer efficiency. We assume the mobile
charger charges only one node each time and each node will be fully-charged if the mobile charger
visits, and the node’s received energy power pr is constant. During each tour, the mobile charger starts
from the base station to charge nodes on its closed charging tour and returns before its traveling energy
runs out. After finishing these point-to-point charging tasks, the mobile charger will stay at the base
station to refuel or recharge itself for a period of time Tw. The major notations used in this paper are
listed in Table 1.

Table 1. List of notations.

Notation Definition

N node sets
Emax the node’s battery capacity
Emin the node’s minimum energy level for operation

Ei node i’s residual energy level
v the charger’s traveling speed
L the charger’s traveling distance constraint
pr the node’s received charging rate
Tw the period of time for the charger’s replenishment
ds the node’s sensing range
dr the node’s maximum transmission range
es energy consumed to sense an event
et energy consumed to transmit a packet
er energy consumed to receive a packet
ec energy consumed to combine a packet
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3.2. Energy Consumption Model

In this paper, we assume the network is an event-driven network [6,13]. There are some events
appear independently at random locations and random times in the network field. For simplicity,
whenever an event appears in the sensing range ds of sensor nodes, these nodes consume es energy to
capture the event and transmit the sensory data to the base station via a dynamic routing path. Each
node has the same maximum transmission range dr, and consumes et and er energy to transmit and
receive a data message, respectively.

3.3. Node’s Criticality Definition

In this work, the criticality is regarded as a quantification of node’s contribution in routing path
construction, or connectivity maintenance. We introduce a metric called criticality index to measure
node’s criticality.

For each node i, we define its neighbor sets as Nb
i = {j ∈ N|d(i, j) ≤ dr, i 6= j}, where d(i, j) is

the distance between node i and node j. The node i’s criticality index ri is given by:

ψij =

∣∣∣Nb
j
∣∣∣−∣∣∣Nb

j ∩ Nb
i
∣∣∣∣∣∣Nb

j
∣∣∣ (1)

ri = ∑
j∈Nb

i

ψij (2)

where ψij is the dissimilarity ratio, which is a normalized indicator that takes a value between 0 and 1
to measure the difference between node i and node j’s neighbor sets. If node i and node j have a large
number of common neighbors, the dissimilarity ratio ψij is small and, on the contrary, ψij is large if
node i and node j have little common neighbors.

The criticality index ri is calculated by summing the dissimilarity ratios of node i’s neighbors,
which can be treated as an indicator of the node’s contribution in network connectivity. As such,
the criticality index is determined by the node’s degree and the diversity of its neighbors. Firstly,
if a node has higher node degree, it would have more neighbors and own greater possibility to become
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a relay node in numerous shortest routing paths than other nodes with a lower degree, which implies
that the node owns higher criticality in connectivity maintenance. Besides, if a node is an isolated node
and does not have any neighbors from the beginning of the network, its criticality index is 0. Secondly,
the greater dissimilarity between the node’s and its neighbors’ neighbor sets, the higher criticality the
node owns. We use the example network of Figure 3a to explain this part. In this network, nodes B and
E have the same node degree, however, they own different criticality. Node B has two neighbor nodes,
A and C. Node A’s neighbor is node B, while node C’s neighbors are node B, D, and E, thus node B
doesn’t have the same neighbor nodes with node A or C. Like node B, node E also has two neighbor
nodes, C and D. According to Equation (2), the criticality index of node E is smaller than that of node B
due to the fact that C and D have the same neighbor E. The link between node C and D enhances the
redundancy of connections, thus if node E is removed from the network, shown in Figure 3b, node C
and D will be still connected. On the contrary, shown in Figure 3c, if node B is removed, the network
will be split into two parts, and then node A will become a disjointed node. It demonstrates that node
with a higher diversity of neighbors has a higher influence in network connectivity, and it should be
treated as a higher criticality node.

Sensors 2018, 18, 2223 7 of 18 

 

have a large number of common neighbors, the dissimilarity ratio 
ij

  is small and, on the contrary, 

ij
  is large if node i  and node j  have little common neighbors. 

The criticality index ir  is calculated by summing the dissimilarity ratios of node i ’s neighbors, 

which can be treated as an indicator of the node’s contribution in network connectivity. As such, the 

criticality index is determined by the node’s degree and the diversity of its neighbors. Firstly, if a 

node has higher node degree, it would have more neighbors and own greater possibility to become 

a relay node in numerous shortest routing paths than other nodes with a lower degree, which implies 

that the node owns higher criticality in connectivity maintenance. Besides, if a node is an isolated 

node and does not have any neighbors from the beginning of the network, its criticality index is 0. 

Secondly, the greater dissimilarity between the node’s and its neighbors’ neighbor sets, the higher 

criticality the node owns. We use the example network of Figure 3a to explain this part. In this 

network, nodes B and E have the same node degree, however, they own different criticality. Node B 

has two neighbor nodes, A and C. Node A’s neighbor is node B, while node C’s neighbors are node 

B, D, and E, thus node B doesn’t have the same neighbor nodes with node A or C. Like node B, node 

E also has two neighbor nodes, C and D. According to Equation (2), the criticality index of node E is 

smaller than that of node B due to the fact that C and D have the same neighbor E. The link between 

node C and D enhances the redundancy of connections, thus if node E is removed from the network, 

shown in Figure 3b, node C and D will be still connected. On the contrary, shown in Figure 3c, if node 

B is removed, the network will be split into two parts, and then node A will become a disjointed node. 

It demonstrates that node with a higher diversity of neighbors has a higher influence in network 

connectivity, and it should be treated as a higher criticality node. 

D

BA C

E

 
D

BA C

 D

A C

E

 
(a) (b) (c) 

Figure 3. Example of network. (a) The original network; (b) The network of node E removed; (c) The 

network of node B removed. 

However, only considering the node’s connectivity contribution is not enough to make a proper 

charging schedule for the mobile charger, where the energy criticality is also an important indicator 

that should be considered. If we ignore the nodes’ charging demand and only care about the 

connectivity contribution, the node with great contribution in connectivity will always be charged 

even if their energy is full capacity, on the other side, the node with less contribution like the edge 

nodes will never get the chance to be charged, causing a coverage hole in the network. To avoid that, 

the energy criticality, which represents a normalized ratio of the node’s consumed energy to the full 

energy capacity, is adopted to weight the criticality index and is defined as below: 

max i
i

max min

E E

E E


−
=

−
 (3) 
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However, only considering the node’s connectivity contribution is not enough to make a proper
charging schedule for the mobile charger, where the energy criticality is also an important indicator that
should be considered. If we ignore the nodes’ charging demand and only care about the connectivity
contribution, the node with great contribution in connectivity will always be charged even if their
energy is full capacity, on the other side, the node with less contribution like the edge nodes will
never get the chance to be charged, causing a coverage hole in the network. To avoid that, the energy
criticality, which represents a normalized ratio of the node’s consumed energy to the full energy
capacity, is adopted to weight the criticality index and is defined as below:

ρi =
Emax − Ei

Emax − Emin
(3)

r̂i = ρiri (4)

where Ei denotes the residual energy level of node i when the mobile charger starts a new trip;
ρi denotes the energy criticality and r̂i denotes the weighted criticality index. Obviously, according to
the Equation (4), a node will get the higher charging priority if it has both a lower residual energy and
a higher connectivity contribution.

3.4. Problem Formulation

The mobile charger’s scheduling problem can be defined as follow. We model the location of
potential charging tasks in terms of a complete graph G = (V, E). For achieving high charging
efficiency, the charger can only charge one node each time and stay close to the node when performing
charging task. For the sake of simplicity, we assume that the locations of the charging task are
coinciding with locations of nodes. Therefore, the vertex vi ∈ V(0 ≤ i ≤|N|) is the location of node
i, and v0 is the base station’s location where the tour starts and ends. Each vertex vi has a positive
reward, which is equal to the weighted criticality index r̂i of node i. We assume each node can be
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visited only once at most, therefore, the reward at a node can be collected only once. E =
{
(vi, vj)

}
denotes the set of edges and presents potential paths between tasks. We define binary variables
xi ∈ {0, 1}(0 ≤ i ≤|N|) to be 1 if vi is visited in the tour and 0 otherwise. Define binary variables
yij ∈ {0, 1}(0 ≤ i, j ≤

∣∣N∣∣) to be 1 if the edge from vi to vj is traveled and 0 otherwise. Each edge
(vi, vj) has an edge cost cij, which represents the Euclidean distance between vi and vj, and cij = cji.

There is only one mobile charger with traveling distance constraint L in the network, which may
not be able to visit and perform charging task on entire nodes. To maintain the network connectivity
as long as possible, the mobile charger should preferentially visit the nodes with higher weighted
criticality index and lower traveling cost during each charging tour. In other words, the sum of
weighted criticality indexes of the nodes selected to be visited in a charging tour should be maximized,
which can be treated as a maximization problem subject to the total traveling distance of the mobile
charger is upper bounded by L. We formulate the maximization problem as an integer programming
problem, which is shown as follow:

max
|N|

∑
i=1

xi r̂i (5)

Subject to

∑
vj∈V\{vi}

yij = xi vi ∈ V (6)

∑
vi∈V\{vj}

yij = xj vj ∈ V (7)

∑
i 6=j

yij·cij ≤ L vi, vj ∈ V (8)

2 ∑
vk∈S

xk ≤ |S|( ∑
vi∈S,vj /∈S

yij + ∑
vi /∈S,vj∈S

yij) S ⊂ V\{v0}; |S| ≥ 2 (9)

x0 = 1 (10)

xi ∈ {0, 1} vi ∈ V (11)

yij ∈ {0, 1} (vi, vj) ∈ E (12)

In the above formulation, constraint (6) and (7) ensure that each vertex is visited at most once,
where\denotes the set difference. Constraint (8) guarantees the edges traveled by the mobile charger
would not exceed the distance limit. Constraint (9) is a sub-tour elimination constraint [27], where S is
an arbitrary subset of V. Constraint (10) states that the base station must be selected. Constraint (11)
and (12) impose the decision variables xi and yij to be 0–1 valued, respectively.

Let L denote the budget and r̂i denote the vertex reward, this formulation can be regarded as
a kind of traveling salesman problem with profits, which is also called orienteering problem [28].
The goal of the orienteering problem is to design a closed path, or a tour, to visit a subset of vertices that
maximizes the total reward collected, which has ingredients of both the traveling salesman problem
(TSP) and the knapsack problem and is proved to be NP-hard [29].

4. A Heuristic Algorithm

Due to the NP-hardness of our problem, in this section, we design a heuristic algorithm for
obtaining a fast solution.

The optimization procedure of the traveling salesman with profits involves vertex subset selection
and shortest tour path construction. Hence, we first attempt to select as larger vertex subset as possible
to efficiently utilize the budget, and then find an optimal TSP tour on the induced sub-graph of the
selected vertex subset.

Our algorithm consists of three major steps, which is explained as follows.
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4.1. Spanning Tree Growing

In order to select as many vertices in V as possible with the minimum traveling cost and maximum
reward, we first grow a tree using greedy knapsack approach. Suppose the spanning tree T starts from
vertex v0, and the tour distance, also called tour cost of the tree is C(T). By the fact from graph theory:
given any spanning tree T, the cost of an optimal tour on the vertices is no greater than twice the cost
of edges in the tree, the tour cost C(T) of selected vertices can be quickly estimated.

Firstly, to grow the tree T, for each unselected vertex vi ∈ V\T, the minimum cost that adding it
to be a leaf node in the tree is computed and denotes ci:

ci = min
vk∈T

cik (13)

where cik denotes the distance between vi and vk. It is possible that ci can be improved while vi is
inserted as vk’s parent node instead of the leaf node. Thus, the addition-cost when vi is inserted as vk’s
parent node is further computed, and the smaller cost is used to be vi’s final addition-cost c′i.

c′i = min{ci, ci + cp(k)i − cp(k)k} (14)

where p(k) denotes vk’s parent node.
Secondly, define vi’s reward-to-addition-cost ratio:

R(i, T) =
r̂i
c′i

(15)

Finally, find the vertex vi with the biggest R(i, T) in the unselected vertices V\T whose addition
cost satisfies C(T ∪ {vi}) ≤ L, and add it to the tree.

This procedure is iterated until no more vertices outside T can satisfy C(T ∪ {vi}) ≤ L.
The detailed algorithm is described in Algorithm 1.

Algorithm 1. Tree growing.

Input: G = (V, E), traveling distance constraint L;
Output: spanning tree T
1: T := {v0}
2: while C(T) ≤ L and V\T 6= φ do
3: R := φ

4: for each vi ∈ V and vi /∈ T do

5: ci := min
vk∈T

cik

6: c′i := min
{

ci, ci + cp(k)i − cp(k)k

}
7: R(i, T) := r̂i/c′i
8: R := R ∪ {R(i, T)}
9: end for
10: find the biggest R(i, T) in R

11: vi := arg max
R(i,T)∈R

R(i, T)

12:
C(T ∪ {vi}) := 2(cp(i)i + ∑ vk ∈ T,

k 6= 0

cp(k)k)

13: if C(T ∪ {vi}) ≤ L then
14: C(T) := C(T ∪ {vi})
15: T := T ∪ {vi}
16: else
17: break
18: end if
19: end while
20: return T
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4.2. Tour Construction

The spanning tree growing from the first step selects a set of vertices T that should be the
charging nodes after the mobile charger starts its charging tour. To find the shortest path to complete
the charging tour, we apply the Lin-Kernighan-Helsgaun (LKH) algorithm [29] on the selected vertices
to construct an approximate TSP tour. The constructed tour path, also can be seen as the charging
sequence is denoted by P, with cost CLKH(P). If CLKH(P) > L, the last vertex added into T will be
removed and the new tree will apply the LKH algorithm again. This procedure is iterated until
CLKH(P) ≤ L. The detailed algorithm is described in Algorithm 2.

Algorithm 2. Tour construction.

Input: Spanning tree T, traveling distance constraint L;
Output: A charging tour P starts from and ends at v0

1: repeat
2: compute shortest path in the T,P := LKH(T)
3: If CLKH(P) ≤ L then
4: Declare P is accepted
5: else
6: Delete the last added node from T
7: end if
8: until P is accepted
9: return P

4.3. Tour Improvement

It is possible to insert some unselected vertices into the tour P constructed by the LKH algorithm
in the last step, whose distance does not exceed L. For each vertex vi ∈ V\P, let’s define its insertion
cost as c′′i = minvx ,vy∈Pcix + ciy − cxy, where vx, vy are adjacent vertices in P. If CLKH(P) + c′′i ≤ L,
then vertex vi is feasible for adding to the tour. Find the feasible vertex in a set V\P with highest
reward-to-insertion-cost, which is computed as r̂i/c′′ , and then insert it into the tour at the location
with lowest insertion cost. Repeat this procedure until no more feasible vertices in V\P can be inserted.
The detailed algorithm is described in Algorithm 3.

Algorithm 3. Tour improvement.

Input: G = (V, E), initial charging tour P, traveling distance constraint L;
Output: An improved charging tour P
1: repeat
2: R := φ

3: for each vertex vi ∈ V and vi /∈ P do

4: c′′i := min
vx ,vy∈P

cix + ciy − cxy

5: if c′′i + CLKH(P) ≤ L then
6: R(i, P) := r̂i/c′′i
7: R := R ∪ {R(i, P)}
8: else
9: continue
10: end if
11: end for

12: vi := arg max
R(i,P)∈R

R(i, P)

13: insert vi into P at the location with minimum insertion cost
14: until no more feasible vertices in V\P
15: return P
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4.4. Time Complexity Analysis

The time complexity of the proposed heuristic algorithm can be analyzed as follows.
The spanning tree growing algorithm can be treated as element insertions from a full set to

an empty set, which requires 1×|N|+2× (|N|−1) + · · ·+|N|×1 =|N|(|N|+1)(|N|+2)/6 iterations
in the worst case. Thus, it has time complexity O(n3) [29]. The computation complexity of tour
construction is dependent on that of LKH algorithm, which is O(n2.2). The worst case is that all the
nodes in the growing tree don’t meet the constraint of the tour distance, which means that the tour
construction will iterate for |N| times at most and take O(n3.2) time. The tour improvement is like the
tree growing, which requires O(n3) time in worst case. Hence, the time complexity of the proposed
heuristic algorithm can be approximated as O(n3).

5. Simulation Evaluations

In this section, we evaluate the performance of the proposed charging schedule through
experimental simulation. The simulation is built in the widely-used OMNET++ simulator [30].
We also study the impact of important parameters on the performance, including the number of
nodes deployed, the charger’s traveling distance constraint, the charger’s traveling speed and the
node’s received charging rate.

5.1. Simulation Environment

We consider an event-driven sensor network deployed in a 100 m × 100 m square. The network
consists of 100 sensor nodes, which are uniformly randomly distributed in the network. A base station
is located at the center of the area. The node’s communication range is 25 m to form a multi-hop
network topology and Dijkstra’s shortest path dynamic routing algorithm is used. In this routing
algorithm, each node out of the one-hop distance to the base station would find an active node which
is in its transmission range and closer to the base station, then sends sensory data to the base station
via it. We assume that each node’s maximum battery capacity is 1000 J by equipping a 138 mAH
battery with a typical voltage of 2 V. The transmitting and receiving costs of nodes are set based
on the MICA2’s datasheet: the node’s energy consumption rates on transmitting and receiving are
25 mA × 2 V = 50 mW and 8 mA × 2 V = 16 mW, respectively [19]. With the sensory data packet is in
the size of 120 bytes and the bit rate of 9.6 Kbps [31], each node approximately consumes 5 mJ and
1.6 mJ in transmitting and receiving one sensory data packet, respectively. In the event-driven network,
whenever events occur in the nodes’ sensing range, these nodes would consume 0.15 mJ energy to
capture the event [19], then generate a sensory packet and transmit it to the base station via the routing
path. The relay nodes on the routing path would apply the data aggregation technique to combine the
correlated sensory data. We assume that the mobile charger travels at a constant speed of 1 m/s [19].
Considering the advance in the WPT technology based on the strongly magnetic resonances [3,26],
we assume the mobile charger can replenish energy to the sensor nodes at a rate of 5 W. The mobile
charger’s traveling distance constraint is 600 m [20]. To simplify the presentation, we set Emin equals
to 0. We set the simulation time to 100,000 s and record each node’s disjointed time and sleep time.
We repeat the simulation 50 times with different network distribution and calculate the mean of total
disjointed duration, inactive duration and data loss rate as the results. The total disjointed duration is
defined as the total time of the nodes which become disjointed and can’t send any sensory data to the
base station via a dynamic routing path. Although the node in sleep mode is also disjointed from the
base station, we only consider the active node’s disjointed time. Thus, the total disjointed duration is
positively correlated with the high criticality nodes’ sleep time, which can reflect the charging priority
of the high criticality nodes in the scheduling algorithm. Considering the node’s sleep time, the node’s
total inactive time is the union of disjointed time and sleep time, which can reflect the charging effect
to all of nodes in the scheduling algorithm. The default parameters set in the simulation is shown
in Table 2.
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Table 2. Default parameters setting.

Parameters Values

Network Size 100 × 100 m2

Number of nodes 100
Emax 1000 J
Emin 0 J

v 1 m/s
L 600 m
pr 5 W
Tw 1000 s
ds 10 m
dr 25 m
es 0.15 mJ
et 5 mJ
er 1.6 mJ
ec 0.05 mJ

Simulation time 100,000 s

5.2. Property Analysis

To verify the assumption on the criticality index of the node, we conduct an experiment based on
the default parameters mentioned above.

The verification result is shown in Figure 4, where the bar denotes the sorted node’s criticality
index and the curve denotes the data flows generated and relayed by the related node. If a node
has higher data flows, which implies that the node plays an important role in data collection or data
relaying, it would also have higher criticality index in our assumption. The data flows can be more
accurate to measure the connectivity contribution of a node, but this value is difficult to obtain during
the network’s running time. In contrast, the criticality index can be calculated after the network
deployment and kept unchanged. From Figure 4, we can observe the correlation between the node’s
criticality index and its data flows. Except for some mismatch cases, the overall trend of data flows
decreases as the criticality index decreases, which demonstrates that the index can be used to evaluate
the node’s connectivity contribution.
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5.3. Performance Comparison

We mainly contrast our scheduling algorithm with the well-known NJNP and TSP algorithm.
In NJNP, the mobile charger would service the nearest nodes, which have sent a charging request
with the preemption on-demand mode, and move back to the base station when its traveling path
distance is approaching the limitation. In TSP, the mobile charger would select the lowest-energy
nodes in the network and use the LKH algorithm to compute the shortest path to charge them within
the traveling distance constraint, which can be treated as a tour construction algorithm only consider
energy criticality. To verify the performance of criticality index as the node’s criticality measurement
and illustrate the necessity of combining the consumed energy ratio into the weighted criticality index,
we contrast our heuristic algorithm with the different node’s rewards, which are the proposed weighted
criticality index (WCI), the criticality index without consumed energy ratio (CI) and betweenness
centrality (BC), respectively.

5.3.1. Impact of Network Scale

We first evaluate the charging scheduling algorithm’s performance with respect to the number
of deployed nodes, which vary from 70 to 130. Another simulation parameters are set as default
mentioned above. The results are shown in Figure 5a–c, respectively.
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Figure 5 illustrates performance curves of the algorithms. We can see that with the number of
nodes deployed in the network increases, both disjointed and inactive time grow rapidly. For example,
the total nodes’ disjointed duration and total nodes’ inactive duration of WCI are, respectively, about
8521 s and 10,776 s when 70 nodes are deployed, but these two durations are increased to, respectively,
about 207,204 s and 913,592 s when 130 nodes are deployed. This is due to the increase of |N|,
the burden of the relay nodes, especially the neighbor nodes of the base station, are significantly
increasing, leading to the frequent exhaustion of those nodes and the increase of disjointed and inactive
time of the network. There exists a decreasing tendency of the network’s data loss rate from |N|= 70
to |N|= 90 . This is because when |N|= 70 , the nodes are deployed sparsely, which causes the poorer
the network connectivity and the more the data have been lost. When |N|= 90 , an increasing tendency
of the network’s data loss rate exists, where the data loss is mainly caused by the relay nodes’ frequent
exhaustion. From the result, we can see that the total nodes’ disjointed time, inactive time and networks
data loss rate by WCI outperform the NJNP and TSP in all the cases. For example, when |N|= 100 ,
the total disjointed time of network by WCI is 72%, the total inactive time is 70%, and the data loss rate
is 69% of that delivered by the TSP. In contrast, when compared with NJNP, the three ratios are reduced
to 42%, 34%, and 34%, respectively. Compared to WCI, CI has inferior performance in most cases. This
is because that CI ignores the node’s residual energy, leading to the result that the nodes with a little
contribution in connectivity are rarely visited even if their batteries are depleted, which increases the
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inactive nodes’ number and then causes additional data loss in the network. Compared to WCI and CI,
BC considers the betweenness centrality of nodes, in which only a few nodes have higher betweenness
centrality while the other nodes are 0 or lower value. Unfortunately, some potential critical nodes and
edge nodes among these nodes exist with lower betweenness centrality. Thus, the mobile charger only
charges a few nodes in the BC scheduling algorithm, leading to the poorer network connectivity and
severer data loss than WCI and CI.

5.3.2. Impact of Charger’s Traveling Distance Constraint

Figure 6 shows the performance comparisons of NJNP, TSP, WCI, CI and BC with varying
charger’s traveling distance constraint from 400 to 800 meters. The advantage of WCI can be clearly
observed. For example, when L = 600 m, WCI’s total disjointed time, inactive time and data loss
rate is 72%, 70%, and 69% of that delivered by the TSP, respectively. When compared with NJNP,
the three ratios are reduced to 42%, 34%, and 34%, respectively. The two durations and data loss rate
delivered by the NJNP decrease as L increases, this is because the charger can visit more nodes and
accomplish more charging tasks in charging tour if L increases. In contrast, the TSP and WCI don’t
have any improvement on the results as the charger’s traveling distance increases. When L increases,
the charger is able to charge more nodes but only once in a tour using the TSP and WCI, which makes
some high-energy-consumption nodes charged in the early time of tour exhausted again and have to
be waited for charging until the next tour. Meanwhile, the CI’s total inactive time and data loss rate
are approaching to the results of TSP and WCI. This is because that the number of charged nodes in
the tour increases and the difference of selected nodes between these algorithms is diminishing. Even
so, the WCI still outperforms CI in most cases.
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5.3.3. Impact of Charger’s Traveling Speed

Figure 7 shows the performance comparison of NJNP, TSP, WCI, CI and BC with varying charger’s
travel speed. Figure 7 demonstrates that when v increases, the two durations and data loss rate
significantly decrease. This is because the faster the charger travels, the shorter time it consumes in the
travel path, and the more nodes can be charged in a tour. Compared with NJNP and TSP, we can see
that WCI illustrates its advantage. For example, when v = 1, WCI’s total disjointed duration, inactive
duration, and data loss rate is 72%, 70%, and 69% of that delivered by the TSP, respectively. When
compare with NJNP, the three ratios are reduced to 42%, 34%, and 34%, respectively. Note that CI
outperforms WCI on total nodes’ disjointed duration when v is lower. This is because the connectivity
critical nodes are charged first in the CI. Consequently, the total disjointed time of active nodes is
shorter while the total inactive time of other nodes is longer, which implies the charging effect of CI is
inferior to the WCI and TSP.
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5.3.4. Impact of Charging Power

An important factor that affects the charger’s ability while performing charging tasks is the node’s
received charging rate, which can determine the node’s full charging time. With the observation in
Figure 8, when the charging rate is low, all of the five scheduling algorithms perform badly. This is
because, with the lower charging rate, the charger takes more time to complete the charging tour, with
the result that some high-energy-consumption nodes charged in the early time will run out of their
energy before the charger’s next round visiting. When the charging rate increases, the performances
of these algorithms, especially WCI and TSP, are improved. For example, when pr = 5, WCI’s total
disjointed duration, inactive duration, and data loss rate is 72%, 70%, and 69% of that delivered by
TSP, respectively. When compared with NJNP, the three ratios are reduced to 42%, 34%, and 34%,
respectively. Note that CI outperforms in disjointed duration when the charging power is low, while it
suffers inferior performance in total inactive duration.
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6. Conclusions and Future Work

In this paper, we have proposed a novel mobile charger scheduling algorithm for WRSN.
The proposed algorithm finds a charging tour for the mobile charger by maximizing the charging
nodes’ total weighted criticality indexes which can measure the node’s connectivity contribution
and energy criticality, subject to the traveling distance constraint of the mobile charger. Due to the
NP-hardness of the problem, we then design a fast heuristic algorithm to solve it. Finally, we evaluate
the performance of proposed algorithm against the NJNP and TSP scheduling algorithm through
simulations. The proposed algorithm outperforms the others, particularly by reducing the network’s
data loss. Besides this, we also compare the proposed algorithm with different rewards, which are the
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criticality index without energy criticality and betweenness centrality. From the result, we can verify
the necessity and feasibility of the proposed weighted criticality index.

Some issues still exist that are worthy of further study. First, in the realistic environment,
the battery life of a sensor node can be correlated to many issues, such as the node’s transmission
range (near field or far field), application type (temperature reading, imaging, video surveillance,
tracking, etc.), deployment environment (city, field, mountain, forest, etc.), routing structure
(single-hop, multi-hop, etc.), sink type (mobile sink [32] or fixed sink) and so on. In this paper,
we simplify the energy consumption model of the sensor nodes. It’s not very similar to the practical
issues. Second, the charging efficiency of the WPT technology is related to the charging distance and
antenna type. In this paper, we only consider the received charging rate of nodes, and neglect the
power loss of the mobile charger. In order to improve the energy efficiency of the mobile charger,
the charging distance between nodes and the mobile charger and the other antenna type of the WPT
devices can also be considered. Finally, many obstacles in the practical environment exist which
can cause trouble during the mobile charger’s movement. Designing a charging tour to avoid such
obstacles is a new challenge in WRSN. In future work, we will focus on the charging model refinement
and parameter consideration of the issues mentioned above to facilitate practical implementations.

Author Contributions: H.L. presented the main ideas, designed the algorithm, performed the simulations and
wrote the paper; Q.D. provided some advice and revised the paper many times; S.T., X.P., and T.P. revised
the paper.

Funding: This work is supported by the Natural Science Foundation of Hunan Province, China under Grant
No. 2017JJ3316 and No. 2018JJ2156; the Research Foundation of Hunan Provincial Educational Department, China
under Grant No. 16C1547; the Natural Science Foundation of China under Grant No. 61672447, No. 61602398 and
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