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Abstract: Cognitive Radio (CR) is a promising technology to overcome spectrum scarcity,
which currently faces lots of unsolved problems. One of the critical challenges for setting up such
systems is how to coordinate multiple protocol layers such as routing and spectrum access in
a partially observable environment. In this paper, a deep reinforcement learning approach is
adopted for solving above problem. Firstly, for the purpose of compressing huge action space
in the cross-layer design problem, a novel concept named responsibility rating is introduced to
help decide the transmission power of every Secondary User (SU). In order to deal with problem
of dimension curse while reducing replay memory, the Prioritized Memories Deep Q-Network
(PM-DQN) is proposed. Furthermore, PM-DQN is applied to solve the joint routing and resource
allocation problem in cognitive radio ad hoc network for minimizing the transmission delay and
power consumption. Simulation results illustrates that our proposed algorithm can reduce the
end-to-end delay, packet loss ratio and estimation error while achieving higher energy efficiency
compared with traditional algorithm.

Keywords: cognitive radio; joint routing and resource allocation; responsibility rating; Prioritized
Memories Deep Q-Network

1. Introduction

With the explosion of wireless communication devices, the spectrum resource has become scarce
and crowded. The fixed spectrum allocation policy has resulted in vastly underutilized spectrum
holes, which causes the contradiction between the spectrum scarcity and the inefficiency in its usage.
Efficient exploitation of the spectrum necessitates Dynamic Spectrum Access (DSA) paradigm. DSA is
a supplement and improvement of the existing policy and it can bridge the enormous gulf in time and
space between the regulation and the potential spectrum efficiency [1]. CR is a promising technique
that adopts DSA paradigm to enhance spectrum utilization, and it allows secondary users (SUs) to
access the licensed frequency bands opportunistically in a dynamic and non-interfering manner.

Recently, the research community has aroused interests in Cognitive Radio Networks (CRN) with
multi-hop communication requirements (i.e., cognitive radio ad hoc networks and cognitive wireless
mesh networks) [2–4]. However, one of the critical challenges for operating such systems is how to
coordinate the behavior of the upper layer like routing with MAC or physical layer such as spectrum
access and power allocation in an incompletely observable and non-stationary environment [5,6].
The location independence in a multi-hop path results in that the available spectrum bands may
different at each relay nodes [7]. Moreover, the unavailable channel statistics and unreliable knowledge
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of topology make it extremely challenging to design an efficient and robust spectrum-aware routing
strategy in CRN.

Traditional schemes used to formulate the joint routing and resource allocation problem as an
optimization problem, and then to relax it into a distributed one with heuristic solutions for lower
computation complexity. An opportunistic cognitive routing protocol was proposed in [8]. A metric
named cognitive transport throughput was introduced to evaluate the potential relay gain and a
heuristic algorithm was designed to reduce the searching space. The resource allocation problem
in cellular networks is studied by jointly employing CR technology and Device-to-Device (D2D)
communication in [9]. A two-stage approach is considered to allocate the radio resources efficiently,
which consists of an adaptive subcarrier allocation scheme and a novel power allocation scheme.
In [10], the system was analyzed from a queuing theory perspective and the cross layer design was
formulated as a non-linear integer programming problem. Then a distributed solution was developed
based on Lagrangian dual problem. A Routing and Spectrum Allocation (ROSA) algorithm was
proposed in [7]. ROSA aimed at maximizing the network throughput without generating harmful
interference to the primary users (PUs). The author in [11] presented a formulation of the routing and
resource allocation problem with mutual information accumulation. An efficient distributed algorithm
was introduced which can minimize end-to-end delay. Traditional schemes attempt to find a fixed
path from source to destination [12]. Nevertheless, one of the main weaknesses is that they need priori
information such as channel statistics and knowledge of topology which is unavailable in partially
observable environment. In addition, fixed routing strategies may fail to address the uncertainties
resulted from the dynamic and unpredictable nature of the radio spectrum.

Various learning-based methods have been proposed to adapt the high fluctuation of channel
availability in CRN. The author in [13] proposed a distributed Learning Automata for spectrum
management problem without any priori information about PUs and other SUs. In [14], a distributed
Inter-Cell Interference Coordination (ICIC) accelerated Q-learning algorithm was proposed for robust
cognitive spectrum management in LTE cellular systems using the framework of heuristically
accelerated reinforcement learning. References [13,14] adopted machine learning approaches to
overcome the uncertainty of radio spectrum, but they did not take account routing in multi-hop
networks. In [15], the author skillfully combined routing with Q-learning and proposed the Cognitive
Radio Q-routing scheme which found least-cost routes as well as its operating channel. The algorithm
described in [16] solved the routing problem in CRN with the help of a clustering mechanism
reinforcement learning to enhance networks scalability and stability. An online opportunistic routing
algorithm in [17] adopted multi-agent reinforcement learning which jointly addressed link and relay
selection. Summarizing, the works that adapt Q-learning can only solve the routing problem with limit
number of nodes because large network scale will result in the curse of dimensionality. Furthermore,
these works solved the joint routing and spectrum access problem without considering transmit power
allocation of each nodes, which had effect on energy efficiency and next relay selection. It is believed
that transmit power control has to be taken into consideration in order to minimize transmission delay
while guaranteeing the energy efficiency.

In this paper, the joint routing and resource allocation problem for cognitive radio ad hoc networks
is studied. A variant Deep Q-learning named PM-DQN is adopted to minimize the end-to-end
delay of SUs while guaranteeing the energy efficiency and reducing the communication overhead.
Our characteristic work can be summarized as follows:

(i) To the best of our knowledge, this is the first work that adopts deep reinforcement learning
to solve the routing and resource allocation problem in the multi-hop CRN. It is accepted
that deep reinforcement learning can successfully deal with problems with large state space.
That is, our method is capable of addressing problems of large-scale networks, which has great
advantages compared with the previous work that may hard to converge in the same case.

(ii) In order to guarantee the energy efficiency and control harmful interference to PUs, transmission
power allocation is taken into consideration. A novel metric named responsibility rating is
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introduced, which indicates how much effort SUs should make currently to be responsible for
the quality-of-service. The responsibility rating is adopted to help decide the transmission power
of every SU node.

(iii) Deep Q-Network uses experience replay to break the strong correlations between samples.
However, maintaining large replay memories will increase the overhead and memory occupancy
in the communication process. PM-DQN is proposed to reduce replay memory while
guaranteeing the system performance. By erasing the inessential transitions, the total memory
size can be reduced, i.e., the communication overhead will be lower. In addition, redundancy is
also reduced so that learning performance will be enhanced.

(iv) PM-DQN is applied to the routing and resource allocation problem to minimize the transmission
delay while guaranteeing the power efficiency. Simulation results illustrates that the proposed
scheme outperforms the traditional algorithm in terms of end-to-end delay, power efficiency,
packet loss ratio and estimation error.

The mainframe of this paper is organized as follows: the background of reinforcement
learning is introduced briefly in Section 2. The system model is described in Section 3. Section 4
introduces responsibility rating and models the routing problem as a Markov Decision Process (MDP).
The PM-DQN based joint routing and resource allocation scheme is proposed in Section 5. Section 6
shows the simulation results and Section 7 concludes the paper.

2. Background on Reinforcement Learning

For the convenience of the reader, in this section, a brief introduction of reinforcement learning
and Deep Q-Network (DQN) is given. This section is far from being an exhaustive survey, and its
objective is just to provide the reader with basic information to understand the succeeding sections.

2.1. Reinforcement Learning

Learning can be broadly categorized as supervised, unsupervised and reinforcement learning.
Reinforcement learning (RL) is a model-free strategy learning process which aims at learning to act
appropriately by interacting with the environment only through trial and error [18]. In general, the RL
problem is typically formulated as a finite-state MDP which comprises a discrete state space S and
a discrete action space A. Time is represented by a sequence of time steps t = 0, 1, . . .. At each time
step t, the controller observes the system’s current state st = s ∈ S and selects an action at = a ∈ A to
execute. After the action is performed, the state of system transits to a new state st+1 = s′ ∈ S with the
state transition probability Pss′(a). As a result, the environment generates a reward rt = r(st, a) ∈ R
passing to the agent. To understand it better, a graphic representation is shown in Figure 1.
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Figure 1. Learning-environment interaction.

RL approach attempts to find a policy that maximizes the total expected discounted reward over
infinite steps. The objective of the agent is then to learn an optimal policy π∗(s) for each state s, in this
case, there exits an optimal deterministic stationary policy [19].
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The value function of state s is defined as the expected infinite discounted sum of rewards that
the agent gains if it stars in that state:

Vπ(s) = E

[
∞

∑
t=0

γr(st, π(st))|s0 = s

]
(1)

where s0 is the initial state, γ ∈ [0, 1) is the discount factor. According to the principle of Bellman’s
expectation equation, we can rewrite (1) as:

Vπ(s) = E[r(s, π(s))] + γ ∑
s′∈S

Pss′(π(s))Vπ(s′)

It has been proven that the optimal policy satisfies the Bellman’s optimality equation:

V∗(s) = max
a∈A

{
E[r(s, a)] + γ ∑

s′∈S
Pss′(a)V∗(s′)

}
(2)

The optimal action-value function is defined as the right-hand side of (3):

Q∗(s, a) = Qπ∗(s, a) = E[r(s, a)] + γ ∑
s′∈S

Pss′(a)V∗(s′) (3)

Given the optimal action-value function, we can specify the optimal policy as:

π∗(s) = argmax
a

Q∗(s, a) (4)

2.2. Deep Q-Network

The basic idea of many reinforcement learning algorithms is to estimate the action-value
function and choose the state-action pair with the highest Q-value greedily by maintaining a Q-table.
Nevertheless, it confronts two challengeable issues when the state space is excessively large. First,
the scale of Q-table is too enormous to store and search. Second, the sample is so sparse that the tabular
based algorithm (i.e., Q-learning) does not converge.

In order to overcome the above defects, a non-linear function approximator is used to estimate
the action-value function. An approximate value function Q(s, a; θi) is parameterized using a neural
network [20]. A Q-Network can be trained by minimizing a sequence of loss function Li(θi) that
changes at each iteration i:

Li(θi) = Es,a∼ρ(·)

(r + γmaxQ(s′, a′; θ−i )−Q(s, a; θi)
a′

)2
 (5)

where ρ(s, a) is a probability distribution over sequence s and a, γ is the discount factor determining
the agent’s horizon, θi are the parameters of the Q-Network at iteration i and θ−i are the parameters
used to compute the target at iteration i.

Differentiating the loss function with respect to θi, the following gradient can be obtained:

∇θi Li(θi) = Es,a∼ρ(·)

[(
r + γmaxQ(s′, a′; θ−i )−Q(s, a; θi)

a′

)
∇θi Q(s, a; θi)

]
(6)

To reduce the computation complexity, the loss function is optimized by stochastic gradient
descent frequently. However, the RL approach is known to be unstable or even to diverge when a
nonlinear function approximator is used to represent the Q function [21]. The experience replay and
fixed parameters of the target network are applied to address the instability in the Deep Q-learning.
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3. System Model

We consider a cognitive radio ad hoc network consisting of M PUs and N SU nodes as shown
in Figure 2. PUs occupy the specific authorized channels completely and only hold their assigned
portion of spectrum. SUs have no licenses for any spectrum bands and opportunistically transmit data
in the idle time of PUs. Let (i, j) denotes a unidirectional wireless link from node i to node j, where
0 ≤ i, j < M, i 6= j.
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Figure 2. Cognitive radio ad hoc networking scenarios (PT: primary user transmitter, PR: primary
user receiver).

The available spectrum can be divided into two categories. The data transmission channel (DTC)
is for data communication. It consists of a set of orthogonal spectrum bands C = {c1, c2, . . . , cm},
and the available DTC of SUi is represented as Ci. The common control channel (CCC) is used by
SUs to exchange the negotiation. Each SU is equipped with a scanner, a half-duplex normal radio
for negotiation transmission and a half-duplex cognitive radio which can reconfigure among C for
data communication.

The occupation duration of PUs in each spectrum bands is modeled as an independent and
identically distributed alternating ON (when the channel is busy) and OFF (when the channel is idle)
process [4]. If the ON and OFF periods of a PU are exponential distribution, and the arrival rate and
departure rate of the PU are θa and θd, then the probability of the PU channel being busy is denoted by:

Pon = θa/(θa + θd) (7)

Apparently, the probability of the PU channel being idle can be represented as:

Po f f = θd/(θa + θd) (8)

The Probability Density Function (PDF) of the OFF periods is given by:

f (τ) =

{
θde−θdτ τ ≥ 0

0 τ < 0
(9)

Therefore, the probability of the PU being in ON state is given by:

Pcollision = 1− P(t ≥ τ)

= 1−
∫ ∞

τ f (t)dt
= 1− e−θdτ

(10)
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The PU mean departure rate θd(µ, σ) is computed using the transform in [22] which has an
expected mean µ and deviation σ. SUs track the channel statistic through sensing and learning
the spectrum usage pattern. Generally, the channel statistic changes slowly and the parameter
evaluation can be found in [23,24]. With some localization devices, SUs can only acquire their own
location information.

4. Problem Formulation for Cross-Layer Design

In order to improve the energy efficiency and control the harmful interference to PUs, power
allocation is taken into consideration. In this section, the cross-layer design problem is modeled as a
model-free strategy learning process. Firstly, a novel metric named responsibility rating is introduced
to make decision on transmission power control. Then the joint design problem is modeled as a MDP,
and a deep reinforcement learning approach is adopted to solve the MDP in the next part.

4.1. Responsibility Rating

In this paper, an efficient cross-layer scheme is taken account, which jointly addresses routing,
spectrum access and power assignment problem in the multi-hop CRN. Conventional RL methods, i.e.,
tabular based algorithms, behave poorly when dealing with problem with large state space because of
curse of dimensionality. Moreover, it is unrealistic to maintain a large lookup table in every relay node.
So it is inclined to adopt DQN to solve the joint design problem with large state space.

For energy efficiency and PU protection, we take power adaption into consideration. In this case,
the actions of the agent comprise relay selection, channel usage and power allocation, which may
result in a huge action space. Though DQN has the capacity of handling problem with large state
space, it is not adept in managing problem with huge action space. This is because DQN adopts the
Q-learning update framework as the following:

Qt+1(s, a) = (1− α)Qt(s, a) + α

[
rt + βmax

b∈A
Qt(s′, b)

]
= Qt(s, a) + α

[
rt + βmax

b∈A
Qt(s′, b)−Qt(s, a)

] (11)

where α ∈ [0, 1) is the learning rate, and β is the discount factor determining the agent’s horizon.
The Deep Q-Network is trained by minimizing a sequence of loss function:

Li(θi) = Es,a∼ρ(·)

[(
r + βmax

a′∈A
Q(s′, a′; θ−i )−Q(s, a; θi)

)2
]

(12)

We can see that both DQN and Q-learning aim to update the Q-value in the direction of
rt + βmax

b∈A
Qt(s′, b). And the update of two algorithms needs to search the maximum of Qt(s′, b),

so that we can say DQN adopts the Q-learning framework indeed. That is, the agent has to choose the
action with the largest Q function among all actions available. The maximum calculation will have
intensive complexity if the action space is particularly large. To handle this problem, a novel concept
named responsibility rating is introduced. The transmission time of the SU packet in node i is given by:

τi = Rpacket

/
W log2

(
1 +

hijc pi

σ + φPU
ijc

)
(13)

where Rpacket is the size of SU packet transmitted from source to destination, hijc is the channel gain
between the transmitter node i and the receiver node j, φPU

ijc denotes the PU-to-SU interference at the
receiver node i, and σ is the AWGN power.

If much time is wasted in one hop transmission, it is reasonable that SU node has to increase the
transmission power in the next hop in order to reduce the end-to-end delay. In addition, if the delay of
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one hop is particularly low, then the transmission power can be reduced in the next hop to cut down
on power consumption. According to this, the responsibility rating of SUj is defined as:

ψj =

{
ψi + 1 τi > τ∗

ψi − 1 τi ≤ τ∗
(14)

where ψi is a nonnegative integer and represents the responsibility rating of SUi. In addition,
if ψi = max{ψi}, then ψj = ψi, and if ψi = 0, then ψj = 0. τ∗ is the average transmission time
of SUs and can be obtained through history observations.

Each responsibility rating ψi corresponds to a transmit power pi (pmin ≤ pi ≤ pmax) , and the
correspondence is described as the following:

pi(ψi) =

(
1− ψi
|Ψ|

)
pmin +

ψi
|Ψ| pmax (15)

where |Ψ| denotes the size of {ψi}. If SU costs a lot of time in one hop, the agent will have the
responsibility to transmit the packet with larger power in the next link. It indicates how much
effort the SU should make currently to be responsible for the packet transmission delay of the whole
networks. The responsibility rating is adopted to help adaptively decide the transmit power of each
node. It resolves the contradiction above creatively by transforming the huge action space problem
to a problem with large state space, which can provide new ideas for managing the problem with
large action space. We assume that there are N nodes, K channels and M levels of transmission power.
The scale of network and the levels of power are huge, so that the value of both N and M is large. If the
responsibility rating is not adopted and the transmission power is set as action, that is, the network
state at time slot t is denoted as st = {ni} and the candidate actions of the SUi node at time slot t is
at =

{
nj, ci, pi

}
, then the size of action space is N × K×M and the size of state space is N. We can see

that the size of action space will be particularly large. However, if the responsibility rating is adopted,
the network state at time slot t is denoted as st = {ni, ψi}. The candidate actions of the SUi node at
time slot t is at =

{
nj, ci, pψi

}
, where pψi is a fixed value corresponding to ψi. So the size of action space

is compressed to only N× K× 1 and the size of state space is N×M. We can see the size of state space
has risen M times and become particularly large. Therefore, the responsibility rating transforms the
huge action space problem to a problem with large state space. However, the premise of responsibility
rating is that SU nodes have to increase the transmission power in the next hop in order to reduce the
end-to-end delay if much time is wasted in one hop transmission. So the after effects to do so is that
we cannot select the levels of transmission power arbitrarily, and the level of power is determined by
the transmission latency of the previous hop.

4.2. Problem Formulation

In this section, the joint routing and resource allocation problem is modeled as a MDP. The MDP
can be represented as a tuple (S, A, T, R), where S denotes the set of environment states; A is the set of
candidate actions at each state; T =

{
Ps,s′(a)

}
is the set of state transition probabilities, where Ps,s′(a)

is the state transition probability from state s to s′ when taking action a in state s; and R : S× A 7→ <
specifies the reward at s ∈ S when taking action a ∈ A. It is necessary to identify the states of SU
nodes, actions of the agent and the associate rewards:

(1) States

For a given SUi node, the network state at time slot t is denoted as st = {ni, ψi}, where
ni ∈ {0, 1, . . . , N − 1} represents the index of the current SU node and ψi is the responsibility rating of
SUi. Since we consider a large-scale CRN with a great deal of transmission power levels, the size of
state space is particularly large.

(2) Actions
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A cross-layer scheme is studied that jointly addresses routing, spectrum access and power
assignment problem in CRN. We denote at =

{
nj, ci, pψi

}
∈ A as candidate actions of the SUi node

at time slot t, where nj ∈ J ⊂ {0, 1, . . . , N − 1} is the selection of next-hop SU node, and J is the
neighboring nodes set of ni·ci ∈ Ci represents the operating channel, pψi denotes the transmit power
described in (14). Since the size of J and Ci is relatively small, and pψi is a fixed value corresponding to
ψi, the action space is limited for each SU.

(3) Rewards

Our objective is to reduce the end-to-end delay while improving the energy efficiency in multi-hop
CRN. τi in (8) represents one-hop transmission delay, and the Power Consumption Ratio (PCR) is
proposed to describe the power efficiency:

εi = pψi

/
W log2

(
1 +

hijc pψi

σ + φPU
ijc

)
(16)

PCR denotes the energy consumption when getting per unit throughput. The reward rt assesses
the immediate return incurred due to the assignment of action at at state st. The considered reward
function is:

rt = −(τi + αεi) (17)

where α is the proportional coefficient to make τi coincide with order of magnitude in εi. Our algorithm
aims to maximize this reward so that the end-to-end delay and power consumption are below
the thresholds.

ni is the index of current SU nodes. It is only decided by the previous SU nodes and is irrelevant
to the historical nodes. In addition, the current responsibility rating is relevant to the previous ψi as
shown in (14) and has nothing to do with the historical states. So the joint design problem can be
modeled as a Markov process. Furthermore, the model-free reinforcement learning is applied in this
paper, in which an accurate model for the environment is unnecessary, so that it is unnecessary to
calculate the state transition probabilities. We take a minor example consisting three SU nodes and
two levels of transmission power. The state transition diagram is shown as following.

Figure 3 shows a simplest CRN containing three nodes. n0 is the source node, n1 is the relay node
and n2 is the destination node. s4 and s5 are the terminal states.
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5. PM-DQN Based Joint Routing and Resource Allocation Algorithm

To solve the cross-layer design problem with large state space, deep reinforcement learning
approach is adopted. Traditional deep reinforcement learning algorithm uses experience replay to
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break the temporal correlations. In order to reduce the size of replay memory while guaranteeing
system performance, the Prioritized Memories Deep Q-Network is proposed in Section 5.1. Then in
Section 5.2, PM-DQN is applied to the routing and resource allocation problem for minimizing the
transmission delay and power consumption.

5.1. Prioritized Memories Deep Q-Network

DQN is adopted to solve the joint design problem because of its huge state space. One of
the significant features for DQN is experience replay. The system maintains a replay memory
and samples transitions from the memory to update weights of neural network. Using a replay
memory leads to design choices at two levels: which experience to store, and which experience to
replay. Prioritized Experience Replay addresses only the latter: replaying important transitions more
frequently, and therefore learning more efficiently [25]. However, maintaining a replay memory in
multi-hop CRN increases storage requirement and communication overhead. Consideration about
which transitions to store and when to erase them has become an urgent problem.

To reduce replay memory and communication overhead in CRN, the Prioritized Memories Deep
Q-Network is proposed. It is able to reduce the redundancy by biasing the contents of the memory
to where the errors remain high. The magnitude of a transition’s TD-error δ is used as a reasonable
proxy because it can indicate how far the value is from its next-step bootstrap estimate [26] and how
unexpected the transition is. Specifically, the transitions whose absolute TD-errors are below a certain
value will be erased, i.e., transitions with high absolute TD-errors can be retained. The implementation
is demonstrated in Figure 4.

First, the format of experience at time step t is set as et = (st, at, rt, st+1, δt), where δt represents
the TD-error of the transition. It is assumed that δt = ∞ before the transition is replayed, and the
true TD-error is assigned to δt after the experience is sampled. If time steps are less than memory
size, it means that the learning process has not started. As shown in Figure 4a, the transition is stored
following the previous one, and the number of experience is increasing. In the second stage, time
steps exceed memory size and the number of replayed transitions is less than a% of the memory size.
The replayed experience with the lowest absolute TD-error is replaced by the new experience as shown
in Figure 4b. In this period, the number of total experiences remains the same. Then we define the
Erasing Critical Value (ECV) as:

ECVt = rand(0, λ) ∗ 1
Ki

Ki

∑
n=0
|δn| (18)

The ECV is obtained by multiplying a random value in Λ = (0, λ), 0 < λ < 1 with the average
absolute TD-error of replayed experiences. If the number of replayed transitions is greater than a%
of the memory size, the experience whose |δt| is less than the ECV will be erased. The number of
experiences decreases in this stage. Fourth, if the number of replayed transitions is below b%(b < a)
of the memory size, we stop erasing implementation to recover the amount of experiences, and the
number of transitions increases gradually. However, the performance of PM-DQN will decrease if
the value of b is too low. If the difference between a and b is too small, it is inefficient in saving
system memory. So the value of a, b in this paper is set to 90 and 60 respectively, which proves to be
appropriate in the simulation part. The new experience is stored following the previous one as shown
in Figure 4c,d, and the agent will perform the third and the fourth step until learning process is end.

Figure 5 shows the variation trends of transition quantities in the whole learning process of
PM-DQN. We can see that the total number of the transitions fluctuates between b% and a% of
the memory size. The dynamic change of the transition quantities saves the system memory while
guaranteeing the performance. The details of PM-DQN are obtained as described in Algorithm 1.
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Algorithm 1: Prioritized Memories Deep Q-learning

1: Input: mini-batch k, step-size η, replay period C, memory size N and erasing parameters a, b, λ

2: Initialize replay memory D = φ and the number of replayed experience K0 = 0
3: Initialize Q function with random weights θ and target Q̂ function with weights θ− = θ

4: For eposide = 1, M do
5: Initialize state s1
6: For t = 1, T do
7: With probability ε select a random action at

8: otherwise select at = argmaxaQ(st, a; θ)

9: Execute action at and observe reward rt, state st+1
10: Store transition (st, at, rt, st+1, δt) in D
11: Sample mini-batch of transitions (si, ai, ri, si+1, δi) from D

12: Set yi =

{
ri if episode terminates at step i + 1
ri + γmaxa′ Q̂

(
si+1, a′; θ−

)
otherwise

13: Perform gradient descent on (yi −Q(si, ai; θ))2 with respect to the network parameters θ
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14: Compute ECVt = rand(0, λ) ∗ 1
Ki

∑Ki
n=0|δn|

15: If (Kt > a% ∗ N) or ((Kt < Kt−1) and (Kt ≥ b% ∗ N)) do

16: For transition = 1, N do
17: If |δtransition| < ECVt do
18: erase the transition
19: End For
20: Every C steps reset Q̂ = Q
21: End For
22: End For

5.2. PM-DQN-Based Joint Routing and Resource Allocation Algorithm

In order to solve the cross-layer design problem with large state space and save the system
memory, PM-DQN is applied to the routing and resource allocation problem. The joint design scheme
requires merely the source node n0 to equip the RL agent and maintain replay memories. It enormously
reduces the communication overhead while guaranteeing system performance.

The mechanism of PM-DQN based joint routing and resource allocation scheme is shown in
Figure 6, and the serial number in Figure 6 denotes the order of stage. Initially, the agent in the source
node n0 uses the initial weights of neural network θ0 to compute Q value and chooses n1 as its next
hop. In the first stage, n0 performs data transmission. Before every data transmission, the SU node
broadcasts a relay request (RREQ) message using the CCC which includes its node ID. Upon receiving
the RREQ, the neighboring nodes which are closer to the destination send back the relay reply (RREP)
messages. The neighbor information in RREP will be back propagated with the newest transition to
the source node in the subsequent stages, so that the agent can identify unavailable actions during
weights updating of neural network. As n0 transmits data using DTC, the agent updates the weights of
neural network to θ1 by sampling transitions from the previous memories and then selects the action
a1 with probability [27]:

π(st, at) =
eQ(st ,a)/η

∑b∈A eQ(st ,b)/η
(19)

where η is a positive parameter called the temperature. High temperature causes the action probabilities
to be all nearly equal, and low temperature causes huge difference in selection probabilities for actions.
After that the action a1 is transmitted to SU node n1 through CCC. After the data transmission is
finished, node n1 obtains the reward and generates the newest transition t1.

Sensors 2018, 18, x FOR PEER REVIEW  11 of 21 

 

15:    If    1%   ( )  ( % )t t t tK a N or K K and K b N      do 

16:      For 1,transition N  do 

17:        If ECVtransition t   do 

18:          erase the transition 

19:      End For 

20:    Every C  steps reset Q̂ Q  

21:  End For 

22: End For 

5.2. PM-DQN-Based Joint Routing and Resource Allocation Algorithm 

In order to solve the cross-layer design problem with large state space and save the system 

memory, PM-DQN is applied to the routing and resource allocation problem. The joint design 

scheme requires merely the source node 
0n  to equip the RL agent and maintain replay memories. It 

enormously reduces the communication overhead while guaranteeing system performance. 

The mechanism of PM-DQN based joint routing and resource allocation scheme is shown in 

Figure 6, and the serial number in Figure 6 denotes the order of stage. Initially, the agent in the 

source node 
0n  uses the initial weights of neural network 

0  to compute Q value and chooses 
1n  

as its next hop. In the first stage, 
0n  performs data transmission. Before every data transmission, 

the SU node broadcasts a relay request (RREQ) message using the CCC which includes its node ID. 

Upon receiving the RREQ, the neighboring nodes which are closer to the destination send back the 

relay reply (RREP) messages. The neighbor information in RREP will be back propagated with the 

newest transition to the source node in the subsequent stages, so that the agent can identify 

unavailable actions during weights updating of neural network. As 
0n  transmits data using DTC, 

the agent updates the weights of neural network to 
1  by sampling transitions from the previous 

memories and then selects the action 
1a  with probability [27]: 

 
 

 

,

,
,

t

t

Q s a

t t Q s b

b A

e
s a

e











  (19) 

where   is a positive parameter called the temperature. High temperature causes the action 

probabilities to be all nearly equal, and low temperature causes huge difference in selection 

probabilities for actions. After that the action 
1a  is transmitted to SU node 

1n  through CCC.  

After the data transmission is finished, node 
1n  obtains the reward and generates the newest 

transition 
1t .  

n1

n2

n3

n4

n0

1:data
1:a1(θ1)

2:data

2:t1

2:a2(θ2)

2:a2(θ2)
3:data

3:t2

3:t2
3:a3(θ3)

3:a3(θ3)

3:a3(θ3)
4:data

4:t3

4:a4(θ4)

4:a4(θ4)
4:a4(θ4)

4:a4(θ4)
1: θ1

4:t3

4:t3

2: θ2 3: θ3

t1

4: θ4

t1

t2

n5

n6

n7

 

Figure 6. Transmission mechanism of replay memory in joint design scheme. 
Figure 6. Transmission mechanism of replay memory in joint design scheme.



Sensors 2018, 18, 2119 12 of 21

In the second stage, n1 selects n2 as its next hop according to action a1 and performs data
transmission using DTC. Then the newest transition t1 is back propagated to the source node through
CCC. At the same time, the agent updates the weights to θ2 by sampling transitions from the same
memories as the first stage and selects the action a2 of n2 using weights θ2. If the selected action is
available, i.e., the next relay nj is in the neighboring set of the current node, the target Q value is set
to ri + γmaxa′ Q̂(si+1, a′; θ−) in the weights updating stage of neural network; otherwise, the target Q
value is set to a certain negative value. After that the action a2 is transmitted to SU node n2. That is,
the SU node performs data transmission through DTC and transmits signaling such as transitions and
actions using CCC in the meanwhile. Since the size of one transition or action is particularly small,
the transition or action can be successfully transmitted before the data transmission is over and will
not cause additional transmission delay. Also, node n2 obtains the reward and generates the newest
transition t2 when the data transmission is over. The transmission process of data and signaling in the
following stage is similar, and the only difference is that the replay memory has been updated step
by step. As shown in Figure 6, in the third stage the memories comprise transition t1, and transition
t1 with t2 in the fourth, and so on. The details of Centralized Joint Routing and Resource Allocation
Algorithm are obtained as described in Algorithm 2.

Algorithm 2: PM-DQN Based Joint Routing and Resource Allocation Algorithm

1: Input: mini-batch k, step-size η, replay period C and memory size N
2: Initialize replay memory D = φ and the number of replayed experience K0 = 0
3: Initialize Q function with random weights θ and target Q̂ function with weights θ− = θ

4: For eposide = 1, M do
5: Initialize state s1 = {n1, ψ1}
6: For t = 1, T do
7: Node ni selects next relay nj according to at which is obtained from the former stage
8: Observe reward rt−1 and generate the newest transition (st−1, at−1, rt−1, st, δt−1)

9: Node n0 samples mini-batch of transitions (sk, ak, rk, sk+1, δk) to update weights

10: Set yk =

{
−m(m > 0) if the selected action is unavailable

rk + γmaxa′ Q̂
(
sk+1, a′; θ−

)
otherwise

11: Perform gradient descent on (yk −Q(sk, ak; θi))
2 and select action at+1 of the next relay nj according to (19)

12: Execute action at =
{

nj, ci, pψi

}
: Transmit data to nj through ci; meanwhile transmit at+1 to nj

and send (st−1, at−1, rt−1, st, δt−1) back to n0

13: Do Prioritized Memories Algorithm in n0

14: Every C steps reset Q̂ = Q
15: End For
16: End For

6. Simulation Results

In this section, we evaluate the performance of our joint routing and resource allocation scheme.
The results of the proposed PM-DQN based joint design algorithm is compared with (i) Q-routing;
(ii) DQN based scheme; and (iii) Fixed Power Q-routing (FP-Q-routing) [15] which does not consider
power allocation and its transmission power is fixed. We set the bandwidth of DTC to be W = 1 MHz,
and the bandwidth of CCC is 2 MHz. It is supposed that the AWGN power σ = 10−7 mW, the packet
size is 2× 105 bit, and the link gain used in this paper is given by:

h = LF
(

d
d0

)−n
, for d > d0 (20)

where L is a constant set to be 10−6, and the shadowing factor F is subject to a lognormal distribution
with a mean of 0 dB and variance of 6 dB, d is the actual distance between the transmitter and
receiver, d0 is the reference distance, and n is the path loss exponent. In our simulation process,
we set d0 = 1 and n = 4. To compare the performance of the algorithms, we consider two different
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kinds of experimental scenarios varying in the number of SU nodes, PU channels and transmission
power levels. In the first experiment, a CRN with 10 SU nodes and 5 PU channels deployed in a
300 m × 300 m region is considered, and the discrete transmission power of SU nodes is divided into
5 levels: {50, 100, . . . , 250 mW}. The size of state space is calculated as 10× 5 = 50. In the second
experiment, a CRN consisting of 50 SU nodes and 10 PUs uniformly distributed over a 1000 m× 1000 m
square area is considered, and the transmission power is divided into 10 levels: {50, 100, . . . , 500 mW}.
The size of state space is 50 × 10 = 500 which is ten times larger than it in the first experiment.
The expected mean and deviation of average PU departure rate θd(µ, σ) are set as µ = 0.1 and σ = 0.05.
In addition, we set the erasing parameters a, b, λ to 90, 60, 0.5 respectively.

6.1. Overall Performance of Routing Schemes

We first evaluate the overall performance of average reward and convergence property in different
experiment scenarios. Figure 7 shows the average reward the SU agent gets as a function considering
the number of episodes. It is found that the average reward increases with increasing number
of episodes for all algorithms, which means that the agent gets more scores as interacts with the
environment and gradually learns the characters of it. In Figure 7a, it is found that Q-routing achieves
the highest average reward, and the reward of PM-DQN based scheme is slightly higher than natural
DQN. This is mainly because that state space of the network is relatively small and the training data is
scarce. It is difficult to fully adjust the parameters of neural network so that Q-routing has a slight
advantage over DQN methods. In addition, scarce samples make little difference between prioritized
memories and original memories so that the performance of PM-DQN based algorithm is close to
that of natural DQN. In Figure 7b, it is observed that the reward of PM-DQN based approach is more
superior to natural DQN scheme, and both DQN based methods have obvious advantages comparing
to Q-routing and FP-Q-routing. This is because large state space provides huge amounts of training
data, thus the neural network and prioritized memories can work effectively. However, FP-Q-routing
obtains the lowest average reward in both Figure 7a,b, which illustrates the importance of power
allocation. So the metric of responsibility rating can improve the system performance distinctly.
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Figure 8 shows the convergence properties of four protocols in different kinds of experimental
environments. Figure 8a illustrates that with increasing number of episodes, the average steps
suffers a gradual decline for all algorithms in the network with 10 SU nodes and five power levels.
The convergence speed of Q-routing and FP-Q-routing is faster than two DQN-based algorithms before
400 episodes. After 400 episodes, the Q-routing stabilizes at seven steps, and the average steps of two
DQN based protocols continue to fall and converge to five steps. This is because the neural network
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has not been trained well at first so that the DQN methods converge slowly. However, in the later
period the benefits of experience replay become apparent. It makes DQN based schemes choose links
with high rewards since old transitions will be stored and reused to exploit the training data deeper.
Thanks to the small scale of the network and limited training data, the performance of PM-DQN
based scheme is similar to the DQN method. In addition, the average steps of FP-Q-routing are less
than Q-routing. This is because that responsibility rating is not adopted in FP-Q-routing so that the
demission of states is relatively small and extra steps will not be expensed to allocate transmission
power. In Figure 8b, the DQN based methods converge much faster than Q-routing and FP-Q-routing,
and the scheme based on PM-DQN achieves less average steps than natural DQN. This results from the
advantage of neural network in huge state space. Furthermore, prioritized memories with sufficient
samples contribute more valuable transitions so that the convergence speed of PM-DQN based method
is faster than the natural DQN.
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6.2. Performance of Effectiveness

The effectiveness properties of the end-to-end delay and power consumption efficiency are
investigated in this section. As shown in Figure 9, it is observed that the expected end-to-end delay
degrades with increasing number of episodes. Figure 9a compares the delay performance for four
kinds of protocols in the network with 10 SU nodes. It is found that the end-to-end delay of Q-routing
and FP-Q-routing suffers a sharply drop in the beginning, and it retains almost steady state after about
400 episodes. While the delay of two DQN based schemes falls slowly before 400 episodes, and after
that the convergence speed becomes faster than Q-routing and FP-Q-routing. The performance of four
protocols is almost the same in the end. As shown in Figure 8a, the convergence speed of Q-routing
and FP-Q-routing is faster than DQN-based schemes before 400 episodes, and then the curves become
flatter, which results that the delay of Q-routing and FP-Q-routing falls faster than it of two DQN
based algorithms at first but loses ground in the end. In addition, the latency of FP-Q-routing is longer
than Q-routing because FP-Q-routing fails to transmit data with high power when the communication
condition is better so that it has longer time delay in total. Figure 9b shows that the performance of
natural DQN based method is superior to Q-routing and FP-Q-routing in the network with 50 SU
nodes, and PM-DQN achieves the least end-to-end delay. It illustrates the benefits of deep Q-learning
and prioritized memories method in the network with large state space.

Figure 10 depicts expected PCR as a function of amount of episodes. With the increasing number
of episodes, the trend of PCR is very similar to that of end-to-end delay shown in Figure 9. That is,
in Figure 10a the PCR of Q-routing and FP-Q-routing falls sharply in the beginning, is seemingly
steady after 400 episodes, and achieves almost the same performance as DQN-based methods in the
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end. In addition, the PCR of FP-Q-routing is larger than Q-routing because FP-Q-routing fails to adjust
transmission power adaptively and it may still transmit data with high power in poor communication
conditions, which causes very low energy efficiency. In Figure 10b, energy efficiency of DQN-based
methods is significantly improved comparing to Q-routing and FP-Q-routing. The PM-DQN-based
scheme achieves the least PCR, which is 25% less than it of natural DQN. Consequently, in the small
scale network PCR performance of four protocols is relatively close. Furthermore, in the network with
large state space, DQN based methods consume less power comparing to Q-routing and FP-Q-routing,
and prioritized memories experience replay further enhances the power efficiency.
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6.3. Reliability Properties

The reliability and robustness are significant properties in the communication networks.
We further compare the performance of PM-DQN with that of DQN, Q-routing and FP-Q-routing to
evaluate the Packet Loss Ratio (PLR) and estimation error. Figure 11a shows the trend of PLR as a
function of episodes in the network with 10 SU nodes. PLR declines as the learning process goes on,
and Q-routing achieves the lowest PLR, followed by FP-Q-routing. PM-DQN based scheme holds a
slight advantage over natural DQN. The reason for this is the same as it in Figure 9a. Comparison of
PLR in the network with 50 SU nodes is shown in Figure 11b. PLR of Q-routing and FP-Q-routing
is much lower than two DQN based schemes in the beginning, and after about 200 episodes PLR of
PM-DQN based scheme achieves the least and keeps the advantage till the end. While after around
300 episodes, PLR of DQN based scheme is lower than Q-routing and FP-Q-routing. This is due to the
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fact that, since at first the end-to-end delay of Q-routing and FP-Q-routing falls faster than it of two
DQN based algorithms as shown in Figure 9b, the total number of episodes whose routing latency
exceeds the threshold is less than it of DQN based methods so that its PLR is relatively low. However,
the delay of Q-routing and FP-Q-routing drops slightly after that and therefore its PLR is higher than it
of the other two schemes.
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In the learning process the agent may select some invalid actions such as non-neighbor nodes
or unavailable channels. Estimation error denotes the proportion of steps choosing invalid actions in
the total time steps. It is observed from Figure 12a,b that PM-DQN based routing scheme achieves
the least estimation error in the network with either 10 or 50 SU nodes. The primary reason for
this is that the invalid actions result in very low target Q value (we set it to –100 in the simulation)
corresponding to relatively large TD-error. In PM-DQN, the prioritized memories preserve most of
these transitions so that the probability of selecting the invalid actions reduces sharply even in the
small scale network. In Figure 12a, we can see that estimation error of Q-routing and FP-Q-routing is
much lower than it of DQN and is almost the same as PM-DQN method. However, estimation error of
Q-routing and FP-Q-routing is significantly high in network with 50 nodes as shown in Figure 12b.
Network with larger state space results in more invalid actions. In Q-routing and FP-Q-routing,
the current parameters determine the next data sample, which could make the parameters get stuck in
a poor local minimum in large state space. This is what leads to the trend of the curves.
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6.4. Effect of Learning Rate and Q-value

Figure 13 depicts the effects of learning rate on Packet Delivery Ratio (PDR). In Figure 13a,
it is found that the PDR of four algorithms is flat in the beginning, then the PDR of PM-DQN and
DQN based schemes drops sharply after learning rate reaches 0.5, and the PDR of Q-routing and
FP-Q-routing (i.e., Non-Power Adaption based Q-learning, NP-Q-learning) decreases when learning
rate is 0.8. This is because Q-value of the selected actions will become particularly large if learning rate
is high according to (11). Larger Q-value leads to higher probability of choosing these actions again,
so that the opportunity of exploring other actions will be lower and the performance decreases rapidly.
In the network with 10 SU nodes, Q-routing achieves the highest average PDR, and DQN has the lowest
PDR. In Figure 13b, it is observed that the PDR of PM-DQN and DQN based schemes is unimodal curve,
which reaches the maximum value when learning rate is 0.3, and then decreases distinctly. The PDR of
Q-routing and FP-Q-routing rises before the learning rate reaches 0.4, and after that the curves drop
gradually. In the second experiment, PM-DQN achieves the highest PDR, followed by DQN. The PDR
of Q-routing is lower than DQN, and FP-Q-routing obtains the lowest PDR. In addition, the weights
adjustment of neural network is more sensitive to learning rate than the update of Q-learning, so that
the PDR of two DQN based schemes changes more apparently with the increasing of learning rate
than Q-routing and FP-Q-routing.
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Figure 14 shows the effects of learning rate on average throughput. In Figure 14a, the throughput
of PM-DQN and DQN based schemes is almost flat at first, and then the throughput declines sharply
after learning rate is 0.5. The throughput of Q-routing and FP-Q-routing is also flat before learning
rate reaches 0.8, and after that a sharp decline is on the curve. Q-routing achieves the highest
average throughput, and the throughput of PM-DQN is much lower than Q-routing. Both DQN
and FP-Q-routing obtain the lowest throughput. In Figure 14b, the throughput of PM-DQN- and
DQN-based schemes increases at first, and achieves the highest throughput when learning rate
is around 0.55. After that, the throughput declines sharply. The throughput of Q-routing and
FP-Q-routing has similar trend as two DQN based methods and obtains the highest throughput
at 0.8. The reason for this is that the update of Q-value is slow with small learning rate so that the
learning efficiency is low at first. However, when learning rate gets particularly large, the agent will
only exploit the selected actions and fail to explore other actions, which also results in performance
degradation. In the large-scale network, PM-DQN achieves the highest average throughput, and the
throughput of FP-Q-routing is the lowest. Furthermore, it is found that the throughput of two DQN
based algorithms also changes more obviously than Q-learning based schemes with the increasing of
learning rate.
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Figure 15 depicts Packet Loss Ratio (PLR) as a function of learning rate. PLR reflects routing
stability of the network, and lower PLR means less loss of transmission data as well as higher reliability.
In the network with 10 SU nodes, the PLR of four protocols is flat at first, while the PLR of two
DQN based methods increases rapidly after learning rate is 0.5, and the curves of Q-routing and
FP-Q-routing rise at around 0.8. The PLR of Q-routing is the lowest, and DQN based method has
the highest PLR. In Figure 15b, the curves of four algorithms are unimodal. The PLR of two DQN
based methods reaches the minimum value when learning rate is 0.3, and then it rises distinctly.
When learning rate reaches 0.4, Q-routing and FP-Q-routing obtain the lowest PLR. The reason for this
is similar to those discussed above. In the second experiment, PM-DQN achieves the lowest PLR in
four algorithms, followed by DQN. The PLR of Q-routing is much higher than DQN, and FP-Q-routing
has the highest PLR.
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Figure 16 shows the effect of Q values for improving the learning efficiency of the agent.
We assume that the agent has 5 available actions in state st, and the Q values of other actions are equal
to 1. It is found that with increasing of Q-value, the action probability P(st, ai) of choosing the action ai
in st rises. Higher action probability means more opportunities of exploitation for the corresponding
action, i.e., the learning efficiency of the agent is improved as Q-value grows. In addition, P(st, ai) will
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be higher if the temperature η gets larger, which indicates that the learning efficiency gets enhanced
with the increasing of η in (19).
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6.5. Complexity Analysis

The number of messages exchanged in the network is analyzed as following: as illustrated in
Section 5.2, the first hop of data transmission needs only 1 message exchange; The second hop needs
three message exchanges including two action messages to be sent forward and one transition message
to be back propagated; The third hop needs five message exchanges which comprise three action
messages and two transition messages, and so on, so that the nth hop needs 2n− 1 messages to be
exchanged in total, which contains n action messages and n − 1 transition messages. We assume
that N SUs uniformly distribute over a square area in our experiment, which means that the average
route length can be approximated to

√
N. So the number of message exchange can be calculated

as
[

1
2

(
1 +

(
2
√

N − 1
))
×
√

N
]
/(1− Perror) = N/(1− Perror), where Perror is the average estimation

error when the algorithm converges. That is, the complexity of message exchange for every route is
o(N/(1− Perror)).

Then the time complexity of the joint design algorithm is taken into consideration. In the
experiment, the neural network has three layers. The number of neurons in the first and third
layer is equal to the dimension of the states n f eature and the size of action space naction, respectively,
and the number of the second layer is set to be n2. The feed-forward calculation for one sample
needs two matrix operations, which requires n f eature × n2 and n2 × naction times of computation.

So the time complexity for one sample is o
(

n f eature × n2 + n2 × naction

)
= o(n2). We assume that

the algorithm converges after K episodes. Since the average route length is approximated to
√

N,
the average steps of one episode is

√
N/(1− Perror), which means that the number of total samples

is calculated as K×
√

N/(1− Perror). Therefore, the time complexity of the joint design algorithm is
o
(

n2 × K×
√

N/(1− Perror)
)

.

7. Conclusions

In this paper, we have proposed a PM-DQN-based joint routing and resource allocation scheme
for cognitive radio ad hoc networks. Simulation results show that PM-DQN-based joint design
scheme reduces the memory occupancy while slightly improving system performance compared to the
scheme based on natural DQN. Furthermore, both DQN-based methods reduce the average end-to-end
delay, packet loss ratio and estimation error while achieving higher energy efficiency in comparison
with Q-routing. In this paper, single-agent reinforcement learning with limited capacity is adopted.
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However, learning strategy with multiple agents is more suitable for solving complicated problem in
multi-hop CRN. Our future work will aim at solving the resource management problem in CRN using
multi-agent learning strategy.
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