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Abstract: A high-precision Complementary Metal-Oxide-Semiconductor (CMOS) temperature sensor
for (−5 ◦C, 120 ◦C) temperature range is designed and analyzed in this investigation. The proposed
design is featured with a temperature range selection circuit so that the thermistor linear circuit
automatically switches to a corresponding calibration loop in light of the temperature range besides
the analysis of the calibration method. It resolves the problem that the temperature range of a single
thermistor temperature sensor is too small. Notably, the output of the proposed design also attains
a high linearity. The measurement results in a thermal chamber justifying that the output voltage is
1.96 V to 4.15 V, the maximum linearity error ≤1.4%, and the worst temperature error ≤1.1 ◦C in the
temperature range of −5 ◦C to 120 ◦C.
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1. Introduction

In recent years, consumer electronic products are often equipped with many sensors to detect the
surrounding environmental conditions, e.g., voltage, current, temperature, etc., to facilitate a rapid
and appropriate response. Temperature is considered one of the most important environmental
factors. For example, high temperature usually leads to increased power consumption and even
system breakdown. Industrial sensors utilized in those temperature sensing scenarios are classified
into four categories: infrared, thermocouple, resistance thermometer, and thermistor. The infrared
spectrum of the measured product is distinct in the different temperatures. Thus, infrared thermometer
measures the temperature in light of the infrared spectra [1,2]. Two dissimilar electrical conductors with
different temperature coefficients compose a thermocouple, where an electrical junction is formed [3,4].
The thermocouple will generate a weak voltage when the one conductor of thermocouple is applied
with a thermal gradient. When the temperature is measured from one conductor, the temperature of
the other conductor is derived from the weak voltage according to the Seebeck effect [5]. The resistance
thermometer has a linearity feature between the temperature and resistance [6,7]. Thus, the resistance
of the resistance thermometer rises as the temperature rises such that the temperature is obtained
from the resistance measurement. The sensing principle of the thermistor is very similar as that of the
resistance thermometer. The major difference is that its material is mainly made of ceramic polymer.
Therefore, the size is smaller and the reaction is faster. Table 1 summarizes features of the above four
temperature detection methods.

Thermistor is often used for industrially cost-effective applications because it has ruggedness,
high sensitivity, accuracy, and low cost. However, the thermistor sensor has a serious flaw,
namely, a highly nonlinear resistance-temperature characteristic [8]. The nonlinear characteristic
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will dramatically increase calculation circuit’s area and cost. Many researchers have devoted efforts
to resolve this problem, e.g., [9,10]. Sarkar et al. uses an inverting operational amplifier with a linear
correction resistor to correct the thermistor [10]. However, it has serious temperature error at the lowest
and highest temperatures. Bandyopadhyay et al. proposed a linearization scheme for thermistor-based
sensing in biomedical applications [11]. This circuit, however, has large output error due to many
resistors with resistance variations. Kumar et al. showed a block diagram of a neural network based
method [12]. However, it is extremely inconvenient in a space-limited scenario due to the demand of
high computing power.

Table 1. The comparison table of the temperature sensor methods.

Infrared Thermocouple Resistance Thermometer Thermistor

Sensing temperature range (◦C) −50~400 −200~1200 −200~500 −90~150
Volume ≈200 × 50 × 50 mm ≈Ø20 × 2000 mm ≈Ø10 × 2000 mm ≈Ø0.5 × 1 mm
Reaction Fast Fast Slow Fast

Disadvantage Limited measurement
method

Need a reference
temperature Expensive Nonlinear

2. Architecture of Proposed Temperature Sensor

Figure 1 shows the proposed temperature sensor in this work, including a thermistor (RBT(T)),
a thermistor linearity calibration circuit with switches, and a temperature range auto-selecting circuit.
A thermistor linearity calibration circuit with switches is in charge of carrying out predictable
linearization because the characteristic function of the thermistor is nonlinear. However, a single
thermistor senses a relatively narrow temperature range. Besides, the linear correcting output, VBT(T),
only attains high linearity when the sensed temperature is close to the selected center temperature.
Therefore, the temperature range auto-selecting circuit selects feedback resistance and calibration
resistance automatically to enlarge the sensing temperature range and enhance the linearity by
detecting VBT(T). All of the sub-circuits in Figure 1 will be analyzed theoretically and designed
in the following text.
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2.1. Thermistor Linearity Calibration Circuit with Switches

Referring to Figure 2, thermistor linearity calibration circuit with switches is composed of six
switches, three calibration resistors, Rcal1, Rcal2, and Rcal3, three feedback resistors, Rf1, Rf2, and Rf3,
and two operational amplifiers. Notably, VBT_in is an external DC bias. Thermistor linearity calibration
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circuit with switches is used to enhance the linearity of the sensing voltage of the thermistor and reject
the noise coupled from others. Take sw1 turn-on and sw2, sw3 turn-off as an example. Figure 2 then
becomes Figure 3. The resistance of the thermistor is shown as follows:

RBT(T) = R0eβ( 1
T −

1
T0

) (1)

where R0 is the resistance of the thermistor at the 25 ◦C, β is the temperature constant of the thermistor,
T is the sensed temperature, and T0 is 25 ◦C. VBT(T) can be written as Equation (2):

VBT(T) = VBT_in ×
[

1 +
Rf1

RBT(T) + Rcal1

]
. (2)

All the terms in Taylor series expansion of Equation (2) are truncated except the first three terms.
VBT(T) is re-organized as follows:

VBT(T) = VBT(Tc) + (T − Tc)VBT′(Tc) +
(T − T c)

2

2!
VBT′′ (Tc) (3)

where Tc is the central temperature of the selected temperature range. The coefficient of the quadratic
term needs to be zero to linearize VBT(T). Thus, the coefficient of the quadratic term is expressed as
Equation (4):

d2

dt2 VBT(T)|T = Tc =
d2

dt2

{
VBT_in ×

[
1 +

Rf1
RBT(Tc) + Rcal1

]}
= 0. (4)

Equation (4) only needs to deal with the rightmost term where VBT_in is a constant. The quadratic
differential of Equation (4) will be written as Equation (5):

d2

dt2 (1 +
Rf1

RBT(Tc)+Rcal1
)|T = Tc =

Rf1

[
Rcal1 + RBT(Tc)R

′′
BT(Tc) − 2R′BT(Tc)

2
]

[Rcal1 + RBT(Tc)]
3 |T = Tc = 0. (5)

When Equation (5) holds, the numerator must be zero as follows:

Rcal1 + RBT(Tc)R
′′
BT(Tc) − 2R′BT(Tc)

2 = 0. (6)

Rcal1 is then derived as follows:

Rcal1 =
2R′BT(Tc)

2

R′′BT(Tc)
− RBT(Tc). (7)

Rcal1 is re-organized as Equation (8) according to Equation (1):

Rcal1 =
β − 2·Tc

β + 2·Tc
× RBT(Tc). (8)

Namely, the coefficient of the quadratic term will become 0 by selecting Rcal1 with an appropriate
resistance. Besides, this work adds more calibration resistors and feedback resistors to enlarge the
sensing temperature and maintain the high linearity of the VBT(T). Therefore, thermistor linearity
calibration circuit with switches changes sensing temperature range by selecting the appropriate
calibration resistor and feedback resistor. Referring to Equation (2), RBT(T) is derived to attain the
following result:

RBT(T) =
Rf1(

VBT(T)
VBT_in

)
− 1
− Rcal1. (9)
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According to Equations (2), (8), and (9), temperature (T) can be indirectly estimated by RBT(T)
based on this conclusion:

T =
1 ln(

Rf1
(VBT(T)/VBT_in)−1

− Rcal1

R0
)

β

 + 1
t0

. (10)
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Figure 4 shows the illustration of the output of thermistor linearity calibration circuit with one of
the three switches turned on. Namely, three different output voltage curves (VBT1, VBT2, and VBT3)
are corresponding to the output voltage curves of VBT(T) in −5–35 , 30–80 , and 75–120 , separately,
in our design. VH (voltage high) and VL (voltage low), which are external DC bias voltages, are the
reference voltages of temperature range auto-selecting circuit. VH is set to the maximum voltage of
VBT2 and VBT3. By contrast, VL is set to the minimum voltage of VBT1 and VBT2. If VBT(T) > VH
or VBT(T) < VL, temperature range auto-selecting circuit turn off the current switch and turn on
another switch depending on VBT(T) higher than VH or lower than VL. On the other hand, when
the VBT(T) is between VH and VL, it means that the thermistor linearity calibration circuit has been
selected to the correct sensing temperature range. In addition, the sensing temperature ranges t1~t2
and t3~t4 are overlapping sensing temperature ranges of VBT3, VBT2, and VBT1, respectively. If there
is no overlapping between two adjacent ranges, a bouncing hazard will occur between adjacent range
selections when the temperature is close to the switch point of two adjacent ranges.
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2.2. Temperature Range Auto-Selecting Circuit (TRASC)

The temperature range auto-selecting circuit is shown in Figure 5, where two operating modes are
used. The reset mode sets the initial state of temperature range auto-selecting circuit. The other is work
mode, where VBT(T) is compared with VH and VL to auto-select corresponding resistors and enter
the pre-defined sensing temperature range. The functionality of temperature range auto-selecting
circuit will be described in detail in the following text.
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• Reset Mode

When reset is low, Q1 and Q0 will be asserted low. By contrast, when reset is pulled up high and
sw_int is dropped to low, Sx will be asserted low, sw1 and sw3 will be off, and sw2 will be on. Thus,
VBT(T) follows the transfer function of VBT2. Finally, if sw_int is pulled up high, Temperature range
auto-selecting circuit enters the work mode.

• Work Mode

Temperature range auto-selecting circuit keeps tracking VBT(T) vs. VH and VL to determine
which switch to turn on. If TRASC is kept in the work mode, Thermistor linearity calibration circuit
with switches will be changed to appropriate temperature range according to the following rules.

� VBT(T) > VH: When VBT(T) is higher than VH, the sensing temperature region will change from
VBT3 to VBT2 or VBT2 to VBT1 until VL < VBT(T) < VH. Notably, when VBT(T) is in the VBT1,
the sensing temperature region stays the same.

� VL < VBT(T) < VH: When VBT(T) is between VH and VL, the state is kept in same
temperature range.

� VBT(T) < VL: When VBT(T) is lower than VL, the sensing temperature region will change from
VBT1 to VBT2 or VBT2 to VBT3 until VL < VBT(T) < VH. Notably, when VBT(T) is in the VBT3,
the sensing temperature region stays the same.

In short, Figure 6 shows the flow chart for TRASC how to select which switch be turned on.
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A total of four states are required for temperature range auto-selecting circuit, which are S00, S01,
S10, and S11. They are, respectively, described as shown in Figure 7. Referring to Figure 5 again, the
inputs of this state machine is S_1 and S_0. By contrast, the outputs of this state machine is Q1 and Q0.

� S00 mode: sw1 is turned on and others are turned off. VBT(T) is in VBT1.
� S01 and S10 mode: sw2 is turned on and others are turned off. VBT(T) is in VBT2.
� S11 mode: The sw3 is turned on and others are turned off. VBT(T) is in VBT3.
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3. Implementation and Measurement

The proposed temperature sensor is carried out using TSMC 0.5 µm CMOS high voltage
mixed-signal based LDMOS USGAL 2P3M polycide (T50UHV). Figure 8 shows the die photo of
the proposed temperature sensor, where the entire chip area is 1933.52 µm × 1703.22 µm, and the
core area is 710 µm × 460 µm. The measurement setup of the proposed design on silicon is shown in
Figure 9. The thermistor is placed in the programmable compact temperature and humidity chamber
(MHK-120 [13], TERCHY, Nantou, Taiwan). The power supply (E3631A DC Power Supply, Rohde and
Schwarz, Munich, Germany) is in charge of the required supply voltages. The oscilloscope (Agilent
54855A) is used to demonstrate VBT(T).

Figure 10 shows the scenario of three switches when the ambient temperature is changed: (a) from
35 ◦C up to 40 ◦C and (b) from 80 ◦C up to 85 ◦C. Referring to Figure 10, when the ambient temperature
changes from low to high, the switch is turned on in sequence from sw3 to sw2 and then to sw1.
By contrast, the scenario of the three switches, when the ambient temperature varies: (a) from 70 ◦C
down to 65 ◦C and (b) from 30 ◦C down to 25 ◦C, is shown in Figure 11. Referring to Figure 11 again,
when the ambient temperature changes from high to low, the switch is turned on in sequence from
sw1 to sw2 and then to sw3. To make sure that the proposed chip is functional in the range of −5 ◦C to
120 ◦C, a total of 26 temperature cases, i.e., −5, 0, 5, . . . , 120 ◦C, are tested and measured. Figure 12
summarizes the measurement result of the VBT(T). The maximum error with respect to a linear
asymptotic line is as low as 1.4%. Then, the error of the sensed temperature compared with the real
temperature is attained in Figure 13. The maximum error with respect to real temperature is as low as
1.1 ◦C (≈3.1%).
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Four chips of the proposed temperature sensor are used to carry out the measurements, where each
one was under five trials of 26 temperature tests. Figure 14 shows the summary of these measurement
results. The standard deviation of measurement results is smaller than ±3σ as shown in Figure 15.

The performance comparison of the proposed design and several recent works is tabulated in
Table 2. Notably, the proposed design attains the widest sensing temperature range, which is the range
of −5 ◦C to 120 ◦C. Notably, the maximum error 1.1 ◦C, which is also the best to date.

Table 2. Performance comparison of temperature sensors.

[14] [10] [11] [15] This Work

Year 2009
TIM

2013
SJ

2016
SJ

2017
HNICEM 2018

Implementation PCB PCB PCB PCB T50UHV CMOS
Power (mW) N/A N/A N/A N/A 12

Output of Voltage (V) N/A 2~4.5 N/A N/A 1.9~4.1
Max. Linearity Error (%) 1.7 3 1.3 9.05 1.4

Sensing temperature range (◦C) 0~120 30~120 30~110 −10~100 −5~120
Sensitivity (mV/◦C) N/A 27 N/A N/A 17.6

Temperature Error (◦C) 2 2.7 1.1 2 1.1
Reliability N/A N/A N/A N/A ≤ ±3σ
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