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Abstract: Generic modeling and analysis of a slow-light enhanced absorption spectroscopic gas
sensor was proposed, using a mode-tuned, hollow-core, photonic band-gap fiber (HC-PBF) as
an absorption gas cell. Mode characteristics of the un-infiltrated and infiltrated HC-PBF and gas
absorption enhancement of the infiltrated HC-PBF were analyzed. A general rule of microfluidic
parameters for targeting different gas species in the near-infrared was obtained. Ammonia (NH3)
was used as an example to explore the effects of slow light on gas detection. The second harmonic
(2f ) signal and Allan deviation were theoretically investigated based on the derived formulations.
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1. Introduction

The sensitive and selective detection of trace chemicals is important for environmental, safety,
and industrial process monitoring, as well as in national security applications. Infrared absorption
spectroscopy, which relies on the absorption lines of a gas molecule for identifying and detecting trace
chemicals, is suitable for gas detection [1,2]. Conventional absorption spectroscopic sensor systems [3–5],
such as cavity-enhanced absorption spectroscopy, are ultrasensitive, but are large and have a heavy
tabletop instrument that requires a large gas cell with a long absorption path length. Recently, there has
been an increasing emphasis on the miniaturization of chemical analysis systems and optics, such
as lab-on-a-chip microsystems [6–8] and fiber optic sensors [9,10]. In particular, miniaturized gas
sensors based on photonic hollow-core crystal (PHC) waveguides are receiving attention for achieving
superior performance in optical signal processing and sensing applications [11–13]. Intuitively, slow-light
propagation offers photons more time and increases the effective optical length for interacting with a host
medium (e.g., gas molecules) [14,15].

Infrared absorption spectroscopy is based on the absorption of a gas molecule on an infrared
light with a specific wavelength. Different molecules have different absorption wavelengths, leading
to the unique selectivity of the technique. Therefore, this technique is particularly suitable for the
detection of gas mixtures. Silicon PHC slot waveguide gas sensors based on the Beer-Lambert law
have been demonstrated [7,11]. Besides, a hollow-core photonic band-gap fiber (HC-PBF) allows the
confinement of an optical mode and chemical materials simultaneously within the hollow core and
provides an ideal platform for strong light-matter interactions over a long distance [15]. Thus, there
are a wide variety of gas sensors based on HC-PBFs for the detection of different gas species or for the
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application of different signal processing techniques. PHC or HC-PBF sensors have unique dispersive
properties that allow for the control and manipulation of light-matter interactions on the length scale
of the light wavelength, by infiltrating optical fluids into selected air holes of PHC devices, which
makes it possible to tune and reconfigure photonic devices suitable for various applications.

In view of the above considerations, as the main focus and novelty of the paper, we propose
a generic design and analysis of a slow-light enhanced absorption spectroscopic gas sensor based
on HC-PBF. The idea and simulation of selective infiltration of HC-PBF to tune the wavelength of
the maximum enhancement factor for specific modes are proposed. The microfluidic parameters for
targeting different gas species are obtained. Ammonia (NH3) is used as an example to explore the
effects of slow light on gas detection as a reference in the design and development of such kind of
gas sensors.

2. Modeling of the Hollow-Core Photonic Band-Gap Fiber-Based Spectroscopic Gas Sensor

A simplified schematic of an HC-PBF-based spectroscopic gas sensor is shown in Figure 1a,
which includes a tunable distributed feedback laser (DFBL), two pieces of single-mode fiber (SMF),
a HC-PBF for gas sensing, an infrared detector (Det), a pre-amplifier (kR), and a lock-in amplifier
(Lock-in). Figure 1b,c show the two-dimensional (2-D) cross-section view of an HC-PBF with a lattice
constant a, an air hole diameter of d = 0.9a, and a hollow core diameter of D = 2.52a. The lattice
of air holes in the simulation is definite, which is similar to the structure shown in the scanning
electron microscope (SEM) image of the fiber in Figure 1d, commercially available from NKT Photonics
(Birkerød, Denmark). The gray circles represent the hollow air holes and core, while the blue regions
represent the chalcogenide glass (ChG) with a linear refractive index of n0 = 2.8.
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Figure 1. (a) Schematic of a hollow-core photonic band-gap fiber (HC-PBF)-based spectroscopic gas 
sensor. The sub-figures show (b) the cross-section structure by un-infiltrating optical fluids to the  
HC-PBF, and (c) the cross-section structure by infiltrating optical fluids into the selected air holes of 
the HC-PBF. (d) Scanning electron microscope (SEM) image of the HC-PBF commercially available 
from NKT optics. 
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Figure 1. (a) Schematic of a hollow-core photonic band-gap fiber (HC-PBF)-based spectroscopic gas
sensor. The sub-figures show (b) the cross-section structure by un-infiltrating optical fluids to the
HC-PBF, and (c) the cross-section structure by infiltrating optical fluids into the selected air holes of the
HC-PBF. (d) Scanning electron microscope (SEM) image of the HC-PBF commercially available from
NKT optics.

The principle of infrared absorption spectroscopy is based on the Beer-Lambert law [4,5], given by:

I(λ) = I0(λ) exp[−γ(λ)α(λ)CL], (1)

where I0 is the incident light intensity; α(λ) is the gas absorption coefficient at the wavelength of
λ; C is the gas concentration; L is the optical interaction length; and γ is a wavelength-dependent,
medium-specific absorption enhancement factor, due to slow-light effect in dispersive structures.
In conventional free-space systems, γ = 1. For PHC devices, the enhancement factor γ is
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γ = f × c/n
vg

, (2)

where f is a filling factor denoting the relative fraction of the optical field, c is the light wave velocity in
free space, and vg = dω

dβ = c/ng is the light wave group velocity. From Equation (2), the enhancement
factor can obviously be increased by either a small vg or a high f.

Due to the use of high-frequency wavelength modulation for 1/f noise suppression, and a lock-in
amplifier for further noise suppression, wavelength modulation spectroscopy (WMS) is more sensitive
than the direct absorption spectroscopy (DAS) technique. Therefore, the WMS technique is usually
adopted in an infrared gas sensor system. In this work, WMS is used as an example, to show how
this enhancement will affect the second harmonic signal. This technique requires that the emitting
wavelength of the laser must be stabilized, in order to be the peak absorption wavelength for a certain
gas molecule.

A periodic saw-tooth signal is used to scan the absorption line, which can be expressed in one
period as:

usaw(t) = Asaw +
Asaw

Tsaw
(t− Tsaw), 0 ≤ t ≤ Tsaw, (3)

where Asaw and Tsaw are the amplitude and period of the sawtooth signal, respectively. Also, a
sinewave signal, expressed as:

usin(t) =
Asin

2
sin(ωsint), (4)

is used to modulate the laser, where Asin and ωsin are the amplitude and the angular frequency of the
sinewave signal, respectively. Thus, the total driving signal of the DFBL is

us(t) = usaw(t) + usin(t). (5)

Under the operation of u(t), the variation of the emitting wavelength leads to a change of the
absorption coefficient α(t), expressed as [5]:

α(t) =
α0

1 +
[(

υ0 + δu(t)− υg
)
/γ′
]2 , (6)

where υ0 is the central emitting wavenumber (determined by the laser operating temperature), υg is
the central absorption wavenumber of the targeted gas molecule, α0 is the gas absorption coefficient at
υ0, γ′ is the half-width of the absorption peak at υ0, and δ is a light modulation coefficient. The laser
power can be expressed as Equation (7):

Pt(t) = KEOGu(t), (7)

where G is a voltage-to-current conversion coefficient of the laser driver, and KEO is a voltage-to-optical
conversion coefficient of the laser. The SMF will couple with the HC-PBF for gas sensing. Let the
normalized mode field distribution of the SMF be ESMF. The mode coupling coefficient ηm between
SMF and the m-th guided mode of the HC-PBF can be determined by Equation (8):

ηm =

s
E∗SMFEm

PBFdxdy
s ∣∣Em

PBF

∣∣2dxdy
. (8)

Then, with two coupling effects between the SMF and the HC-PBF, the input power to the second
SMF without gas absorption is given by Equation (9):

Pt,PBF(t) = Pt(t)∑
i

η2
m. (9)
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Considering a slow-light induced gas absorption loss, the input power to the second SMF is

Pr(t) = Pt(t)∑
i

η2
m exp[−γm(t)α(t)CL], (10)

where γm(t) is a time-dependent enhancement factor of the m-th HC-PBF mode. The detector signal
from the pre-amplifier can be expressed as:

ud(t) = kRKOEKEOGus(t)∑
i

η2
m exp[−γm(t)α(t)CL], (11)

where kR is the gain of the pre-amplifier, and KOE is the optical-to-electrical conversion coefficient
of the infrared detector. Next, we use an orthogonal lock-in amplifier to extract the 2f signal from
ud(t), as:

A2 f (t) =

√(
A2 f ,⊥

)2
+
(

A2 f ,‖

)2
, (12)

where A2 f ,⊥(t) =
∫ t

t−Tint2
ud(τ) sin(2ωsinτ)dτ, A2 f ,‖(t) =

∫ t
t−Tint2

ud(τ) cos(2ωsinτ)dτ and Tint2 is an
integral time factor, determined by the cutoff frequency of the related low-pass filter.

3. Mode Analysis of Hollow-Core Photonic Band-Gap Fiber

3.1. Uninfiltrated Hollow-Core Photonic Band-Gap Fiber Mode Analysis

Based on the commercial software Comsol 5.0, by using the finite element method (FEM)-based
plane wave expansion code to solve the Maxwell’s equations, it is feasible to obtain the photonic band
structure for the un-infiltrated PBF. The gray region extending over the normalized frequency range of
0.4877 ≤ a/λ ≤ 0.51105 represents the photonic band gap (PBG) region of the HC-PBF. Six modes were
found to be confined along the fiber hollow core, as shown in Figure 2(a1,b1,c1), as well as Figure 3a–c.
Among these modes, modes 4, 5, and 6 (Figure 3a–c) cannot be confined when propagation constant
β→0, indicating that they do not possess a slow-light property. As seen in Figure 2(a1,b1,c1), the three
black curves, indicated by triangles in the PBG area, represent the dispersion relation of the three
guided optical modes for the zero propagation constant (βα/2π = 0). Figure 2(a2,b2,c2) show the
group index ng of the three modes, which will reach a peak propagation constant β→0.
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effect are also shown in Figures a1, b1, and c1, respectively.
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3.2. Infiltrated Hollow-Core Photonic Band-Gap Fiber Mode Analysis

Optical fluids with different indices (nf = 1.0, 1.1, 1.2) were infiltrated into the selected green
air holes, which can be realized by using the selective infiltration methods presented in [16,17].
The dispersion relations and the group index of modes 1, 2, and 3 for infiltrating fluids with different
indices were calculated, and are shown in Figure 2a–c. The slow-light region shifted to a long
wavelength by increasing the refractive index of optical fluids. At the band edge, the group indices
increased sharply; correspondingly, the group velocity was far less than the speed of light in free
space, and a large group velocity dispersion (GVD) occurred. Mode 1 got completely out of the PBG
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region with infiltrating fluids, and thus only modes 2 and 3 are considered. For a given fluid, however,
the wavelength shift experienced by mode 2 was significantly larger than that of mode 3. This results
from the fact that the electrical field intensity of mode 2 in the selected air holes with infiltrated fluids
was stronger than that of mode 3. Different degrees of shift led to different degrees of wavelength
tuning: mode 2 is suitable for coarse tuning, and mode 3 is suitable for fine tuning of a slow-light
region. Without the need to change the structural parameters of the fiber, the guided modes of an
appropriately designed slow-light regime by use of selectively infiltrated HC-PBF can be tuned to the
absorption line of a target gas species as desired for maximizing the gas absorption.

3.3. Slow-Light Effect Analysis

The HC-PBF is filled with a homogeneously distributed gas with a complex refractive index of
n = n′ + n′′ = 1 + n′′ (n′ = 1), where the imaginary part n” is an extinction coefficient that relates to
fiber absorption loss. The relationship between the extinction coefficient n′′ and the gas absorption
loss coefficient αg(λ) is as follows:

αg(λ) = 2kn′′ =
4π

λ
n′′ . (13)

By using finite element method (FEM) to numerically solve the wave equation:

∇× (∇× E)− K2
0εγE = 0, εγ = (n′ + in′′ )2, (14)

we can calculate the complex propagation constants β = β′ + iβ′′ and obtain the absorption loss of
an infiltrated HC-PBF. The relationships between the complex propagation constants β = β′ + iβ′′

and the normalized frequency α/λ for mode 3 of the un-infiltrated and infiltrated HC-PBF are shown
in Figure 4. From Figure 4a, the dispersion departed significantly from the ideal lossless case in the
assumed slow-light regime near β′ → 0 . The dispersion relation curve dropped sharply when β′ → 0 ,
even for a lossless, un-infiltrated HC-PBF. Figure 4b shows that the HC-PBF with fluid infiltration
exhibited a lower optical loss, resulting from a smaller light-gas interaction area (except for the green
air holes). With an increase of the extinction coefficient, the degrees of curvature of β′ and β′′ became
flatter, and the two curves became the same value for the same nf, with an increasingly complex
propagation constant β. Furthermore, for the infiltrated structure, both β′ and β′′ curves shifted to
a lower frequency. Through theoretical calculation, the influences of infiltrated liquid loss can be
neglected, due to a very small overlap area of the four liquid holes with the six guided modes in the
HC-PBF, which enables such a structure to be suitable for practical operation.
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Figure 4. Complex propagation constants versus the normalized frequency α/λ for mode 3 of the
un-infiltrated and infiltrated HC-PBF of Figure 1, (a) β′, and (b) β”. Optical fluids (nf = 1.0, 1.2) are
infiltrated into the selected air holes (Figure 1). Other un-infiltrated air holes and the core are filled
with gas, with a complex refractive index of n = n′ + n′′ = 1 + n′′ and n′′ = 0.001, 0.005, 0.01.
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Our focus is to explore to what extent a large group index will enhance light-matter interactions,
and to investigate the absorbance enhancement factor γ in Equation (2). The group index ng can be
derived from the real part β′, and the filling factor f can be calculated from the modal optical electrical
field distributions. However, γ can also be calculated based on Equation (15), as

γ =
β′′ − β′′ (n′′ = 0)

n′′
(15)

Figure 5 shows the corresponding absorption enhancement factor γ along with the group index
ng. The variation of γ is similar to ng. There is a saturated value for γ or ng, compared to the curve of ng

in Figure 2 for a lossless structure. Under certain conditions for n′′ , there is a maximum γ at a specific
wavelength. The weaker the intrinsic absorption of the gas is, the larger the absorption enhancement
factor that can be achieved. Hence, HC-PBF with a slow-light effect exhibits a superior performance
for the detection of weakly absorbing trace gases. For mode 2, similar results can be obtained.
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the normalized frequency.

4. Slow-Light Enhanced Gas Sensing Performance Analysis

4.1. Mode Tuning for Near-Infrared Gas Sensing

For practical applications, it is important to tune the slow-light region of a fiber mode to a specific
gas absorption line. A general rule should be applied, in order to obtain an enhanced absorption
wavelength (i.e., the wavelength corresponding to the peak ng or γ). Figure 6a,b shows the relationship
between the enhanced absorption wavelength and the refractive index of the liquid for modes 2 and
3, respectively. With an increasing liquid index, the enhanced wavelength increased from 1.51 to
1.59 µm for mode 2, so that several gas species could be detected, e.g., CO at 1.56 µm, C2H2 and NH3

at 1.53 µm, and CO2 at 1.57 µm. However, for mode 3, the enhanced wavelength only increased over a
small range, i.e., from 1.523 to 1.535 µm, which is suitable for a fine wavelength tuning.

4.2. NH3 Absorption Enhancement Analysis

NH3 was used as an example to explore the effects of slow light on gas detection. An absorption line
located at 1.53168 µm was selected as the target line, with an absorption coefficient of 2.45332× 10−4 m−1

and an extinction coefficient of 2.925 × 10−5. The mode coupling coefficients between the SMF mode
and HC-PBF modes 1−6 were calculated to be 0.31, 0.32, 0.33, 0.71, 0.42, and 0.44, respectively, by
using COMSOL software. To target the selected NH3 line and obtain the slow-light effect for mode 2
at 1.53168 µm, the refractive index of the liquid was determined to be 1.095. With these parameters,
the absorption enhancement factor, as well as the absorption spectra of NH3, is shown in Figure 7a. It was
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found that the peak of the enhancement curve strictly corresponds to the absorption line at 1.53168 µm.
The relationship between the enhancement factor and absorption wavelength is shown in Figure 7b.
Only modes 1–3, especially mode 2, have an enhanced absorption effect.
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enhancement, indicating a sensitivity enhancement by such an effect. Though PBF mode 2 has an 
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Figure 7. (a) Absorption spectrum of 1 ppm NH3 with a 1 m absorption length; curve of the
enhancement factor γ for mode 3 versus the operating wavelength λ. (b) The relationship between the
absorption wavelength of NH3 and the enhancement factor for modes 1−6.

As a comparison, under the cases of using the slow-light effect and without using such an effect,
the extracted second harmonic (2f ) signals are shown in Figure 8a, where a 1 ppm NH3 with a 1 m
absorption length was used in the calculation. The 2f signal amplitude is enhanced by three times via
the use of such an effect. When a white Gaussian noise (with a signal-to-noise ratio of 30 dB) was added
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in the sensor system, the Allan deviation plots for the two cases were as shown in Figure 8b. The Allan
deviation was found to decrease from 0.04 ppm to 0.012 ppm by slow light-induced absorption
enhancement, indicating a sensitivity enhancement by such an effect. Though PBF mode 2 has an
enhancement factor of up to 20, the total enhancement factor is only 3, due to the inefficient coupling
between the SMF mode and PBF mode 2, as well as the small gas absorption of other PBF modes.Sensors 2018, 18, x  9 of 10 
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5. Conclusions 

A generic modeling and analysis of a slow-light enhanced absorption spectroscopic gas sensor 
using a mode-tuned HC-PBF was reported. By tuning the HC-PBF mode dispersion curve, a slow-
light effect was achieved. The slow-light region can be tuned to an absorption line of a target gas 
species for absorption enhancement. A general rule of microfluidic parameters for targeting different 
gas species was obtained. The change in the 2f signal and the sensitivity enhancement resulting from 
the slow light effect were also investigated for NH3 as a test trace gas. The reported theoretical results 
will be useful in the development of other HC-PBF-based gas sensors. 
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5. Conclusions

A generic modeling and analysis of a slow-light enhanced absorption spectroscopic gas sensor
using a mode-tuned HC-PBF was reported. By tuning the HC-PBF mode dispersion curve, a slow-light
effect was achieved. The slow-light region can be tuned to an absorption line of a target gas species for
absorption enhancement. A general rule of microfluidic parameters for targeting different gas species
was obtained. The change in the 2f signal and the sensitivity enhancement resulting from the slow
light effect were also investigated for NH3 as a test trace gas. The reported theoretical results will be
useful in the development of other HC-PBF-based gas sensors.
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Thin ZnO ALD Layers in Fiber-Optic Fabry-Pérot Sensing Interferometers. Sensors 2016, 16, 416. [CrossRef]
[PubMed]

11. Zhang, Y.N.; Zhao, Y.; Wu, D.; Wang, Q. Theoretical research on high sensitivity gas sensor due to slow light
in slotted photonic crystal waveguide. Sens. Actuators B Chem. 2012, 173, 505–509. [CrossRef]

12. Wang, Q.; Han, B.; Wu, D.; Zhao, Y. Novel Fiber Optic Gas Sensor Based on Photonic Crystal Slow-Light
Waveguide. Microw. Opt. Technol. Lett. 2013, 55, 1796–1800. [CrossRef]

13. Huang, Y.; Min, C.; Dastmalchi, P.; Veronis, G. Slow-light enhanced subwavelength plasmonic waveguide
refractive index sensors. Opt. Express 2015, 23, 14922. [CrossRef] [PubMed]

14. Mortenseen, N.A.; Xiao, S. Slow-light enhancement of Beer-Lambert-Bouguer absorption. Appl. Phys. Lett.
2007, 90, 374. [CrossRef]

15. Grgic, J.; Xiao, S.; Mork, J.; Jauho, A.P.; Mortensen, N.A. Slow-light enhanced absorption in a hollow-core
fiber. Opt. Express 2010, 18, 14270–14279. [CrossRef] [PubMed]

16. Huang, Y.; Xu, Y.; Yariv, A. Fabrication of functional microstructured optical fibers through a selective-filling
technique. Appl. Phys. Lett. 2004, 85, 5182–5184. [CrossRef]

17. Xiao, L.; Jin, W.; Demokan, M.S.; Ho, H.L.; Hoo, Y.L.; Zhao, C. Fabrication of selective injection
microstructured optical fbers with a concentional fusion splicer. Opt. Express 2005, 13, 9014–9022. [CrossRef]
[PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.snb.2013.08.055
http://dx.doi.org/10.1088/2040-8978/12/3/035501
http://dx.doi.org/10.1364/OL.36.000984
http://www.ncbi.nlm.nih.gov/pubmed/21403750
http://dx.doi.org/10.3390/s17020261
http://www.ncbi.nlm.nih.gov/pubmed/28134855
http://dx.doi.org/10.3390/s16030416
http://www.ncbi.nlm.nih.gov/pubmed/27011188
http://dx.doi.org/10.1016/j.snb.2012.07.051
http://dx.doi.org/10.1002/mop.27707
http://dx.doi.org/10.1364/OE.23.014922
http://www.ncbi.nlm.nih.gov/pubmed/26072849
http://dx.doi.org/10.1063/1.2720270
http://dx.doi.org/10.1364/OE.18.014270
http://www.ncbi.nlm.nih.gov/pubmed/20588562
http://dx.doi.org/10.1063/1.1828593
http://dx.doi.org/10.1364/OPEX.13.009014
http://www.ncbi.nlm.nih.gov/pubmed/19498936
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Modeling of the Hollow-Core Photonic Band-Gap Fiber-Based Spectroscopic Gas Sensor 
	Mode Analysis of Hollow-Core Photonic Band-Gap Fiber 
	Uninfiltrated Hollow-Core Photonic Band-Gap Fiber Mode Analysis 
	Infiltrated Hollow-Core Photonic Band-Gap Fiber Mode Analysis 
	Slow-Light Effect Analysis 

	Slow-Light Enhanced Gas Sensing Performance Analysis 
	Mode Tuning for Near-Infrared Gas Sensing 
	NH3 Absorption Enhancement Analysis 

	Conclusions 
	References

