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Abstract: Vehicles driving in urban canyons are always confronted with a degraded Global
Navigation Satellite System (GNSS) signal environment. The surrounding obstacles may cause
signal reflections or blockages, which lead to large multipath noises and intermittent GNSS reception.
Under these circumstances, it is not feasible to use conventional real-time kinematic (RTK) algorithms
to maintain high-precision performance for positioning. In order to meet the special requirements
of safety-critical applications under non-ideal observation conditions, a novel tightly coupled
RTK/Inertial Navigation System (INS) algorithm is proposed in this paper, which can provide
accurate and reliable positioning results continuously. Our integrated RTK/INS algorithm has three
features. Firstly, INS measurements are used to help search for integer ambiguities in the position
domain. INS solutions can provide a more accurate initial location and a more efficient search region.
Secondly, the criterion for determining whether a candidate position is the correct solution is only
related to the fractional value of the carrier-phase measurement. Thus, the new algorithm is immune
to cycle slips as well as large pseudorange noises. Thirdly, our algorithm can provide more accurate
ranging information than the pseudorange, even though it may not necessarily be fixed successfully,
because it selects the weighted ambiguity solution as the result rather than the candidate point with
maximum probability. The proposed algorithm is demonstrated on both simulated and real datasets.
Compared with single epoch RTK and conventional tightly coupled RTK/INS integrations that
search integer ambiguities in the ambiguity domain, our method attains better accuracy and stability
in a simulated environment. Moreover, the real experimental results are presented to validate the
performance of the new integrated navigation algorithm.

Keywords: tightly-coupled navigation system; RTK; INS; multi-constellation; sensor integration;
integer ambiguity resolution; high-precision

1. Introduction

With the rapid development of automatic driving as well as advanced vehicle control and
safety systems in urban environments, the requirements in terms of navigation accuracy, continuity,
and availability are increasing. Real-time kinematic (RTK) in surveying and mapping is a precise
positioning technique by processing double-differenced carrier-phase measurements of Global
Navigation Satellite System (GNSS) signals [1]. The double-difference technique can remove the error
sources that are highly correlated over space and time, such as ephemeris errors. Range information
with remained multipath and receiver noise can achieve cm-level accuracy only after the integer
ambiguities in the carrier-phase measurements have been resolved correctly. Thus, integer ambiguity
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resolution (AR) becomes a critical part of the RTK technique. The conventional AR techniques
are classified into three categories according to the usage of receiver measurements [2]: ambiguity
resolution in the measurement domain [3], search technique in the coordinate or position domain [4],
and search technique in the ambiguity domain [5,6]. The third class based on the theory of
integer least-squares (ILS) is most widely used; it contains abundant techniques, such as the Fast
Ambiguity Resolution Approach (FARA) [5], the Least-Squares Ambiguity Decorrelation Adjustment
(LAMBDA) [6], the Least-Squares Ambiguity Search Technique (LSAST) [7]. A typical AR procedure
in the ambiguity domain comprises two steps. Firstly, the float solution of ambiguities and the
corresponding variance–covariance matrices are obtained by real-valued least squares estimation.
Secondly, the ambiguity search process is employed to fix the integer values and adjust the baseline
solution. The performance of the AR procedure in the ambiguity domain depends on a precise float
estimation. Thus, it is susceptible to the number of available satellites and the quality of observations.

In harsh urban environments, the surrounding obstacles may bring two representative
predicaments to the reception of satellite signals: blockages and multipath. GNSS signal blockages
always make the RTK techniques suffer from a poor geometry and a reduction in the number of
satellites in view. However, this dilemma has improved with the development of other constellations
such as BeiDou Navigation Satellite System (BDS), which has been providing Positioning, Navigation,
and Timing (PNT) services in the Asia-Pacific region since December 2012 [8]. Taking into account the
use of multi-constellation systems, the number of satellites in view for users has effectively increased.
Meanwhile, there is potential for the positioning accuracy and stability of RTK to be improved with
the combination of GPS and BDS. In addition to solving the reduction in the total number of satellites,
the ideal RTK technology also needs to deal with the frequent satellite visibility changes caused by
GNSS signal blockages. For carrier-phase measurements, once the satellite signals need to be reacquired
by the receiver due to changes of the availability status, the corresponding integer ambiguities have
to go through a period of re-searching and fixing. In the interim, unless the fixed solution can be
obtained at the time of cycle-slip occurrence, at best, only the accuracy of the float solution can be
provided. For the AR techniques in the ambiguity domain, both the float solution and the success
rate impose requirements on the accuracy of the pseudorange. Unfortunately, the second predicament
in satellite observations under urban environments is that due to the multipath generated by the
reflections on building structures, there exist large correlation errors in pseudorange measurements.
Therefore, the standalone GNSS positioning methods such as RTK cannot meet the requirements under
GNSS-challenged environments.

An alternative way to enhance the system performance is exploiting other sensors that are
aiding. Inertial Navigation System (INS) and GNSS integrations are most widely applied because
of their complementary properties. The Inertial Navigation System (INS) [9], vision system [10,11],
and Wi-Fi [12] all have been take into consideration. Among the above, INS measurements are
immune to external interference. They can precisely provide high-rate velocity and attitude, and give
an ephemeral positioning by dead reckoning when satellite observation is absent. In turn, the accurate
positioning results obtained by RTK can correct inertial errors accumulated over time. In an RTK/INS
integrated navigation system, the overall accuracy still depends on the positioning result of RTK;
thus, the purpose of the effective integration is to exploit inertial information to increase the search
speed and success rate of the AR technique. According to the measurement model, RTK/INS integrated
systems can be classified as loosely and tightly coupled structures. In the case of loosely coupled
techniques, RTK and INS calculate the position and velocity results independently [13]; thus, they fail
to enhance the accuracy and availability by providing additional information for the AR procedure.

By contrast, in tightly coupled RTK/INS integrations, using inertial information as an accurate
position prediction in an AR procedure can effectively improve the performance of the navigation
system when the satellite observation condition is poor. Conventional tightly coupled RTK/INS
algorithms generally include two stages in order to ensure that their own precision is identical to the
RTK results. The first stage is to use the INS measurements to assist the AR process, and the second
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stage is determination of whether the AR results are valid. If AR validation failed, the pseudorange
measurements are utilized to correct the state variables, including position, velocity, attitude, and the
biases of inertial sensors. Otherwise, the carrier-phase measurements with fixed solutions are used as
more accurate ranging information to complete the correction instead.

There are two different implementations of the conventional tightly coupled RTK/INS algorithms.
Both of them use an extended Kalman filter (EKF) to correct state variables and solve integer ambiguity
estimation in the ambiguity domain. The first kind of tightly coupled structure is realized by fusing
raw pseudorange and carrier-phase measurements as well as INS navigation solutions through
an EKF; then, the float ambiguities can be estimated as filter states [14]. Subsequently, based on the
information of the filter covariance matrix, a search process such as LAMBDA is performed in the
ambiguity domain. The resulting fixed solution is then used to correct the remaining state variables.
This implementation exploits the ambiguity constraints between adjacent epochs, making it practicable
for consumer-grade receivers to achieve the desired accuracy in open sky conditions. However, adding
float ambiguities to filter states also has one obvious drawback. Since the ambiguities at the previous
moment affect both current state estimation and the accuracy of the carrier-phase measurement as
ranging information, this algorithm is very sensitive to cycle slips in the receiver’s phase-locked loop
(PLL). If the ambiguity estimation for a certain satellite is biased, then this biased estimation will affect
the entire filtering process until the corresponding satellite becomes unavailable. Furthermore, in the
case of frequent changes in satellite visibility, ambiguities at each GNSS epoch must be researched and
fixed; thus, the benefits brought by the invariance constraint of the ambiguities will no longer exist.

In order to free the ambiguities from filter states, the second kind of tightly coupled
implementation uses the Least-Squares (LS) estimation to obtain the float solution of ambiguities
instead of the EKF, and its next integer search and correction steps are the same as the implementation
mentioned above [15]. Compared with the AR procedure in GNSS standalone systems, not only
are the pseudorange and carrier-phase measurements utilized as observables, but also the position
vectors derived from the INS solution are taken as additional observables to solve this LS problem.
This inertial-aided AR algorithm is expected to obtain more precise estimation and reduce the search
space under INS motion constraints. Moreover, it only uses the observations of the current epoch,
so the second kind of implementation is not affected by the intermittent GNSS reception. However,
since both implementations search integer solutions in the ambiguity domain, the success rate of AR
is unavoidably dependent on the quality of pseudorange measurements. When the pseudorange
measurements have large errors due to multipath, the accuracy of the above two kinds of tight
integration techniques will be degraded.

Therefore, in order to obtain high precision positioning results continuously in urban
environments where satellites frequently change and large pseudorange errors exist, this paper
proposes a new implementation of the tightly coupled RTK/INS integration. The new tightly-coupled
algorithm proposed in this paper still contains the two stages: INS-aided AR and a correction step.
However, in order to avoid the influence of large pseudorange errors in float ambiguity estimation,
we perform the AR process in the Position Domain. Thus, the proposed algorithm will be abbreviated
as “ARPD-RTK/INS” in the following sections. In our INS-aided AR process, the INS solution is
used to provide a more accurate initial value of location and a more efficient search volume due
to the use of motion constraints, when compared with the standalone-GNSS AR techniques in the
position domain [4,12]. To get rid of the influence of the pseudorange error, we determine to use the
posterior probability density function (PDF) to represent the weights of candidate points. Taking into
account the integer property of the carrier-cycle ambiguity, the posterior PDF is only updated by the
double-differenced carrier-phase measurements of GPS and BDS, which does not involve pseudorange
measurements. Furthermore, we expect that a suboptimal integer solution can be obtained in the
AR process, which is able to provide more precise ranging information than the pseudorange for the
ensuing correction step, even if it is not necessarily the fixed integer solution. Thus, the ultimate
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solution is obtained by the weighted average of candidate ambiguity vectors instead of finding the
fixed integer solution with the maximum probability.

This paper is organized as follows. Section 2 describes the architecture of conventional RTK/INS
integrations and the transition and observation models on which to base our positioning process.
Section 3 illustrates the flow chart of the new ARPD-RTK/INS algorithm, and explains the steps to
solve the integer ambiguities in the position domain. Section 4 presents the experimental results of the
proposed algorithm, and evaluates the performance by comparing with other algorithms on both real
and simulated datasets. Section 5 summarizes our conclusions and future research directions.

2. The Theoretical Basis of Tightly-Coupled INS/RTK Integrations

2.1. Definition of State Vectors and Motion Model

In the RTK/INS integrated navigation systems, in order to clearly illustrate the positioning
procedure, we first define the state vectors as well as the motion and observation models. Categorized
according to different uses, there are three types of state vectors: position vector, inertial parameter
vector, and ambiguity vector.

xk = (x, y, z) (1)

vk= (v x, vy, vz, θ, φ, ψ, ba, bg
)

(2)

Nk =

∆

̂
N

s,L1

rb , ∆

̂
N

s,L2

rb

s = 1, 2, . . . , Sk (3)

where k is the discrete-time index; xk ∈ R3 is the position vector at time k, which only contains
three-dimensional position information; and vk ∈ R12 is the inertial parameter vector, which contains
velocity, Euler angles, accelerometer bias, and gyroscope bias. The inertial parameter vector only exists
when the navigation system integrates with the inertial navigation system. Nk is the ambiguity vector,

and ∆

̂
N

s,L1

rb and ∆

̂
N

s,L2

rb represent the single-differenced integer ambiguities of satellite s at L1 and L2
frequencies separately, obtained by the difference between rover r and base station b. Sk is the total
number of observable satellites at time k.

Simultaneously, the motion equation is as follows:

(x k, vk) = f(xk−1, vk−1)+nk, k = 1, 2, . . . , K (4)

where the function f() denotes the transition model, nk is the system noise whose distribution is
independent of time. The transition model depends on the INS measurements. Using a strap-down
inertial system, we need to transform the specific force vector and angular rate measured in the
body frame into the Earth-centered Earth-fixed (ECEF) frame. Then, the kinematic equations are
as follows [17]:

·
C

e

b= Ce
bΩb

ib −Ωe
ieC

e
b (5)

·
v

e
eb= Ce

bfb
ib+ge

b − 2Ωe
iev

e
eb (6)

·
r

e
eb= ve

eb (7)

where Ce
b denotes the rotational transformation from the body frame to the ECEF frame, and ve

eb and
re

eb denote the Earth relative velocity and position in the ECEF frame, respectively. The equations
above give their time derivatives. The vector fb

ib is the specific force that can be obtained from
INS measurements directly. ge

b is the local gravity vector related to the current position re
eb. Ωe

ie is
the skew-symmetric matrix of the Earth rotation vector, and Ωb

ib is the skew-symmetric matrix of



Sensors 2018, 18, 2160 5 of 23

the angular rate Ωb
ib. It is noteworthy that the specific force and angular rate measurements are

accompanied by noise. The simplified measurement models of the accelerometer and gyroscope are:

f̃
b
ib= (I 3+Ma)f

b
ib+ba+εa (8)

Ω̃b
ib= (I 3+Mg)ω

b
ib+bg+εg (9)

where f̃
b
ib and ω̃b

ib are the output vectors of inertial sensors; εa and εg represent the random noise; and
ba and bg respectively represent the accelerometer and gyroscope biases that are contained in the state
vector. The biases are modeled as constant vectors and corrected by the GNSS solutions. I3 is the
identity matrix, and Ma and Mg denote the matrices of the scale factor and cross-coupling errors for
accelerometer and gyroscope, respectively.

2.2. Observation Model

Involving the new GNSS observations, this subsection discusses the definition of the observation
model. At each GNSS epoch, a new observation zk is given by:

zk = h(xk)+mk, k = 0, 1, . . . , K (10)

The function h() presents the observation model. mk is the measurement noise whose distribution
is independent of not only time but also the system noise. In the positioning process, the observation
vector zk usually contains a dual-frequency carrier phase as well as a code pseudorange, and eliminates
the noise sources that are highly correlated over space by the double-differencing method, as given by
Equation (11).

zk =


∇∆Φst,L1

rb
∇∆Φst,L2

rb
∇∆ρst,L1

rb
∇∆ρst,L2

rb

 =


1

λ1

(
∇∆r̂st

rb

)
+∇∆

̂
N

st,L1

rb +εΦ,L1

1
λ2

(
∇∆r̂st

rb

)
+∇∆

̂
N

st,L2

rb +εΦ,L2

∇∆r̂st
rb+ερ,L1

∇∆r̂st
rb+ερ,L2


(11)

Here, ∇∆Φst,L1
rb represents the double-differenced carrier-phase vector at L1 frequency with

a selected reference satellite t. Analogously, ∇∆ρst,L1
rb is the double-differenced pseudorange

vector, and ∇∆
̂
N

st,L1

rb and ∇∆r̂st
rb denote double-differenced integer ambiguities and distances,

respectively. ∇∆Φst,L2
rb , ∇∆ρst,L2

rb , and ∇∆
̂
N

st,L2

rb are the corresponding double-differenced carrier
phase, pseudorange, and integer ambiguities at L2 frequency, respectively. ε is the measurement noise
of the relevant observation.

Taking into account the clock bias between GPS and BDS, the reference satellite t of each
constellation needs to be determined separately. Satellites at lower elevation angles are more likely
to be blocked by surrounding buildings or interfered by larger atmospheric errors. To alleviate the
hand-over problem, we choose the satellite with the highest elevation angle as a reference satellite.

It should be noted that the conventional tightly coupled RTK/INS algorithms often use both
carrier-phase and pseudorange measurements as the observation vector when there is no fixed solution.
However, the new algorithm proposed in this paper, in order to avoid the negative effects caused by
large pseudorange errors, only uses the first two items of Equation (11), i.e., double-differenced carrier
phases, to update state vectors.
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2.3. Conventional Tightly Coupled RTK/INS Integrations with AR in the Ambiguity Domain

In this subsection, we introduce two conventional RTK/INS integrated techniques, both of which
complete the AR in the ambiguity domain. As we mentioned above, the typical tightly coupled
RTK/INS algorithms generally include two stages: INS-aided AR, and the correction process. The total
accuracy is guaranteed by the ability to successfully find a fixed solution. According to the different
way that INS participates in the AR process, the existing tightly coupled algorithm is divided into two
categories [10,11], as mentioned in the introduction Section 1. The first implementation is depicted
in Figure 1. It uses INS measurements to help estimate float ambiguities through an EKF, and then
searches for integer solutions in the ambiguity domain by LAMBDA. Compared with the ambiguity
covariance matrix obtained only from the double-differenced carrier phase and pseudo-range
observations, this tightly coupled algorithm takes into account a priori motion information, so the
covariance matrix obtained by EKF has a more efficient search space. The filter states include position,
velocity, attitude, biases of inertial sensors, and float ambiguities. Therefore, if no change in the satellite
tracking status is detected, the integer solutions will be used as the initial values of filter states at
the next moment, as shown by the red arrow in Figure 1. However, if there is an undetected cycle
slip, the incorrect initial value can cause the subsequent filtering process to fail. At the same time,
the accuracy of this tightly-coupled algorithm is affected by the quality of pseudorange measurements,
which can cause a bias in the ambiguity estimation of a continuous tracking satellite.

Figure 1. The first implementation of tightly-coupled Inertial Navigation System (INS)/real-time
kinematic (RTK) integration using an extended Kalman filter (EKF).

The second kind of implementation is illustrated in Figure 2. Float ambiguities are obtained by
least squares estimation. The next step is to search for integer solutions in the ambiguity domain
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and correct the state variables using the fixed carrier-phase observations. If no valid integer solution
is found, pseudorange observations will be used to correct the state variables by an EKF instead.
For the float ambiguity estimation process, there are not only double-differenced carrier-phase
and pseudorange observations as constraints, but also the positioning result of the INS solution
as additional observables, as shown by the green arrow in Figure 2. The inertial navigation assistance
makes it practicable to complete the AR process when there are fewer than four satellites in a single
constellation system. In contrast to the first kind of implementation, this algorithm only utilizes
the current epoch observations in the AR process, so it is not affected by frequent changes in
satellite visibility. From the second flowchart, it also can be clearly concluded that the quality of
the pseudorange observation directly affects the success rate when searching for a fixed solution in the
ambiguity domain. To avoid this undesirable influence, our new ARPD-RTK/INS algorithm searches
for integer ambiguities in the position domain.

Figure 2. The second implementation of tightly-coupled INS/RTK integration using EKF.

3. The Implementation of the Novel ARPD-RTK/INS Algorithm

3.1. Overall Flow Chart of the ARPD-RTK/INS Algorithm

The flow chart of the proposed ARPD-RTK/INS algorithm that combines GPS/BDS/INS
measurements is depicted in Figure 3. The new integrated navigation algorithm also has the INS-aided
AR process and the correction step. To start with, the initial states are obtained by the single-epoch
RTK algorithm. Then, the new states are derived from INS mechanization. This step corresponds to the
“INS derivation” in Figure 3. Subsequently, critical AR steps are marked in Figure 3 with blue dashed
boxes. There are two significant stages in the spatial searching procedure; the first one is to determine
the searching region. We call it “grid creation”. Since the INS can provide short-term precise position
prediction, the searching space is established by a set of grids centered at the estimated position.
The total number of grid points is determined by the priori covariance matrix, which is obtained from
the INS derivation step. The next major stage in the searching procedure is to identify which candidate
grid point in the searching region is the optimal solution. The weight of each grid point depends on
the distance between the float ambiguity estimation and its nearest integer vector. We complete the
“weight update” step using the fractional part of carrier-phase measurements. When searching to find
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the optimal solution, enough candidate positions are required to avoid missing the maximum weight.
As the number of candidates increases, the computational cost increases, too. Thus, our new algorithm
makes a compromise between the accuracy and computational cost. The final solution is determined
as the nearest integer vector of the weighted ambiguity average of ambiguities, and the state vector is
corrected using the carrier ranging information corresponding to this suboptimal solution.

Since the searching step length should be proportional to the observation wavelength [16],
we use wide-lane measurements to complete the AR process, although a longer wavelength is always
accompanied by larger noise. If higher precision is expected, another AR process with L1 measurements
can be performed on the basis of the wide-lane positioning result. When the GNSS observation is
absent, the dead reckoning approach is utilized to enhance the availability for a short time. The specific
steps will be described in the following subsections.

Figure 3. Overall flow chart of the ARPD-RTK/INS algorithm.

3.2. State Initialization

The first step of the ARPD-RTK/INS algorithm is to calculate the initial state vectors,
including position vector x0, inertial parameter vector v0, and ambiguity vector N0. We utilize
the double-differenced pseudorange and carrier-phase as well as Doppler measurements to derive
the initial position, velocity, and float ambiguity vectors by the weighted least squares estimation.
Subsequently, the integer ambiguity solution is obtained by LAMBDA. The detailed implementation
is shown in Figure 4. In the meantime, initial roll and pitch are obtained from the accelerometer
measurements, while yaw is obtained from the gyroscope measurements by integrating the changes in
velocity as well as orientation. The initial biases of the inertial sensors are set to zero.

Figure 4. The implementation of single epoch RTK.
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3.3. INS Derivation

In the derivation stage, the transition model has been described in Section 2.1. Besides updating
the state vectors, their corresponding error propagation also needs to be calculated. The state error
vectors of the ARPD-RTK/INS algorithm contain the following 15 states.

δE =


δψe

eb
δve

eb
δre

eb
ba

bg

 (12)

where δψe
eb denotes the error of the Euler angle from the ECEF frame to the body frame, and δve

eb and
δre

eb denote the errors of velocity and position, respectively. They describe a kinematic property of the
body frame with respect to the ECEF frame, which is expressed in ECEF frame axes. Then, the error
propagation in the ECEF frame over the time interval τs can be obtained by the time derivative of each
state error as follows [17]:

Φe
INS ≈


I3×3−Ωe

ieτs 03×3 03×3 03×3 Ce
bτs

Fe
21τs I3×3−2Ωe

ieτs Fe
23τs Ce

bτs 03×3

03×3 I3×3τs I3×3 03×3 03×3

03×3 03×3 03×3 I3×3 03×3

03×3 03×3 03×3 03×3 I3×3

 (13)

Fe
21 =

[
−
(

Ce
bfb

ib

)
∧
]

(14)

Fe
23 = −

2γe
ib

re
eS
·
re

eb
T∣∣re

eb

∣∣ (15)

The function [x∧] represents the skew-symmetric matrix of x. γe
ib denotes the acceleration due to

the gravitational force, and re
eS is the geocentric radius at the Earth’s surface. The remaining notations

are identical with the ones mentioned above.

3.4. Grid Creation

After obtaining the INS derived position and the error covariance matrix, we must establish
the spatial search region centered on the current position. A simplified approach is to draw a set of
fixed-distance grid points, and each point corresponds to a set of integer ambiguities. Considering the
integer property of ambiguities, the weight of a grid point is negatively correlated with the residual
between its float ambiguity solution and the nearest integer vector. For wide-lane observations,
the appropriate distance between the two nearest grid points is determined by the satellite elevation
distribution, which has been discussed in detail in earlier work [18]. Thus, we still choose 0.2 m as the
constant distance.

Since the error distribution of the vehicle position in the ECEF frame is obtained by the previous
step, and the ground vehicle moves relatively slowly in the height direction, using such a priori
information can make the grid point allocation more efficient. The error distribution needs to be
converted from the ECEF frame to the ENU frame. In order to avoid the influence of position error
covariance, we refer to the idea of “decorrelation” in the ambiguity domain when determining the
distribution directions of the grid points. In the horizontal plane, grid points are created along the
major and minor axes of the error ellipse. A typical example for the grid creation is depicted in Figure 5.
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Figure 5. A typical example for the grid creation step.

3.5. Weight Update

The purpose of the weight update step is to identify the correct candidate position. Taking the
ambiguity function method (AFM) as an example [4], it introduced an ambiguity function and aimed
at finding the maximum value. The adaptive ambiguity function, which uses trigonometric functions
to process the fractional value of carrier-phase measurement, is insensitive to the whole-cycle change
of the carrier-phase measurement. We expect to maintain the advantage of this objective function,
and determine to use the posterior probability density function (PDF) to replace the multi-peak and
complicated ambiguity function as a new objective function. From the Bayesian rule, the posterior
density can be factorized by:

P(xk|z k) =
P(zk |x k)P(x k)∫

P(zk |x k)dxk
(16)

The prior distribution P(x k) can be obtained from the INS motion model. Assuming that the
system noise conforms to the Gaussian distribution, the prior distribution P(x k) can be achieved as:

P(x k) ∝ exp
[
−1

2
(xk − x̂INS)

TC(x k)
−1(xk − x̂INS)

]
(17)

where x̂INS denotes the position derived by INS measurements, and C(x k) is the position error
covariance matrix.

When new GNSS measurements arrive, the calculation of likelihood distribution P(zk |x k) is
similar to Equation (17) under the assumption that the measurement noise is Gaussian. Since we
try to avoid involving pseudorange observations, the update of the grid weights only makes use of
current carrier phase measurements. For a certain grid point, the float ambiguity corresponding to
each satellite can be calculated according to the position, and there definitely exists a set of nearest
integer solutions. The float double-difference ambiguity can be estimated by:

∇∆Nst,WL
rb = ∇∆Φst,WL

rb − 1
λWL

[(̂rrs − r̂bs)− (̂rrt − r̂bt)] (18)

where λWL is the wide-lane wavelength, r̂rs is the estimated distance from rover r to satellite s, and r̂bs
is the estimated distance from base station b to satellite s. The integer ambiguity solution is set as:

∇∆
̂
N

st,WL

rb = R
(
∇∆Nst,WL

rb

)
(19)

where the function R(·) denotes its nearest integer. Consequently, the likelihood distribution P(zk |x k)

is proportional to:

P(zk|xk) ∝ exp[−1
2
(∇∆Nst,WL

rb −∇∆
̂
N

st,WL

rb )TC(NWL)
−1(∇∆Nst,WL

rb −∇∆

̂
N

st,WL

rb )] (20)
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The error covariance matrix C(N WL) can be simplified as a constant matrix, which is composed
of the covariance matrix of measurement noise RMEAS,WL and single-differencing matrix D.

C(N WL) =
[

DRΦ,WLDT
]

(21)

D =


−1 0 · · · 0 1
0 −1 · · · 0 1
...

...
. . .

...
...

0 0 · · · −1 1

 (22)

The required posterior probability:

P(xk |z k) ∝ P(x k)·P(zk |x k) (23)

Each grid point can calculate its posterior probability according to Equation (23). We use this
value as the weight of the corresponding candidate position. However, the grid point with the largest
weight value is not supposed to be the integer ambiguity solution. Instead, we use the weighted integer
ambiguity vector to provide ranging information, which is more accurate than the pseudorange, but is
not necessarily a fixed solution that can be verified by an ambiguity evaluation such as a ratio test.

3.6. Determine the Integer Solution and the Correction Step

As we discussed above, the ultimate ambiguity solution can be calculated by:

∇∆
̂
N

st,RES

rb = R

∑ P(xk |z k) · ∇∆
̂
N

st,WL

rb

 (24)

Using carrier-phase measurements with suboptimal integer ambiguities may attain more accurate
positioning results than the float AR solutions or pseudorange measurements. The following correction
step is identical to the second types of tightly coupled RTK/INS integration described in Section 2.3.
The implementation of the ARPD-RTK/INS algorithm is depicted in Figure 6.

Figure 6. The implementation of the ARPD-RTK/INS algorithm.
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4. Experimental Results and Discussion

To evaluate the performance of the proposed ARPD-RTK/INS algorithm, experiments are
conducted on both simulated and real datasets. The experiment mainly compares the accuracy
of the following algorithms under different conditions:

1. Single-epoch RTK: Only the current satellite observations are utilized to perform an integer
ambiguity resolution at each epoch. The AR technique that we use here is the LAMBDA method.
The detailed implementation is depicted in Figure 4.

2. The first kind of tightly coupled RTK/INS integration: Raw carrier-phase measurements, pseudorange
measurements, and inertial information are fused to estimate the float ambiguities using EKF. Then,
the integer solution is searched for in the ambiguity domain. The Kalman filter states contain position,
velocity, attitude, the biases of inertial sensors, and float ambiguities. The detailed implementation is
depicted in Figure 1. In this section, this algorithm is abbreviated as “TC-RTK/INS (1)”.

3. The second kind of tightly coupled RTK/INS integration: Least-Squares (LS) estimation is used
to obtain the float ambiguities. In order to solve this LS problem, not only pseudorange and
carrier-phase measurements, but also the position provided by the INS are utilized as constraints.
The detailed implementation is depicted in Figure 2. In this section, this algorithm is abbreviated
as “TC-RTK/INS (2)”.

4. The proposed ARPD-RTK/INS algorithm: Different from the above three positioning methods,
the new algorithm obtains the integer ambiguity solution by searching in the position domain,
which is not affected by the quality of pseudorange measurements. The detailed implementation
is depicted in Figure 6.

4.1. Experiments on Simulation Datasets

We use Matlab to simulate the motion process of a ground vehicle, including varying accelerated
motion and yaw rotations. The average speed during the 30-min simulation period is 3.67 m/s.
Based on the true trajectory, the INS measurements were generated at 100 Hz. The measurement
models of accelerometer and gyroscope are described in Equations (8) and (9). Here, we use the
NovAtel SPAN-CPT system as a reference for the determination of inertial navigation parameters.
Its specifications are given in Table 1 [15].

Table 1. Performance specifications of SPAN-CPT.

Fiber Optic Gyros Micro-Electro-Mechanical
System (MEMS) Accelerometers

Bias 20◦/hr Bias 50mg

Angular Random Walk 0.00667◦/
√

hr Bias Stability ±0.75mg

Scale Factor 1500 ppm Scale Factor 4000 ppm

In our simulation, the constant bias of the accelerometer was set as a three-component vector in
the body frame as follows:

ba = (45,−33, 40)mg (25)

The constant bias of the gyroscope in the body frame was:

bg = (20,−20, 20)◦/hr (26)

The random noise was drawn from a zero-mean Gaussian distribution, the root power spectral
density (PSD) of the accelerometer and gyroscope were set as follows, respectively:

σa = 0.55mg/
√

Hz (27)
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σg = 0.00667◦/
√

hr (28)

The scale factor and cross-coupling errors of the accelerometer and gyroscope were:

Ma =

 2500 −750 500
−375 −3000 625
−625 250 1000

ppm (29)

Mg =

 1000 −400 300
0 −800 −210
0 0 −430

ppm (30)

Besides supplying consumer-grade inertial sensor measurements, GNSS measurements were
generated at 1 Hz. Our simulation of satellite motion as well as GNSS pseudorange and carrier phase
observations were also implemented in Matlab. To obtain ECEF Cartesian positions and the velocities
of simulation satellites in the constellation, we use the matlab program created by Paul Groves [17] for
reference. It assumes that the satellites are evenly distributed on a circular orbit. When generating
GNSS pseudorange observations, we considered ionosphere errors, troposphere errors, ephemeris
errors, satellite clock errors, receiver noise, and multipath. When generating the GNSS carrier phase,
the receiver noise and multipath are set to smaller values. In order to test the performance of the
proposed ARPD-RTK/INS algorithm under different conditions, we designed an experimental group
and a control group with different satellite visibility, as listed hereafter:

• Scene A: Control group. From 0 s to 1800 s, there are sufficient satellite measurements with no
cycle slips occurring.

• Scene B: Experimental group. From 0 s to 1800 s, the total number of satellites in view is more
than four, but there exist frequent changes in satellite visibility.

The visibility of satellites is shown in Figure 7. In Figure 7a,b, the red points represent invisible
satellites, and the black points represent available observations. Figure 7c,d depict the number of
visible satellites for the control and experimental groups, respectively.

In the simulation environment, the standard deviation of the carrier phase noise is 5 mm, and
the standard deviation of the pseudorange noise is 30 cm. Figure 8 shows the position errors of
different RTK solutions in the ECEF frame. Table 2 compares the accuracy and fix rate of these
algorithms numerically.

Table 2. Trajectory error and fix rate for different RTK algorithms with small pseudorange errors (Unit:
cm). RMSE: root mean square error.

Algorithm
Conditional Control Group A Experimental Group B

Max Error RMSE Fix Rate Max Error RMSE Fix Rate

Single Epoch RTK 2.62 0.85 99.83% 321.77 20.66 92.78%
TC-RTK/INS (1) 2.59 0.85 100% 4.27 1.09 99.72%
TC-RTK/INS (2) 2.61 0.85 100% 17.77 1.33 98.06%
ARPD-RTK/INS 2.57 0.85 - 4.59 1.06 -
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Figure 7. (a) The satellite visibility of the 1800-s simulation data for the control group; (b) The satellite
visibility for experimental group; (c) The number of satellites in Scene A and C; (d) The number of
satellite in Scene B and D.

Figure 8. (a) Error distribution in Earth-Centered Earth-Fixed (ECEF)-XY axis under Scene A; (b) Error
distribution in ECEF-XY axis under Scene B.

By analyzing the error results in Table 2, we can conclude as follows.

• By comparing the positioning results of the four methods under Scene A, we can find that
a similar performance can be obtained by four different methods when under good satellite
observation conditions. The maximum position error is about 3 cm, which meets the desired
high-precision requirement.

• The number of available satellites plays an important role in the accuracy of the positioning algorithm.
Comparing the single epoch RTK results in Scene A and Scene B, it is found that the fix rate decreases
as the number of satellites decreases. Even if additional inertial information is considered in the AR
process, such as the TC-RTK/INS (2) algorithm, the final fix rate is also affected by the number of
visible satellites. For the other two algorithms that do not involve the fix rate change, the overall
accuracy also slightly degraded due to a reduction in the number of satellites.
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• Comparing the performance of the four algorithms in Scene B, methods 1 and 3 both show that the
fix solution cannot be obtained all of the time. It can be seen that the AR process with INS-aiding has
a higher fix rate than the single-epoch RTK. When the AR process failed, the positioning accuracy
will be degraded, which depends on the quality of the pseudorange observation. Since we assume
that all of the cycle slips can be detected before the positioning algorithm is performed, even in the
scene where the satellite observability frequently changes, the TC-RTK/INS (1) algorithm will not be
influenced by the wrong ambiguity and remain the ideal positioning accuracy. The reason why the
ARPD-RTK/INS and TC-RTK/INS (1) algorithm perform better than the other two algorithms is that
the position predicted by the INS measurement is more accurate than the position derived from the
pseudorange estimation, so that a more effective ambiguity search region can be obtained.

If we want to embody the advantages of the ARPD-RTK/INS over the TC-RTK/INS (1), one way
is to add cycle slips that cannot be detected before performing the positioning algorithm. As a result,
the TC-RTK/INS (1) algorithm, which contains float ambiguities in the filter states, will deviate from
the true value during the filtering process. Another way is to change the quality of pseudorange
observations. Thus, more observation noise is added to the pseudorange measurements while keeping
the satellite visibility of Scene A and Scene B unchanged. The new scene is defined as Scene C and
Scene D, where the standard deviation of carrier-phase noise is still 5 mm, and the standard deviation
of pseudorange noise becomes 3 m. The differences between the corresponding positioning results
and the true values are shown in Figure 9 and Table 3.

Figure 9. (a) Error distribution in ECEF-XY axis under Scene C; (b) Error distribution in ECEF-XY axis
under Scene D.

Table 3. Trajectory error and fix rate for different RTK algorithms with large pseudorange errors (Unit: m).

Algorithm Conditional Control Group C Experimental Group D

Max Error RMSE Fix Rate Max Error RMSE Fix Rate

Single Epoch RTK 15.811 0.442 87.51% 33.887 2.576 72.85%
TC-RTK/INS (1) 0.026 0.009 100% 3.976 1.208 83.62%
TC-RTK/INS (2) 0.195 0.019 88.78% 1.482 0.073 75.68%
ARPD-RTK/INS 0.021 0.009 - 0.044 0.012 -

In theory, except for the ARPD-RTK/INS algorithm, the positioning results of the remaining
algorithms are all related to the quality of the pseudorange observations. When the pseudorange noise
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is large, it can cause errors when searching in the ambiguity domain. If satellites can be observed
continuously, TC-RTK/INS (1) can maintain good accuracy due to the constraints of the correct fixed
solution at the initial time. However, the algorithms that need to search for fixed solutions at each
epoch, such as single-epoch RTK and TC-RTK/INS (2), will show a significant drop in the fix rate.
The advantages of the new ARPD-RTK/INS algorithm are reflected when some of the satellites need
to be re-tracked. At this time, the TC-RTK/INS (1) algorithm will suffer from the biased estimation
of new ambiguities due to the influence of pseudorange errors, and this estimation will be reserved
during the subsequent filtering process.

In addition, we also conducted experiments in an environment with insufficient satellites. From 0 s to
1800 s, there exist frequent satellite changes, and there is no guarantee that there are more than five visible
satellites. The standard deviation of the carrier phase noise is 5 mm, and the standard deviation of the
pseudorange noise is 30 cm. The visibility of the satellites is shown in Figure 10. In this condition, only the
tightly coupled RTK/INS integrations can obtain the positioning results continuously. From the position
errors shown in Table 4 and Figure 11, we can conclude that as long as the number of visible satellites is
not less than three, the ARPD-RTK/INS algorithm can obtain the available integer ambiguity solutions
near the position predicted by INS. When the number of satellites is only two or less, it can only rely on the
short-term positioning results of dead reckoning. Therefore, the overall accuracy is lower than the above
four scenes, but it can still maintain decimeter-level accuracy.

For TC-RTK/INS (1), when the number of visible satellites is small, a biased ambiguity estimation
may be obtained. If the corresponding satellite is still being tracked continuously, the biased ambiguity
will remain in the filter and cause the positioning result to shift, as shown by the blue line in Figure 12.
For TC-RTK/INS (2), although the float ambiguity solution can be obtained with the aid of INS when
the number of satellites is small, the fix rate is lower than 70%. Thus, this algorithm can only maintain
the precision of the pseudorange most of the time.

Table 4. Trajectory error and fix rate for three RTK algorithms on the simulation Scene E (Unit: m).

Algorithm Max Error RMSE Fix Rate

TC-RTK/INS (1) 1.903 0.491 78.07%
TC-RTK/INS (2) 2.050 0.226 69.52%
ARPD-RTK/INS 0.268 0.042 -

Figure 10. (a) The satellite visibility of the 1800 s simulation data for Scene E; (b) The number of
satellites in Scene E.
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Figure 11. Error distribution in ECEF-XYZ axis.

Figure 12. (a) Error distribution in Earth-Centered Earth-Fixed (ECEF)-XYZ axis for different
algorithms; (b) Error distribution in ECEF-Y axis; (c) Error distribution in ECEF-Z axis.

4.2. Real Experimentation

The real experimental results are presented to validate the performance of the proposed algorithm.
A ProPak6 GNSS Receiver was used as a base station and placed on the rooftop of the Weiqing
Building, Tsinghua University, Beijing, China. It provided double-frequency pseudorange, Doppler,
and carrier-phase measurements at 1 Hz. The dataset of the rover station was collected by a moving
vehicle equipped with NovAtel SPAN-CPT, which was composed of a GNSS receiver and an Inertial
Measurement Unit (IMU). The experimental equipment for data collection is shown in Figure 13.
GNSS measurements were also output at 1 Hz, and inertial information including the specific force
and angular rate measurements were collected at 100 Hz. The vehicle was driven around the Tsinghua
campus with a maximum speed of 57.18 km/h. The baseline was less than 2 km.

Since the ground truth is unknown, we select a segment with better satellite conditions and use
the result of the post-processing software Inertial Explorer [19] as the reference trajectory to compare
with the ARPD-RTK/INS algorithm. The reference trajectory is marked by a set of yellow points in
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Figure 14, and the selected segment is marked by green points. During the 200-s data, the satellite
visibility is indicated in the left part of Figure 15. The red points represent invisible satellites, while the
black points represent the available satellites in Figure 15a. Therefore, we can see that the satellite
observations are in good condition, except for the periods around the 40th and 121st s.

In order to compare the performance of the different positioning algorithms, we add cycle slips
and large pseudorange noises under the existing observations artificially. Different scenes are designed
as follows:

• Scene F: The original real dataset.
• Scene G: Frequent satellite changes are added to the original dataset.
• Scene H: Large pseudorange noise are added to the original dataset. The standard deviation of

the additional noise is 3 m. Meanwhile, the number of visible satellites is reduced, and only the
BDS observations are preserved.

• Scene I: Frequent satellite changes are added to the Scene H. At the same time, low-elevation
satellites are removed.

The satellite visibility of scene F and G is shown in Figure 15. The position errors of different
tightly coupled RTK/INS algorithms in the ECEF frame are shown in Figure 16. Similarly, the satellite
visibility of scene H and I is shown in Figure 17, and its corresponding position errors are shown in
Figure 18. Tables 5 and 6 compare the accuracy and fix rate of these algorithms numerically.

Figure 13. The experimental equipment for data collection.
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Figure 14. The entire path obtained by Inertial Explorer as a reference (from Google Earth).

Figure 15. (a) The satellite visibility of the 200-s real data for Scene F; (b) The satellite visibility for
Scene G; (c) The number of satellites in Scene F; (d) The number of satellites in Scene G.
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Figure 16. (a) Error distribution in the ECEF-X axis for Scene F; (b) Error distribution in the ECEF-Y
axis for Scene F; (c) Error distribution in the ECEF-Z axis for Scene F; (d) Error distribution in the
ECEF-X axis for Scene G; (e) Error distribution in the ECEF-Y axis for Scene G; (f) Error distribution in
the ECEF-Z axis for Scene G.

Figure 17. (a) The satellite visibility of the 200-s real data for Scene H; (b) The satellite visibility for
Scene I; (c) The number of satellites in Scene H; (d) The number of satellites in Scene I.
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Figure 18. (a) Error distribution in the ECEF-X axis for Scene H; (b) Error distribution in the ECEF-Y
axis for Scene H; (c) Error distribution in the ECEF-Z axis for Scene H; (d) Error distribution in the
ECEF-X axis for Scene I; (e) Error distribution in the ECEF-Y axis for Scene I; (f) Error distribution in
the ECEF-Z axis for Scene I.

Table 5. Trajectory error and fix rate for different RTK algorithms on the real dataset (unit: m).

Algorithm Original Scene F Frequent Cycle Slips Scene G

Max Error RMSE Fix Rate Max Error RMSE Fix Rate

TC-RTK/INS (1) 0.351 0.244 90.05% 0.396 0.133 83.58%
TC-RTK/INS (2) 0.818 0.128 85.07% 0.821 0.126 85.07%
ARPD-RTK/INS 0.330 0.079 - 0.376 0.101 -

Table 6. Trajectory error and fix rate for different RTK algorithms on the real dataset (unit: m).

Algorithm Large Noise Scene H Insufficient Satellite Scene I

Max Error RMSE Fix Rate Max Error RMSE Fix Rate

TC-RTK/INS (1) 0.665 0.343 86.57% 1.548 0.597 81.59%
TC-RTK/INS (2) 1.253 0.239 72.14% 1.344 0.311 59.20%
ARPD-RTK/INS 0.320 0.082 - 0.458 0.124 -

The conclusions obtained from the real datasets are basically consistent with those from the
simulation datasets. In the original scene F, when the integer ambiguity solution of all of the satellites
needs to be resolved again, the advantage of the TC-RTK/INS (1) method putting the floating ambiguity
into the filter state will no longer exist. As shown in Figure 16c, if the ambiguity estimation is biased,
this error will continue until the corresponding satellite becomes invisible. As for the TC-RTK/INS (2)
method, it is clear that the algorithm has poor performance when the number of available satellites
is small. The reason is that obtaining a fixed solution in this case is highly dependent on the satellite
geometry and the quality of pseudorange observations. If the AR process fails, the TC-RTK/INS



Sensors 2018, 18, 2160 22 of 23

(2) algorithm can only degenerate to the accuracy of pseudorange. Our ARPD-RTK/INS algorithm
uses a weighted average instead of a fixed solution, so it can always provide a more precise ranging
measurement than the pseudorange. This advantage is reflected in Tables 5 and 6.

When the pseudorange noise is added to the real dataset, the ARPD-RTK/INS algorithm can
still maintain submeter-level accuracy. The maximum difference between the position results of
the proposed algorithm and Inertial Explorer is less than 0.5 m in GNSS-challenged environments.
This demonstrates the practicability of the new algorithm in the real environment. However, the fix
rate of the other two tightly coupled algorithms decreases with the increasing pseudorange noise.
The blue lines in Figure 18a–c show the negative effect of biased ambiguity estimation in the filtering
process. It can be concluded that the ARPD-RTK/INS algorithm performs better than the traditional
RTK/INS integrated algorithms in terms of accuracy and stability, especially in environments with
large pseudorange errors.

5. Conclusions

This paper proposes the ARPD-RTK/INS algorithm, which searches the integer ambiguities
in the position domain and correct positioning states by carrier-phase measurements. The purpose
is to provide a continuous and accurate positioning result under harsh GNSS signal conditions.
Compared with the conventional tightly coupled RTK/INS integrations, the new algorithm has three
distinct advantages. Since we search the integer ambiguity solution in the position domain, the
ARPD-RTK/INS is insensitive to frequent cycle slips. The weight of the candidate position is only
related to the fractional part of the carrier-phase measurements, so the second advantage is that our
algorithm is not interfered by pseudorange errors. Last but not least, the new method can provide
relatively accurate ranging information steadily, because it uses weighted average ambiguity results to
avoid the risk of failure.

Our future work aims to improve the efficiency of the ARPD-RTK/INS algorithm. One direction
is to use pre-integration during the INS process. Another direction is to use the sequential importance
sampling (SIS) technique instead of uniform sampling. If the amount of computation is effectively
reduced, the ARPD-RTK/INS algorithm can be applied more widely in the future.
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