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Abstract: As autonomous driving attracts more and more attention these days, the algorithms and
sensors used for machine perception become popular in research, as well. This paper investigates
the extrinsic calibration of two frequently-applied sensors: the camera and Light Detection and
Ranging (LiDAR). The calibration can be done with the help of ordinary boxes. It contains an iterative
refinement step, which is proven to converge to the box in the LiDAR point cloud, and can be
used for system calibration containing multiple LiDARs and cameras. For that purpose, a bundle
adjustment-like minimization is also presented. The accuracy of the method is evaluated on both
synthetic and real-world data, outperforming the state-of-the-art techniques. The method is general
in the sense that it is both LiDAR and camera-type independent, and only the intrinsic camera
parameters have to be known. Finally, a method for determining the 2D bounding box of the car
chassis from LiDAR point clouds is also presented in order to determine the car body border with
respect to the calibrated sensors.

Keywords: LiDAR; camera; LiDAR camera system; machine perception; extrinsic calibration;
autonomous driving

1. Introduction

Nowadays, autonomous driving is in the focus of several research communities and industrial partners.
Mapping of the surroundings is a basic task in machine perception. For that task, multiple modalities
are used, e.g., cameras, LiDARs (Light Detection and Ranging), RADARs, IMU, GPS, etc. In order to
work these instruments together, their relative position and orientation need to be known a priori;
thus, extrinsic sensor calibration is needed. This paper introduces a new method for camera and
LiDAR system extrinsic calibration. It is easy to use, requires minimal user intervention, can handle
multiple sensors and outperforms the state-of-the-art methods in accuracy.

Cameras offer an inexpensive solution for machine vision. They provide high resolution,
colorful images at a relatively high frame-rate. Besides that, image processing is a well-studied topic of
research, and many algorithms exist already to solve object detection and recognition, camera movement
estimation, semantic segmentation, etc. On the other hand, cameras can be used only in appropriate
lighting conditions, and problems may occur with occlusion, shadows or in night light.
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The LiDAR (Light Detection and Raging) technique applies infrared light to detect objects in
its surroundings. 3D LiDARs can map the environment in 360◦ and produce a sparse point cloud.
These sensors use active illumination; thus, they can also be used in night light. However, they
retrieve only low-resolution depth information with an accuracy of 2–5 cm at a maximal refresh rate of
15 Hz. For example, the well-known Velodyne HDL-64 uses 64 vertically-oriented light beams and
a rotating head to scan a field of view of 360◦. It is a notable issue for this sensor, that 3D scanning
is not synchronized due to the rotation: different scannings of the same beam are shifted in time.
The compensation of this shift is very challenging when the speed of the vehicle is fast.

Cameras and LiDAR sensors compensate the shortcomings of the other; thus, they can be
effectively used jointly in many scenarios. Robotics and autonomous driving are the most popular
of these. However, extrinsic calibration is needed for these sensors to effectively work together,
meaning that their relative pose needs to be precisely estimated. LiDARs provide sparse point clouds,
with only position information, while the cameras provide high resolution color images. The calibration
of these different modularities is challenging, yet an important topic.

For calibration, we distinguish online and offline methods. Online calibration means that the
sensors are calibrated during the usage of the system, while the latter one indicates that the calibration is
done beforehand. Online methods are used when the vehicle cannot be accessed easily for calibration
purposes. However, when feasible, offline methods provide more accurate results. Cameras and
LiDARs have intrinsic and extrinsic parameters. In this paper, we address the problem of extrinsic,
offline calibration. That means that the intrinsic parameters of the sensors are considered to be
known a priori, and only the extrinsic parameters need to be calculated, namely the relative rotation
and translation of the sensors. It is shown that the calibration can be carried out using an ordinary
cardboard box, outperforming the state-of-the-art methods in accuracy, with the need for a single
observation of the calibration object.

Rodriguez et al. [1] used a black circle-based planar board to avoid the large noise caused by
chessboard patterns. 3D coordinates of the center of the circle and the normal vector of the plane were
estimated. Their method needed at least six positions of the calibration object. Finally, the initial guess
of the LiDAR-camera rigid transformation was refined by the well-known Levenberg–Marquardt [2,3]
(LM) algorithm.

An automatic calibration method was published by Alismail et al. [4]. It used planar calibration
object with a black circular region and a marked center. Random Sample Consensus [5] (RANSAC)
was applied for plane extraction. The center and normal of the circle were computed based on a
single camera view. Finally, point-plane Iterative Closest Point (ICP) [6] was used with nonlinear
optimization by LM to refine the extrinsic parameters.

Park et al. [7] used a white, homogeneous, planar triangle or diamond-shaped board for
calibration. Several positions were needed from the board or at least three boards at the same
time. Another drawback of their algorithm was that the spatial coordinates of the planar board were
estimated and not measured. This fact influenced the accuracy of the calibration. The details of this
method can be found in Section 6.1.

Gong et al. published a method in [8] that needed at least two scans of the same trihedron object
measured by both instruments for the calibration. This produced a significant amount of data to
process. In their work, it took 20 s to calibrate using nine observations. The main disadvantage of
their method is that the process needed much human intervention, e.g., the separation of the trihedron
points and the selection of the related planes in the images needed to be performed manually.
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A different type of calibration object was used in Velas et al. [9]. They assumed a planar object
containing four circular holes in front of a white background. Their method was based on the work
of Levison and Thrun [10]. The holes in both the 3D LiDAR point cloud and the acquired image
were detected automatically. However, we cannot apply this method to the point cloud measured by
Velodyne VLP-16 LiDAR, due to the sparsity of the acquired point cloud.

Geiger et al. [11] introduced a method to calibrate a LiDAR-camera pair taking only one
measurement by the LiDAR and a single image by the camera. The method was fully automatic,
however, it needed multiple chessboards and at least two camera images from different positions.
The algorithm was briefly introduced in Section 6.1 with a comparison to the proposed method.

Hassanein et al. published a method for the calibration of a stereo camera pair and LiDAR sensor
in [12]. Their method required a well-textured calibration object and a pre-calibrated stereo setup.
They used Speeded Up Robust Features (SURF) [13] to reconstruct the scene in 3D and ICP [14] to
match point clouds of the LiDAR and the stereo reconstruction. The details of this algorithm are
discussed in Section 6.1.

Table 1 summarizes the strength and weaknesses of the above-mentioned methods.
The main contributions of the paper are as follows: a new LiDAR-camera calibration is introduced,

which uses ordinary cardboard boxes. It achieves high accuracy and can be used with multiple
sensors. A new Bundle Adjustment (BA)-based technique is introduced to reduce the overall error of
LiDAR-camera system calibration. The method is evaluated on both synthetic and real-world data,
competing against state-of-the-art techniques. Moreover, a technique is also presented for estimating
the car body border, as a 2D bounding box, with respect to the calibrated sensors.

This study is the extension of our previous paper [15]. The novelty here is the application of BA,
comparisons to other methods, the proof for the convergence of the proposed box fitting algorithm
and the 2D bounding box calculation.

Our work has limitations, of course: (i) It is an offline calibration approach; therefore, the change in
sensor setup during usage cannot be handled. In other words, if the calibration becomes inaccurate due
to, e.g., mechanical resonance, the whole calibration procedure has to be repeated; (ii) The calibration
needs a special setup that is not always available. However, the accuracy of the proposed calibration
algorithms outperforms the state-of-the-art rival techniques, as is shown in this paper.
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Table 1. This table summarizes the previous works for LiDAR and camera calibration. Their strengths and weaknesses are also included.

Automatic # of Observations Calibration Object Strength Weakness

Rodrigues et al. [1] no 6 planar with circular hole low noise ratio by texture no guarantee for convergence
Alismail et al. [4] yes 1 black planar circle automatic the center of the circle must be marked
Park et al. [7] no 3 white homogeneous, planar no additional LiDAR noise by texture estimated board edges
Gong et al. [8] no 2 arbitrary trihedron orthogonality of the object is not required much human intervention
Velas et al. [9] yes 1 planar with holes, white background automatic difficult calibration setup
Geiger et al. [11] yes 1 planar, chessboards only one shot is needed by sensors multiple chessboards are needed
Hassanein et al. [12] yes 1 well-textured trihedron automatic camera system must be pre-calibrated
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2. Calibration Outline

Offline calibration methods use one or more calibration objects that can be easily detected by
both the LiDAR sensor and the camera, as well. Planar calibration objects with a checkerboard
pattern [11] or other rich textures are very popular in the literature. A planar board can be easily
detected in spatial point clouds, and the pattern of the board is identifiable in the camera image.
An example of accurate plane detection can be seen in Section 7, where a technique is presented for 2D
bounding box calculation of a car. Using this technique, the accuracy of the bounding box is below
two centimeters. However, the texture patterns can cause heavy noise in the LiDAR point cloud,
especially the checkerboard pattern [7]. Moreover, all of these methods struggle with the fact that
the edges of the board cannot be precisely calculated in a LiDAR point cloud, only the plane itself.
The application of a low resolution LiDAR sensor, e.g., the Velodyne VLP-16, is even more challenging.
The proposed method is developed for both low and high resolution LiDAR devices; thus, we decided
to use a spatial object instead of a planar one.

Cardboard boxes can be found everywhere, and precise ones can be easily manufactured.
They have a well-defined shape; therefore, they are a great choice to calibrate cameras and LiDAR
device pairs. Their three perpendicular sides can be accurately detected in a LiDAR point cloud.
The intersections of the planar sides yield the edges of the box. Corners are precisely calculated,
giving the edges and the dimensions of the box. 3D→ 2D correspondences are also known, if the
projections of these corners are selected in the camera image. In this case, the camera-to-LiDAR
calibration is equivalent to the Perspective-n-Point (PnP) problem, which can be solved by several
efficient algorithms, e.g., Efficient PnP (EPnP) [16,17].

The calibration is carried out as follows. A cardboard box is placed in the field of view of the
LiDAR and camera sensors, in a way that the three perpendicular sides are visible from both of them.
The required inputs of the calibration are: (i) camera image(s); (ii) LiDAR point cloud(s) and (iii) length
of the box edges.

The proposed method needs only one image per camera and one point cloud per LiDAR sensor.
Other calibration methods need multiple observations of the same calibration object to archive the
desired accuracy, which makes the calibration procedure time-consuming. The required input of the
proposed one is as minimal as possible.

Figure 1 shows the outline of the calibration procedure. First, coordinates of the box corners
are extracted from the point cloud. The rough area of the calibration box needs to be cut manually;
however, this cut does not need to be precisely done. Here, the method can robustly find the planes
belonging to the calibration box and eliminate other objects falling into this area. After outlier filtering,
the intersections of the box planes are calculated. Finally, the corners are refined by an iterative method
containing rotations and translations of the fitted box model. The convergence of the iteration is
proven, as is discussed in the Appendix. The calibration can be applied to threecases:

1. Camera-LiDAR calibration: Projections of the box corners need to be selected in the camera image.
The spatial (LiDAR) and 2D (camera) point correspondences define a PnP problem, which can be
effectively solved by, e.g., the EPnP algorithm [16].

2. LiDAR-LiDAR calibration: The corners of the same calibration box need to be calculated in the
two point clouds, separately. Then, the extrinsic parameters can be found by point registration.

3. Car Body-LiDAR calibration: The last calibration step is to estimate the car body location with
respect to the sensors. This step is independent of the camera-LiDAR and LiDAR-LiDAR
calibrations. A single plane is required that can be placed at four different locations: to the
left and right side, in front of and behind the car. This step is essential for autonomous driving,
as car dimension determines the free space of the car in order to avoid collision.
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Figure 1. Outline of the calibration. Corners of the calibration box are extracted first from LiDAR point
cloud. Then, LiDAR-LiDAR or LiDAR-camera pairs are calibrated using corresponding points.

3. Estimation of Box Corners in the LiDAR Point Cloud

The accuracy of the algorithm depends mainly on the accurate calculation of the box corners in
the LiDAR point cloud. First, the planes of the box have to be found. It is assumed that three sides of
the box are seen both by the camera and the LiDAR sensor.

3.1. Finding the Planes of the Box

The rough area of the box needs to be distinguished from the other parts of the point cloud. If no
further information about the environment is given, this part is better done manually. One could use
retro-reflective material to cover the box and use the reflectivity information of the LiDAR sensors to
aid the automatic detection [18,19] of the box. However, our method does not need special materials.
As a consequence, the proposed calibration can be used with any type of LiDAR sensor, even if they
provide no reflectivity information at all.

After the rough area of the calibration box is cut, the planes of the box are determined. For this
purpose, sequential RANSAC [5] is recommended. Sequential RANSAC finds the dominant planes
one after the other, maximizing the number of inliers in each iteration, based on their Euclidean
distance from the corresponding plane. The threshold, applied for filtering inliers by RANSAC [5],
is equal to the measurement accuracy of the LiDAR device, that is 5 cm and 3 cm for the Velodyne
HDL-64 and Velodyne VLP-16, respectively. Energy minimization-based methods like PEARL [20]
or its improvements [21,22] tend to solve the multi-model fitting better than sequential RANSAC.
However, as the number of models cannot be specified, they usually find less than three planes in
many cases with sparse point clouds. Thus, we decided not to use them.

The left image of Figure 2 shows the result of the sequential RANSAC. Five planes have been
found in the rough area of the calibration box. The point cloud contains points from another object,
a chair, that partly occupies this area. Thus, the perpendicular property of the box is exploited to
determine the planes belonging to the calibration box. Three planes that are the most perpendicular to
each other are selected from the plane candidates that minimize the following error:

E(n1, n2, n3) = |n1
Tn2|+ |n1

Tn3|+ |n2
Tn3|, (1)

where nk is the normal of the k-th plane (k ∈ {1, 2, 3}). These normals are computed by Principal
Component Analysis (PCA): they are the eigenvectors corresponding to the least eigenvalue of
the covariance matrix of the planar point sets. The number of planes is usually low in this area;
thus, exhaustive search can be applied to find the planes belonging to the box. In the left image of
Figure 2, the red, green and yellow planes are selected as planes that belong to the calibration box.
Points of other planes are eliminated.
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Figure 2. The left image shows the result of the sequential RANSAC. Five different planes are found in
this case, each marked by different colors. In the right image, the result of the outlier filtering can be
seen. Green and red points indicate inliers and outliers.

3.2. Outlier Filtering

The LiDAR point cloud can be heavily affected by the intrinsic noise of the LiDAR sensor or
the material of the box. Thus, outlier filtering is needed to find and discard noisy points from the
point cloud.

RANSAC is used again to remove the outliers. The fitted model consists of three perpendicular
planes. Note that in Equation (1), the perpendicularity is not stated. The points are assigned to one
of the three planes from the previous step. Points that belong to different planes are denoted as Li,
where (i ∈ {1, 2, 3}). Their ordering does not matter.

The model fitting is as follows: (i) select three random points from L1; (ii) select two random
points from L2; and (iii) select a single random point from L3.

First, three points determine a plane in the point cloud. In the second step, two points are chosen
to determine the next plane that is perpendicular to the first one. In the final step, only one point
is required from L3. This point determines the last plane that is perpendicular to the first two ones.
Outliers are detected by the minimal Euclidean distance from the planes, using the same threshold as
before. An example output of this step can be seen in the right plot of Figure 2, where the green and
red points indicate inliers and outliers, respectively.

We remark that the denser point cloud from the Velodyne HDL-64 (equipped with an older sensor)
contains more noise, than the sparser one of the Velodyne VLP-16. Outlier filtering becomes even more
important for the former sensor, since the next refinement step is based on linear regression.

3.3. Iterative Box Refinement

The last step of the algorithm refines the box corners to the filtered point cloud. The outliers are
eliminated in the previous step; therefore, the point cloud contains only inlier points. Thus, a least-
squares-based refinement can be applied. The cost function contains the sum of all point-plane
distances, defined as follows:

C =
3

∑
i=1

mi

∑
j=1

∣∣∣∣(pi
j − qi

)T
ni
∣∣∣∣2 , (2)

where p1
j , j ∈ {1, 2, ..., m1}, p2

j , j ∈ {1, 2, ..., m2} and p3
j , j ∈ {1, 2, ..., m3} denote the points in L1, L2 and

L3, respectively. qi denotes a point lying on the i-th plane, which does not need to be in the set pi
j,

and ni are the normals of the planes.
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The refinement contains two steps that are repeated one after the other, until convergence. The first
step is the rotation of planes. In this step, a plane pair is rotated around their line of intersection to get
the best fit in a least squares manner. In the second step, the planes are translated strictly along their
normal vector. These steps preserve the orthogonality of the planes.

3.3.1. Rotation Step

In the rotation step, two planes are chosen and rotated around their line of intersection. The aim
of the rotation is to minimize the squared Euclidean distance of the planes from their corresponding
points. Let the axis Z be the intersection of the two planes to be rotated. Then, the rotation matrix is
as follows:

RT
Z =

 c −s 0
s c 0
0 0 1

 , (3)

where c = cos γ and s = sin γ.
Without loss of generality, it can be assumed that the points qi represent the single point of

intersection of the three planes. The origin of the 3D coordinate system can be selected as that point;
thus q1 = q2 = q3 = 0, and the normal of the three planes is [1 0 0]T, [0 1 0]T and [0 0 1]T.
The rotation does not influence the fitting error of the third plane; therefore, the minimization
problem becomes:

CRot = ∑
i=1,2

mi

∑
j=1

∣∣∣∣∣∣∣∣

 c −s 0

s c 0
0 0 1

 pi
j


T

ni

∣∣∣∣∣∣∣∣
2

. (4)

After elementary modifications, the optimization problem represented by the above cost is
transformed to the minimization of |Ax| subject to xTx = 1, where:

A =



x1
1 −y1

1
...

...
x1

m1
−y1

m1

y2
1 x2

1
...

...
y2

m2
x2

m2


, x =

[
c
s

]
. (5)

The optimal angle of rotation is obtained as the eigenvector of matrix ATA corresponding to the
smaller eigenvalue (matrix ATA always has two non-negative real eigenvalues). The angle is then
calculated as γ = atan2(s, c). The rotation step is repeated for each pair of planes. This closed-form
solution can be similarly obtained for the remaining axes X and Y.

3.3.2. Translation Step

After their rotation, the planes are translated strictly along their normal vectors. The aim of
the translation is the same as that of the rotation, to obtain the best fit in a least squares manner.
The translation of the planes can be expressed as a single vector t of three components. In this case,
the cost function is as follows:

CTrans =
3

∑
i=1

mi

∑
j=1

∣∣∣∣(pi
j − t

)T
ni
∣∣∣∣2 , (6)

where t is the optimal translation vector.
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This problem can be written as a homogeneous system of linear equations as Bt = c as follows:

B =



n1T

...
n1T

n2T

...
n2T

n3T

...
n3T



, c =



n1Tp1
1

...
n1Tp1

m1

n2Tp2
1

...
n2Tp2

m2

n3Tp3
1

...
n3Tp3

m3



, (7)

where the row vector njT denotes the transpose of column vector nj. Each term of the cost function gives
a line of the equation to the system. The solution is given by the well-known formula t =

(
BTB

)−1 BTc.
As the vectors n1, n2 and n3 are perpendicular to each other, matrix B is always non-singular;
thus, the matrix inversion can be calculated.

3.4. Convergence

The proof of convergence of the iterative refinement can be found in Appendix A. For the
initial parameters, we recommend using the parameters of the planes from the outlier filtering step,
described in Section 3.2. With these parameters, the algorithm needs usually no more than 20–30 steps
until convergence. However, according to our experience, the refinement always converged to the
correct minimum, with no initialization.

Figure 3 shows examples of point clouds of boxes. Their calculated corners are represented
by different colors. Note that the algorithm can robustly find the box planes and corners. Boxes
with different dimensions are tested in various scenarios, where other object jointly occupy the
selected neighborhood.

Figure 3. Examples of box corners found in different point clouds. The colored points indicate the
calculated box corners, after the refinement.
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4. Getting the Extrinsic Parameters

In the previous section, the calculation of the box corners in a 3D LiDAR point cloud is described.
In the following, the extrinsic calibration of devices is divided into two categories. First, the extrinsic
calibration of LiDAR-camera pair, then that of a LiDAR-LiDAR pair are described.

4.1. LiDAR-Camera Calibration

In the case of the LiDAR and camera calibration, the projections of the 3D corners need to be
selected on the camera images. The selected corners are further refined by a corner detector, i.e., the
Harris corner detector [23]. The given 3D-2D point correspondences define a PnP problem, which is
effectively solved by EPnP [16]. PnP needs at least four correspondences; however, the corners of
the calibration box define seven. Thus, it is an over-determined problem even for the case of a single
calibration box.

4.2. LiDAR-LiDAR Calibration

Suppose that a LiDAR pair is given by their corresponding point clouds. The corners of the
calibration box can be found in the two point clouds separately. Then, the extrinsic parameters can be
obtained by point registration.

5. LiDAR-Camera System Calibration

In the case of multiple LiDAR and camera sensors, a minimization step can be applied,
which simultaneously minimizes the overall error of cameras and LiDARs. The proposed method
optimizes the parameters of the spatial box(es), as well. The minimization is achieved by two successive
steps of numerical refinements of two cost functions: one describing the 3D-to-3D discrepancy of the
LiDAR calibration and a re-projection error for the cameras.

The coordinate system of an arbitrarily-selected LiDAR device is set as the reference (origin) of
the system; the poses of other cameras (RC

i , tC
i ), LiDARs (RL

j , tL
j ) and boxes (RB

k , tB
K) are defined w.r.t. it,

where indices i, j and k denote the i-th camera, j-th LiDAR and k-th box. The rotation matrix (R) and
translation vector (t) define the rigid reference to local coordinate system transformations. The cost
functions for a LiDAR-camera pair are as follows:

costL
k,j (P, n) =

∣∣∣∣(RB
k RLT

j

(
P− tL

j

)
+ tB

k

)T
n
∣∣∣∣2 , (8)

costC
k,i (Q, q) =

∥∥∥πi

(
RC

i RBT

k

(
Q− tB

k

)
+ tC

i

)
− q

∥∥∥2

2
, (9)

where the parameter P is a spatial point in the j-th LiDAR point cloud, n is a normal vector of the k-th
observed box. Q and q are the spatial corner point of the k-th observed box and the related re-projected
coordinate in the i-th camera image, respectively. πi is the projection function of the i camera.

In the case of Equation (8), point P of the j-th LiDAR point cloud is transformed to world
coordinates using the inverse of the LiDAR pose (RL

j , tL
j −→ RLT

j ,−RLT

j tL
j ). Then, world coordinates

are easily projected to local coordinates of the k-th box using (RB
k , tB

K). Having the 3D point measured
by the LiDAR now in the local system of the box, the distance w.r.t. the three main planes is computed
using the scalar product with the three respective normals, as was introduced before in Equation (2).

In Equation (9), a virtual corner Q of the k-th box is mapped to world coordinates using the
inverse of (RB

k , tB
K). In the next step, the point goes through a world-to-image plane transformation by

first applying world-to-camera transformation (RC
i , tC

i ), then projecting it to the i-th image plane by
projection function πi. The computed cost is the squared norm of the difference between the measured
point q and the projected one.
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The parameters of the the devices, cameras and LiDAR and those of the spatial box(es) are loosely
connected; therefore, the Jacobian of the cost function is sparse. In such cases, the BA-paradigm [24]
can be applied.

The inputs of this step are (i) the LiDAR point clouds, each point labeled by which box and which
face it belongs to; and (ii) the 3D→ 2D correspondences between box corners and image points.

In the first pass of the optimization, the LiDAR and box poses are refined numerically: the distance
of the LiDAR point cloud to the boxes, represented by three perpendicular planes, is minimized.
The minimization is simultaneously carried out in a BA-like manner, refining all LiDAR and
box parameters:

min ∑
(k,j,Xm)∈ObsL

costL
k,j (X

m, nm) , (10)

where ObsL is the set of observations through the LiDARs. Its elements (k, j, Xm) ∈ ObsL denote point
Xm of the m ∈ 1, 2, 3-th side of the k-th cube seen by the j-th LiDAR. Note that we applied the Huber
loss for this case, assuming a noise of 10 cm in case the labeling of the point cloud is not perfect and
contains outliers.

The second pass uses the refined and now fixed boxes to refine only the camera poses, based on
the following compound cost:

min ∑
(k,i,Q,q)∈ObsC

costC
k,j (Q, q) , (11)

where ObsC is the set of 3D-to-2D correspondences between cube corners and camera images.
An element of this set (k, i, Q, q) ∈ ObsC denotes a corner Q of cube k observed as image point
q on the i-th camera.

In the literature, the calibration objects and cameras are usually jointly calibrated and refined [11]
in advance of the LiDAR-calibration, to achieve high quality camera and calibration object poses.
However, it is essential for such an approach to use multiple cameras, with overlapping fields of view,
and/or numerous calibration objects.

The effect of this minimization step on the overall error can be seen in Table 2. It is seen that
our BA-like method can significantly reduce the overall calibration cost. The synthetic testing scene
consists of two cameras and two LiDARs. Additionally, Gaussian noise is added to the synthetic
LiDAR point cloud with 0.04 standard deviation. The real-world test is done using a Velodyne HDL-64,
two Velodyne VLP-16 sensors and two RGB cameras.

Table 2. The table shows the root mean square errors of the cameras and LiDARs before and after
the Bundle Adjustment (BA)-like technique defined in Section 5. The errors are measured in pixels
and meters for the cameras and LiDARs, respectively. The synthetic testing scene consist of two
cameras and two LiDARs. The real-world test is done with a Velodyne HDL-64, two Velodyne VLP-16
and two cameras. Additionally Gaussian noise is added to the synthetic LiDAR point cloud with
0.04 standard deviation.

Before BA After BA

Camera LiDAR Camera LiDAR

Synthetic 4.231 px 0.02231 m 2.152 px 0.02001 m
Real-world 2.892 px 0.03515 m 0.963 px 0.01036 m

6. Tests

The proposed method is tested both on synthetic and real-world data. The synthetic testing is
done by simulating a real-world calibration scenario. The synthetic calibration enables us to compare
the calibration methods quantitatively. Real-world calibration is done by low and high resolution
LiDAR devices and BlackFly cameras with different optics.
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6.1. Synthetic Tests

In the synthetic comparison of the algorithms, only a camera and LiDAR pair is considered for
calibration; the optimization described in Section 5 is not used. The advantage of these tests is that
the exact transformation between the camera and the LiDAR is known; thus, the methods can be
compared quantitatively.

For the synthetic tests, the Blender 3D modeling program is used with the Blensor [25] LiDAR
simulation package. Blensor is capable of simulating different kinds of LiDAR devices; even their
properties can be individually changed.

The synthetic test is done with three different state-of-the-art methods, which are as follows:

1. the KITTI calibration toolbox (denoted as KITTI),
2. the calibration method by Park et al. (denoted as polygonal),
3. the automatic calibration by Hassanein et al. (denoted as multi-camera),
4. and the proposed method (denoted as proposed).

The KITTI Calibration Toolbox (http://www.cvlibs.net/software/calibration/) published by
Geiger at al. [11] needs several calibration boards printed with chessboard patterns. The scene has to
be observed from at least two camera views and a LiDAR sensor. Multiple chessboards are detected
and matched between the images, and the chessboard corners are reconstructed using stereo vision.
Then, planes are fitted to the reconstructed and LiDAR point cloud, as well. Finally, these planes are
matched. This last step can result in some false calibration results in our scenes; however, it is made
more robust by selecting the best scenario with the lowest error.

The rival method, denoted as polygonal was introduced by Park et al. [7]. This calibration uses
polygonal (triangle or diamond) white boards for the calibration. The method overcomes the problem
of estimating the exact edges of the calibration board by virtual points, which are located between two
consecutive LiDAR points, where one is inside and the other is outside the board. From the edges,
the corners of the board are calculated, then image points are selected manually, which are then refined
by the FAST [26] feature detector. Finally, point correspondences are used for the calibration. In the
test, the method shows good results after using four observations of a diamond-shaped board.

Hassanein et al. [12] described a new automatic calibration method based on stereo reconstruction
and ICP [14]. Two cameras and a well-textured object are needed for the procedure. The camera system
needs to be calibrated a priori; thus, a sparse point cloud can be reconstructed from SURF [13] features.
Then, this point cloud is registered to that of the LiDAR sensor by ICP [14]. This method is labeled as
multi-camera in the synthetic tests. In the test, the ground truth (GT) locations of the sensors are used
as the initial parameters for the ICP. Moreover, outlier filtering is done for the matched SURF features
using homography fitting. The latter step is needed, otherwise the point cloud reconstructed from
camera images contains too many outliers; thus, the result of the ICP is not satisfactory. It must be
noted that the authors suggest to use the roughly-estimated manual measurements of the calibration as
initial parameters. However, these measurements cannot be made in some cases, e.g., when the LiDARs
and cameras are mounted on different positions of a car. Moreover, a camera system calibration is
required before the LiDAR-camera system calibration, which takes more time to calibrate, and it could
not be done easily for cameras with no shared field of vision.

Table 3 shows the virtual scenes of the calibration methods. The camera images and LiDAR point
clouds are also visualized. The point clouds are acquired by Gaussian noise with a standard deviation
of 0.02 m. Note that the box of the proposed algorithm is colorized only for better visualization.

The methods are tested against different levels of Gaussian noise, which affects the LiDAR sensor.
The noise is added to the distance measured from the sensor; thus, the noisy points are located on
the rays cast by the range sensor. The standard deviation and mean values of the Gaussian noise are
independently changed. In the first case, the zero-mean Gaussian noise has different levels of the
standard deviation between zero and 0.14 m. In the second case, the mean of the Gaussian noise is
varied between zero and 0.08 m with a fixed standard deviation of 0.02 m. This latter type of error

http://www.cvlibs.net/software/calibration/
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can be interpreted as systematic noise: point clouds are shifted away from the LiDAR sensor. Figure 4
shows an example of a noise-free (left) and a noisy (right) point cloud of the same scene. The point
clouds in the synthetic tests are obtained by simulating a Velodyne-64 sensor.

Table 3. Virtual calibration scenes used for the synthetic tests. Plots from left to right: (i) the 3D
scene inside Blensor; (ii) a camera image and (iii) the LiDAR point cloud contaminated by zero-mean
Gaussian noise with a 0.02 standard deviation.

Method 3D Scene Camera LiDAR

KITTI

Polygonal

Multi-camera

Proposed

The extrinsic parameters of the tested calibrations are compared with the GT. The parameters
consist of a rotation matrix and a translation vector, which represent the transformation between
the cameras and the LiDAR. The error of the rotation matrix is compared against the GT using the
following formula [27]:

α = cos−1
((

trace
(

RT
GTR

)
− 1
)

/2
)

, (12)

where RGT is the GT rotation matrix, retrieved from Blensor data, and R is the rotation matrix obtained
by the tested algorithm. We have compared several error metrics, and the characteristics of those were
the same. The error of the translation vector is computed as the Euclidean distance between that and
the GT vector.
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Figure 4. The point cloud of the KITTI virtual calibration scene. Left plot: the virtual Velodyne HDL-64
does not contain noise. Right plot: Gaussian noise added with zero mean and a 0.14 standard deviation.

The results of the synthetic test can be seen in Figure 5. In the top row, the translation and angular
errors for the tested methods can be seen w.r.t. a zero-mean Gaussian error with a varying standard
deviation. The proposed method (red) slightly outperforms the rival methods. The translation error is
lower than the rival methods in all cases. The angular error of the polygonal and the proposed one is
almost identical, and they perform better than KITTI and multi-camera. This error does not exceed 1.5◦

even in the presence of noisy point clouds. In the bottom row of Figure 5, the methods are tested against
the varying mean value of the Gaussian noise with a fixed 0.02 standard deviation. The translation
errors for the KITTI and the proposed calibration techniques are the lowest. However, the angular error
of the former one increases almost linearly w.r.t. the mean value. The angular error of the proposed
technique does not exceed 0.6◦ even in the case of a 0.08-m mean-valued Gaussian error.

Figure 5. The translation (left) and rotation (right) errors in the synthetic tests. Top row: the 3D noise
level is measured by varying Gaussian standard deviation with zero mean value. Bottom row: varying
mean value and a 0.02 standard deviation.
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6.2. Real-World Tests

Testing these algorithms quantitatively in the real world is challenging, because of the lack of
known GT transformation. Thus, we choose to re-project some part of the LiDAR point cloud to
the image, using the extrinsic parameters of the sensors. If the calibration contains error, then the
re-projections of the object will not cover their corresponding pixel locations; thus, the projections are
shifted. In the test, a Velodyne VLP-16 LiDAR sensor and two BlackFly (Model BFLY-PGE-13S2C-CS)
cameras are applied. The LiDAR sensor detects usually 30,000 points per frame, and the resolution of
the camera image is 1288× 964 pixels.

The real-world test is carried out as follows. First, two cameras and the LiDAR sensor are fixed
on a trunk; therefore, they could not be moved. The calibration scenes for the tested algorithms can be
seen in the top row of Figure 6. They are similar to the virtual scenes described in the previous section.
The polygonal and KITTI calibrations use boards for the calibration, while the multi-camera and the
proposed one use a single box. Note, that the KITTI and the multi-camera methods need two camera
images, while the polygonal and the proposed ones need only one for the calibration.

For the KITTI and multi-camera methods, some additional steps need to be done, otherwise the
methods fail. For the KITTI calibration, a chessboard is removed from the scene, because it is unable
to make correspondences between the five chessboards in the camera images; thus, only four are
used. The test is carried out in a room, where many planar objects can be found in the point cloud.
The KITTI method is unable to pair the planes coming from the reconstructed point cloud from the
cameras and the corresponding planes detected from the LiDAR point cloud. This problem is solved
by removing points from the LIDAR point cloud, which are not a part of the chessboards. For the
multi-camera method, the pre-calibration of the camera system is done by chessboards, using the
widely-used method introduced by Zhang [28]. However, the number of SURF features extracted
from the textured box is low, even though it is placed in front of the cameras; see, e.g., the third
image of the top row in Figure 6. Thus, three homographies between the box sides are calculated
by manually selecting the corners of the box in the images. Then, the point cloud is reconstructed
using the SURF features located on the box in the first image via three estimated homographies
corresponding to the box sides. These changes make the automatic approaches semi-automatic,
but they are needed, otherwise the methods yield unacceptable results. The polygonal and proposed
methods work flawlessly in these tests.

After the calibration, the LiDAR points of the foreground objects in the KITTI testing scene
are re-projected to the camera image. This point cloud is visualized in the second row of Figure 6.
It contains the points of the chairs and chessboards; see the second image of the first row of Figure 6,
marked as KITTI. The re-projection is done using the extrinsic parameters of the calibration method,
while the intrinsic parameters of the camera are obtained by the calibration of the camera system.
In the bottom two rows of Figure 6, the green points mark the re-projected ones. The low quality of a
calibration can be recognized if the points are shifted in the image, from the objects they represent in
the LiDAR point cloud. If the points in the LiDAR point cloud are re-projected to the correct object
locations, then the calibration performs better. In the case of the polygonal and multi-camera methods,
the re-projected points of the chessboards are obviously shifted, and this indicates lower quality
extrinsic parameters. For the KITTI and proposed methods, the points cover their corresponding
object, and this means that these methods perform better. However, note the difference between these
two methods by observing the re-projections of the left and right chessboards. The green objects fall
off the chessboards for the KITTI calibration, while they cover their corresponding locations using the
proposed one. This indicates that our calibration performs better.

Figure 7 shows the result of LiDAR-LiDAR calibration. In this case, two low-resolution point
cloud are taken by Velodyne VLP-16 sensors. The point cloud fusions of the first column use no
calibration parameters, while the second ones use the extrinsic parameters of the proposed method.
Figure 7 shows a point cloud fusion from three LiDARs, a Velodyne HDL-64 and two Velodyne VLP-16.
The points from the former LiDAR are colored in red, while that of the latter devices in green and blue
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colors. The first column of the top rows shows the LiDAR point cloud fusion using no calibration,
while in the second column, the parameters of the proposed method are used. The point cloud is
colored by projecting the cloud to the camera image using the extrinsic parameters of the calibration
and the intrinsic parameters of the camera.

Polygonal KITTI Multi-camera Proposed

Point cloud from the KITTI calibration scene

Polygonal KITTI

Multi-camera Proposed

Figure 6. The calibration scenes and re-projections of the methods in the real-world tests. First row:
the camera image of the calibration scenes. Second row: the LiDAR point cloud of the foreground objects
in the KITTI calibration scene. Bottom row: The re-projections of the previous LiDAR points to the images.
The magnified area of the chessboards are shown at the top of the images with the same colors.
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Figure 7. Point cloud fusion of two Velodyne VLP-16 LiDARs. The point clouds are colored in
red and green, for the first and second sensors, respectively. First Column: without calibration;
Second Column: with calibration.

Figure 8. Cont.
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Figure 7. Point cloud fusion of three LiDAR devices, colored by the left camera placed of the top of
a car. The LiDAR points from Velodyne HDL-64 and two VLP-16 are colored in red, green and blue
points, respectively. The first column of the top rows shows the fusion with no calibration, while
the second column shows with calibration. The first image in the third row shows the camera image,
and the others are taken from the colored point cloud fusion from the bird’s eye view, the viewpoint
of the camera and the Velodyne HDL-64 LiDAR. The occlusion caused by different LiDAR views
was not considered during the point cloud coloring process. White points are located outside of the
camera view.

7. Calibration of Car Dimensions

It is important to know the size and location/orientation of the car body with respect to the sensor
position(s) in the case of autonomous driving. In this scenario, we are interested in a 2D bounding
box from a bird’s eye view of the car. For this purpose, a board was used as the calibration object,
which was held in parallel with the four sides of the car. The plane of the board was vertical for the
sake of simplicity. We show here how the dimensions of a Toyota Prius are calibrated.

However, the Velodyne HDL-64 cannot detect points that are too close to the instrument.
Objects that are closer than 1.2–1.5 m are invisible in the point cloud. This is not a problem for
measuring the front and back of a Toyota Prius, but it is in case of the sides. During the measurement
of the front and near sides, the board was held as near as possible to the car. In the measurement of
the left and right sides, the board was moved approximately one meter away, but keeping it aligned.
The distance was accurately measured.

The black point clouds in Figure 8 indicate the acquired LiDAR points of the four different
positions of the board.

After the measurement, the planes are calculated using RANSAC [5], and the detection error of the
Velodyne LiDAR is set as a threshold. Then, the intersections of the planes are calculated, and finally,
the bounding box is acquired by intersecting the lines with the Z = −0.5 plane. In Figure 8, the green
lines mark the intersections of the detected planes, and the calculated bounding box is visualized by
red lines.

The size of a Toyota Prius is 4.540 m × 1.760 m according to the official car specification sheet.
The dimension of the calculated bounding box is 4.556 m × 1.751 m. Therefore, the error of the bounding
box is below two centimeters, which is satisfactory for autonomous driving.
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Figure 8. Calibration of the car’s bounding box. The black points are measured by a LiDAR device,
and the green and red lines indicate the intersection of the detected planes and the bounding box of the
car, respectively.

8. Conclusions

A novel camera-LiDAR calibration approach is proposed here. It consists of three method:
a camera-LiDAR, a LiDAR-LiDAR calibration and a car body size estimation. The camera-LiDAR and
LiDAR-LiDAR calibration algorithm use ordinary (cardboard) boxes due to two reasons: (i) the box
corners can be determined both in camera images and spatial point clouds; in the latter case, they are
the intersections of the box sides; (ii) no special calibration objects are required.

The camera-LiDAR calibration is straightforwardly solved by EPnP algorithm. The most
challenging part of the calibration approach is the box detection in LiDAR point clouds. A novel
iterative fitting algorithm is introduced here, and its convergence is proven. For multiple sensors,
a BA-like minimization technique is introduced in order to refine all the camera and LiDAR parameters.

Finally, a novel technique for 2D bounding box calculation of a car is also presented, based on the
fitting of planes in the four principal directions. The dimensions and locations of the car body can be
accurately estimated, as well.
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Appendix A. Convergence of Iterative Box Fitting

It is shown in this section that the iterative refinement method defined in Section 3.3 converges
to the closest minimum. As the robust detection selects a good initial value for the parameters, it is
probable that the global optimum can be reached. Thus, the initial parameters of the planes do not
matter; however, for the sake of low iteration steps, we recommend using the plane parameters from
the previous step, the outlier filtering introduced in Section 3.2.
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Let us define the least squares cost function as follows:

C =
3

∑
i=1

mi

∑
j=1

∣∣∣∣(pi
j − c

)T
ni
∣∣∣∣2 , (A1)

where p1
j1

, j1 ∈ {1, 2, ..., m1}, p2
j2

, j2 ∈ {1, 2, ..., m2} and p3
j3

, j3 ∈ {1, 2, ..., m3} denote the points in L1, L2

and L3, respectively. c denotes the point of intersection of the three planes, and ni are the unit-length
normals of the planes. The iterative fitting consists of two steps, a rotation plus a translation.

Rotation: The first step of the iteration is the rotation. This will select two out of three planes and rotate
them along their intersection line. For the sake of simplicity, let us assume that the coordinate system is
aligned with the intersections of the planes, and the intersection of the planes that will be rotated is the
Z axis. The rotation matrix around the axis Z was already defined in Equation (3). In this Appendix,
we show the effect of the rotation around axis Z on the cost function. The proof is straightforward for
the other two rotations around axes X and Y.

The cost function to minimize is as follows:

CRot =
3

∑
i=1

mi

∑
j=1

∣∣∣∣(RT
Zpi

j − c
)T

ni
∣∣∣∣2 , (A2)

where the center of intersection is the origin and is zero c = [0, 0, 0]T and the normals (ni) are [1, 0, 0]T,
[0, 1, 0]T, [0, 0, 1]T, respectively. The cost function can be modified as:

CRot =
m1

∑
j=1

∣∣∣p1
j

T
RZ [1, 0, 0]T

∣∣∣2 + m2

∑
j=1

∣∣∣p2
j

T
RZ [0, 1, 0]T

∣∣∣2 + m3

∑
j=1

∣∣∣p3
j

T
RZ [0, 0, 1]T

∣∣∣2 . (A3)

Note, that the rotation RZ does not affect the cost of the third plane:

CRot =
m1

∑
j=1

∣∣∣p1
j

T
RZ [1, 0, 0]T

∣∣∣2 + m2

∑
j=1

∣∣∣p2
j

T
RZ [0, 1, 0]T

∣∣∣2 + m3

∑
j=1

∣∣∣z3
j

∣∣∣2 , (A4)

where z3
j denotes the z coordinate of a point p3

j . Since the rotation angle (γ) can be obtained as
described in Section 3.3, Equation (A4) is minimized using RZ; thus, C is minimized as well.

Translation: As the error vector is linear with respect to the translation error t as is written in
Equation (7), it can be optimally solved in the least-squares step.

Convergence: As both the rotation and translation steps decrease the same norm in the least squares
sense, the non-negative error cannot be increased within the iteration, and the algorithm can reach the
infinitely close local minimum.
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