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Abstract: For a running freely land-vehicle strapdown inertial navigation system (SINS), the problems
of self-calibration and attitude alignment need to be solved simultaneously. This paper proposes
a complete alignment algorithm for the land vehicle navigation using Inertial Measurement Units
(IMUs) and an odometer. A self-calibration algorithm is proposed based on the global observability
analysis to calibrate the odometer scale factor and IMU misalignment angle, and the initial alignment
and calibration method based on optimal algorithm is established to estimate the attitude and
other system parameters. This new algorithm has the capability of self-initialization and calibration
without any prior attitude and sensor noise information. Computer simulation results show that
the performance of the proposed algorithm is superior to the extended Kalman filter (EKF) method
during the oscillating attitude motions, and the vehicle test validates its advantages.

Keywords: strapdown inertial navigation system (SINS); initial alignment; odometer; optimized
estimate; extended Kalman filter (EKF)

1. Introduction

The strapdown inertial navigation system (SINS) is an autonomous navigation system that uses
inertial measurement units (IMUs) and initial navigation information to determine the attitude, position
and velocity [1,2]. SINS is widely used in aviation, marine, land vehicle navigation and positioning
because of its advantage of complete autonomy [3,4]. The SINS capability depends on the accuracy and
rapidity of initial alignment process which is one of the key technologies in SINS [5,6]. The research
about static base initial alignment has been done very well [7,8], however, how to complete the initial
alignment of the inertial navigation system on moving base becomes an urgent problem to be solved.

Unlike the alignment on a static base, the alignment on a moving base usually requires the carrier
motion information provided by some external device, for example, global positioning system (GPS),
cameras, odometers and Doppler laser radars [9–11]. SINS/GPS integrated navigation is a commonly
used integrated navigation mode [12–14]. GPS signals are vulnerable to interference or shielding, and
the poor adaptability of GPS-assisted initial alignment system limits its application in the military
field. Cameras are also a promising choice despite their tight dependence on easily-identified features
with known positions on the path. Odometers are a kind of cost-effective and conveniently-deployed
sensor for land vehicles, and odometer aided in-motion alignment is widely used because of its fully
self-contained characteristics [15].

The Kalman filter is widely used in initial alignment [16,17]. In [18,19], Kalman filter-based initial
alignment for SINS/Doppler velocity log (DVL) integration is studied. However, the Kalman filter
requires knowledge of the noise statistics and a roughly known initial attitude that is hardly achieved
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when the vehicle running freely. If not properly initiated, DVL aided SINS initial alignment based on
Kalman filtering would fail.

By way of observability analysis, Wu systematically proposed a versatile strategy for
self-contained land vehicle navigation using an IMU and an odometer [20,21]. In these papers,
the INS attitude alignment is transformed into a “continuous” attitude determination problem using
infinite vector observations, but the initial alignment is still implemented by the Kalman filter other
than the optimal estimate algorithm. The coarse alignment algorithm based on optimal estimation
for odometer aided SINS is studied in [22,23], in which the integration form of the velocity update
equation in the body frame is used to give a rough initial attitude.

The optimization-based alignment (OBA) method with the aid of external velocity and position
information provided by Global Navigation Satellite System (GNSS) is proposed in [24–26]. The OBA
algorithm obtains an optimal attitude matrix through the q method to reduce random errors of
attitude angles. However, the algorithms are not suitable for the IMU/odometer system because of the
information provided by an odometer is different from the GNSS. In this paper, an optimization-based
initial alignment and calibration algorithm of INS/odometer system is proposed, in which the attitude
and the associated parameters including the odometer scale factor, lever arm, IMU misalignment
angle and inertial sensor biases are estimated. The numerical and vehicle test results show that the
performance of the proposed algorithm is superior to the extended Kalman filter (EKF) method during
the angular motion.

The contents are organized as follows: Section 2 presents the frame definition and the
SINS/odometer system model and conducts the observability analysis of system states. In Section 3,
the numerical integration algorithm is derived and the joint estimation problem is posed as a unit
quaternion-constrained optimization. Section 4 reports simulation and experiment results of the
algorithm. Conclusions are finally drawn in Section 5.

2. Formulate Problem

2.1. System Description

In order to better understand and deduce the initial alignment and calibration algorithm, it is
necessary to explain the related coordinate systems, that is, the Earth frame (e-frame), the navigation
frame (n-frame), the vehicle frame (a-frame), the SINS frame (b-frame), and the odometer frame
(m-frame). The relationship among a-frame, b-frame and m-frame is shown in Figure 1. These frames
are defined in detail as follows.
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Figure 1. The relationship among a-frame, b-frame and m-frame. The IMU locate at the centroid of 
vehicle, the point P, and the odometer at the center of the front axle, the point Q. 
Figure 1. The relationship among a-frame, b-frame and m-frame. The IMU locate at the centroid of
vehicle, the point P, and the odometer at the center of the front axle, the point Q.

e-frame: It is a frame fixed to the Earth and the origin is at its center; the ze axis goes along Earth
polar axis pointing to the North Pole; the xe axis points to the intersection of the prime meridian and
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the equator; the ye axis and the xe, ze axis form a right-hand coordinate frame. The e-frame rotates
around the Earth’s rotation with angular rateωie.

n-frame: The local geographic frame (east-north-up, ENU) is selected as the navigation frame.
Its origin is the centroid of the vehicle; the zn axis goes upward along the local geodetic vertical; the yn

axis and xn axis horizontal north and east respectively.
a-frame: Its origin is the centroid of the vehicle, the point P as shown in Figure 1; the xa axis shifts

rightward along the vehicle’s transverse axis, the ya axis forward along the longitudinal axis; the za

axis upward.
b-frame: Its origin coincides with the origin of the vehicle frame; the axes aligned with the

directions of the configuration of the three gyroscopes/accelerometers, which misalign the a-frame
axes in attitude.

m-frame: Its origin is the center of the front axle, the point Q as shown in Figure 1; its coordinate
axes are parallel to the three coordinate axes of b-frame; it is translated lb from the b-frame.

The navigation (attitude, velocity and position) rate equations in the reference n-frame are well
known as [27]:

.
C

n
b = Cn

b

(
ωb

nb×
)

, ωb
nb = ωb

ib − bg − Cb
n(ω

n
ie + ωn

en), (1)

.
vn

= Cn
b

(
fb − ba

)
− (2ωn

ie + ωn
en)× vn + gn, (2)

where Cn
b denotes the attitude matrix from b-frame to n-frame, ωb

nb the body angular rate with respect
to n-frame, ωb

ib the body angular rate measured by gyroscopes in b-frame, bg the gyroscope bias, ωn
ie

denotes the e-frame rotation rate with respect to the inertial frame, ωn
en the angular rate of the e-frame

with respect to n-frame, vn the velocity relative to n-frame measured by SINS, fb the specific force
measured by accelerometers in b-frame, ba the accelerometer bias, and gn the gravity vector. The 3 × 3
skew symmetric matrix (.×) is defined so that the cross product satisfies a× b = (a×)b for arbitrary
two vectors. The gyroscope bias bg and the accelerometer bias ba are taken as random constants, i.e.,
.
bg = 0,

.
ba = 0. All the quantities herein are functions of time and, if not stated, their time dependences

are omitted for brevity.

Denote the IMU misalignment angle as α =
[

αx αy αz

]T
, that the misalignment angle

between b-frame and m-frame, then the installation error matrix Cm
b can be expressed as [27]:

Cm
b =

 cos αy cos αz − sin αy sin αx sin αz cos αy sin αz + sin αy sin αx cos αz − sin αy cos αx

− cos αx sin αz cos αx cos αz sin αx

sin αy cos αz + cos αy sin αx sin αz sin αy sin αz − cos αy sin αx cos αz cos αy cos αx

. (3)

The misalignment angle is considered as constant, i.e.,
.
αx =

.
αy =

.
αz = 0.

Taking the odometer scale factor k and the lever arm lb into account, the speed at the odometer
measurement point can be expressed as:

yod = k · e2
TCm

b

(
Cb

nvn
s + ωb

nb × lb
)

, (4)

where, vn
s is the velocity of the IMU measurement point expressed in n-frame, and ωb

nb is the body
angular rate with respect to the navigation frame, expressed in the b-frame. The odometer scale factor

k and the lever arm lb are considered as constants, i.e.,
.
k = 0,

.
l
b
= 0.

For land-vehicle, the velocity in the plane perpendicular to the moving direction is assumed as
zero, which is regarded as “virtual measurements”, i.e.:

ync =

[
0
0

]
. (5)
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Merging Equations (4) and (5), the measurement equation is obtained as:

y = diag
{[

1 k 1
]}

Cm
b

(
Cb

nvn
s + ωb

nb × lb
)

. (6)

2.2. The System Observability Analysis

A system is said to be observable if the initial state could be derived from the known measurement
and input information in finite time [28]. The observable state can be estimated by designed observer.
In this section, authors investigate the observability of some system states directly from the basic
observability concept.

Substituting Equation (3) into (6):

Cb
m

 0
yod/k

0

 =
yod
k

 − cos αx sin αz

cos αx cos αz

sin αx

 = Cb
nvn

s + ωb
nb × lb. (7)

It is obviously that the roll angle αy has no effect on yod, and it is unobservable.
We rewrite Equation (2) as:

.
vn

+ (2ωn
ie + ωn

en)× vn − Cn
b

(
fb − ba

)
= gn. (8)

The time derivative of vn = Cn
b vb is:

.
vn

= Cn
b

( .
vb

+ ωb
nb × vb

)
. (9)

Substituting Equation (9) into Equation (8):

Cn
b

( .
vb

+
(

ωb
ib − bg + ωb

ie

)
× vb − fb + ba

)
= gn. (10)

Rewrite Equation (6) as:

vb = Cb
mdiag

{[
1 k 1

]}−1
y−ωb

nb × lb. (11)

Note K = diag
{[

1 k 1
]}−1

, then we have

vb = Cb
mKy−ωb

nb × lb. (12)

The derivative on both sides of Equation (12) is

.
vb

= Cb
mK

.
y− .

ω
b
nb × lb. (13)

Substituting Equation (13) into Equation (10), we have

Cn
b

[
Cb

mK
.
y− .

ω
b
nb × lb +

(
ωb

ib − bg + ωb
ie

)
×
(

Cb
mKy− .

ω
b
nb × lb

)
− fb + ba

]
= gn. (14)

Rewrite Equation (14) as[
Cb

mK
.
y +

(
ωb

ib − bg + ωb
ie

)
× Cb

mKy
]
−
[ .
ω

b
nb +

(
ωb

ib − bg + ωb
ie

)
×ωb

nb

]
× lb = Cb

ngn + fb − ba. (15)
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If the carrier has no attitude maneuver, then ωb
nb = 0, ‖ωb

ib − bg‖ ≈ ‖ωb
ie‖ ≈ 7.3× 10−5 rad/s are

small amounts. Equation (15) can be simplified as [19]:

Cb
mK

.
y = Cb

ngn + fb − ba. (16)

Make derivatives with respect to time on both sides:

Cb
mK

..
y =

.
f
b
. (17)

Take the mode of both sides:
k = ±‖ ..

y‖/‖
.
f
b
‖. (18)

In general, the odometer scale factor is positive

k = ‖ ..
y‖/‖

.
f
b
‖. (19)

Rewrite Equation (17) into the following form

..
yodo

k

 − cos αx sin αz

cos αx cos αz

sin αx

 =
.
f
b
. (20)

It is obviously that the odometer scale factor k and IMU misalignment angle αx, αz can be
calculated from Equations (19) and (20) respectively, and the self-calibration algorithm will be designed
in the next section.

3. Self-Calibration & Initial Alignment Algorithm

3.1. Self-Calibration Algorithm

According to the results of observability analysis in the previous section, it is feasible to construct
an ideal observer to estimate the odometer scale factor and IMU misalignment angle based on
Equations (19) and (20). Integrating Equation (20) twice over the subinterval [t0 t]

Cb
mKα(t) = β(t), (21)

where, α(t) , y(t) − y(t0) −
.
y(t0)(t− t0), β(t) =

∫ t
t0

fbdτ−fb(t0)(t− t0). Compared with
Equation (20), this kind of integral form decline the effect of measurement noise. This equation
is applied to all the segments that the vehicle has no attitude maneuver and the acceleration is not
zero. And the calculation algorithms of the odometer scale factor and IMU misalignment angle are
shown as below:

k = ‖α(t)‖/‖β(t)‖, (22)

α(t)
k

 − cos αx sin αz

cos αx cos αz

sin αx

 = β(t). (23)

3.2. Initial Alignment and Calibration Algorithm

The aim of this section is to figure out the initial alignment and calibration method based on the
known odometer scale factor and IMU misalignment angle.

According to the content of last section, Cb
mKy is a known parameter, denoted as:

vb
od = Cb

mKy. (24)
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The frozen e-frame at the beginning of the initial alignment is defined as the inertial frame, i.e.,
i-frame. By the chain rule of the attitude matrix, Cb

n(t) at any time satisfies:

Cb
n(t) = Cb(t)

n(t) = Cb(t)
b(0)C

b(0)
n(0)C

n(0)
n(t) = Cb(t)

b(0)C
b
n(0)C

n(0)
n(t) , (25)

where, Cb
n(0) is the initial attitude matrix from n-frame to b-frame, Cb(t)

b(0) and Cn(0)
n(t) encode the attitude

changes of the b-frame and n-frame from time 0 to t respectively. Their rate equations are:

.
C

b(0)
b(t) = Cb(0)

b(t)

(
ωb

ib − bg

)
×, (26)

.
C

n(0)
n(t) = Cn(0)

n(t) (ω
n
in×), (27)

where, ωn
in denotes the angular velocity of n-frame with respect to the inertial frame, i.e.,

ωn
in = ωn

ie + ωn
en.

Substituting Equations (24) and (25) into Equation (15), and rewriting as:

Cb(0)
b(t)

( .
vb

od +
(

ωb
ib − bg + ωb

ie

)
× vb

od −
[ .
ω

b
nb +

(
ωb

ib − bg + ωb
ie

)
×ωb

nb

]
× lb −

(
fb − ba

))
= Cb

n(0)C
n(0)
n(t) gn. (28)

Make integration with respect to time on both sides of Equation (28):∫ t
0 Cb(0)

b(t)

[ .
vb

od +
(

ωb
ib − bg + ωb

ie

)
× vb

od

]
dt

−
∫ t

0 Cb(0)
b(t)

[ .
ω

b
nb +

(
ωb

ib − bg + ωb
ie

)
×ωb

nb

]
× dtlb

−
∫ t

0 Cb(0)
b(t)

(
fb − ba

)
dt

= Cb
n(0)

∫ t
0 Cn(0)

n(t) gndt

, (29)

where: ∫ t

0
Cb(0)

b(t)
.
vb

oddt = Cb(0)
b(t) vb

od − vb
od(0)−

∫ t

0
Cb(0)

b(t)

(
ωb

ib − bg

)
× vb

oddt, (30)

∫ t

0
Cb(0)

b(t)

( .
ω

b
nb×

)
dt = Cb(0)

b(t)

(
ωb

nb×
)
−
(

ωb
nb(0)×

)
−
∫ t

0
Cb(0)

b(t)

(
ωb

ib − bg

)
×ωb

nb × dt. (31)

Substituting the above equations into Equation (29)

Cb(0)
b(t) vb

od − vb
od(0) +

∫ t
0 Cb(0)

b(t) ωb
ie × vb

oddt

−
(

Cb(0)
b(t)

(
ωb

nb×
)
−
(

ωb
nb(0)×

)
+
∫ t

0 Cb(0)
b(t) ωb

ie ×ωb
nb × dt

)
lb

−
∫ t

0 Cb(0)
b(t)

(
fb − ba

)
dt

= Cb
n(0)

∫ t
0 Cn(0)

n(t) gndt

. (32)

During the attitude maneuvering, ωb
ie is much smaller amount than ωb

nb. Equation (32) can be
simplified as:

Cb(0)
b(t) vb

od − vb
od(0)−

(
Cb(0)

b(t) ωb
nb −ωb

nb(0)
)
× lb −

∫ t

0
Cb(0)

b(t)

(
fb − ba

)
dt = Cb

n(0)
∫ t

0
Cn(0)

n(t) gndt, (33)
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where, Cb(0)
b(t) can be simplified in the first order as:

Cb(0)
b(t) = Cb(0)

b(T) · · ·C
b((M−1)T)
b(MT) ≈

M
∏
i=1

(
I + Θi − Tbg×

)
≈ C̃

b(0)
b(tM) − T

M
∑

i=1

[
i−1
∏
j=1

(
I + Θj

)]
×
(
bg×

)[ M
∏

j=i+1

(
I + Θj

)]
≈ C̃

b(0)
b(tM) −MTbg×

, (34)

where, C̃
b(0)
b(tM) denotes the error-contaminated body matrix computed by ωb

ib and Θi is the skew
symmetric matrix formed by the error-contaminated incremental rotation vector during the update

interval [ti−1 ti]. For notational brevity, the Cb(0)
b(tM)

is used instead of C̃
b(0)
b(tM) in the later sections. M is

the current sequence, and T is the integral period.
Substituting Equation (34) into the left integral of Equation (33):

∫ t
0 Cb(0)

b(t)

(
fb − ba

)
dt =

M−1
∑

k=0

∫ tk+1
tk

Cb(0)
b(t)

(
fb − ba

)
dt

=
M−1
∑

k=0
Cb(0)

b(tk)

∫ tk+1
tk

Cb(tk)
b(t)

(
fb − ba

)
dt

=
M−1
∑

k=0

(
Cb(0)

b(tk)
− kTbg×

)∫ tk+1
tk

(
I +

(∫ t
tk

(
ωb

ib − bg

)
dτ
)
×
)(

fb − ba

)
dt

, (35)

where, the incremental integral above can be approximated using the two-sample correction by:∫ tk+1
tk

(
I +

(∫ t
tk

(
ωb

ib − bg

)
dτ
)
×
)(

fb − ba

)
dt

=
∫ tk+1

tk

(
I +

(∫ t
tk

ωb
ibdτ

)
×
)

f bdt−
∫ tk+1

tk

(
I +

(∫ t
tk

ωb
ibdτ

)
×
)

dtba

−bg ×
∫ tk+1

tk
(t− tk)

(
fb − ba

)
dt

= ∆v1 + ∆v2 +
1
2 (∆θ1 + ∆θ2)× (∆v1 + ∆v2) +

2
3 (∆θ1 × ∆v2 + ∆v1 × ∆θ2)

−
[

TI + T
6 (5∆θ1 + ∆θ2)×

]
ba +

[
T
6 (∆v1 + 5∆v2)− T2

2 ba

]
× bg

, (36)

where, ∆v1 and ∆v2 are the first and the second samples of the incremental velocity measured by
accelerometers, ∆θ1 and ∆θ2 are the first and the second samples of the incremental angle measured by
gyroscopes during the update interval [tk tk+1], respectively. Substituting Equation (36) into (35) and
rewriting the equation by neglecting those products of IMU biases higher than the first order, we have:∫ t

0 Cb(0)
b(t)

(
fb − ba

)
dt

≈
M−1
∑

k=0
Cb(0)

b(tk)

[
∆v1 + ∆v2 +

1
2 (∆θ1 + ∆θ2)× (∆v1 + ∆v2) +

2
3 (∆θ1 × ∆v2 + ∆v1 × ∆θ2)

]
−

M−1
∑

k=0
Cb(0)

b(tk)

[
TI + T

6 (5∆θ1 + ∆θ2)×
]
ba +

M−1
∑

k=0
Cb(0)

b(tk)

[
T
6 (∆v1 + 5∆v2)

]
× bg

+
M−1
∑

k=0

[
∆v1 + ∆v2 +

1
2 (∆θ1 + ∆θ2)× (∆v1 + ∆v2) +

2
3 (∆θ1 × ∆v2 + ∆v1 × ∆θ2)

]
× kTbg

. (37)

Discretize the integral on the right of the Equation (28) as:

∫ t

0
Cn(0)

n(t) gndt =
M−1

∑
k=0

∫ tk+1

tk

Cn(0)
n(t) gndt =

M−1

∑
k=0

Cn(0)
n(tk)

∫ tk+1

tk

Cn(tk)
n(t) gndt. (38)
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The n-frame rate ωn
in changes much slower than the body rate ωb

ib, so Cn(tk)
n(t) can be approximated as

Cn(tk)
n(t) = I + sin(‖ϕn‖)

‖ϕn‖ (ϕn×) + 1−cos(‖ϕn‖)
‖ϕn‖2 (ϕn×)2

≈ I + (ϕn×)
, (39)

where, ϕn ≈
∫ t

tk
ωn

indt ≈ (t− tk)ω
n
in denotes the rotation vector of n-frame from tk to the current time t.

The integral can be approximated by:

∫ t
0 Cn(0)

n(t) gndt ≈
M−1
∑

k=0
Cn(0)

n(tk)

∫ tk+1
tk

(
I + (t− tk)ω

n
in×
)
gndt

=
M−1
∑

k=0
Cn(0)

n(tk)

(
TI + T2

2 ωn
in×
)

gn
. (40)

Substituting Equations (36), (37) and (40) into the left integral of Equation (33):

αM + γMlb + χMba + λMbg = Cb
n(0)βM, (41)

where the symbols in Equation (41) are defined as follows:

∆v = ∆v1 + ∆v2 +
1
2
(∆θ1 + ∆θ2)× (∆v1 + ∆v2) +

2
3
(∆θ1 × ∆v2 + ∆v1 × ∆θ2),

αM = Cb(0)
b(tM)

vb
od − vb

od(0)−
M−1

∑
k=0

Cb(0)
b(tk)

∆v,

χM =
M−1

∑
k=0

Cb(0)
b(tk)

[
TI +

T
6
(5∆θ1 + ∆θ2)×

]
,

λM = MT
(

vb
od×

)
−

M−1

∑
k=0

(
Cb(0)

b(tk)

[
T
6
(∆v1 + 5∆v2)×

]
+ kT∆v×

)
,

γM = −
(

Cb(0)
b(t) ωb

ib ×−ωb
ib(0)×

)
,

βM =
M−1

∑
k=0

Cn(0)
n(tk)

(
TI +

T2

2
ωn

in×
)

gn.

3.3. Optimization-Based Attitude and Parameter Estimation

In this section, Equation (41) will be posed as a constrained minimization problem to estimate
the attitude and other parameters. The attitude matrix Cn

b (0) is replaced by the four-element unit
quaternion q = [s η]T, where s is the scalar part and η is the vector part. The relationship between the
unit quaternion and the attitude matrix is [1]:

Cn
b (0) =

(
s2 − ηTη

)
I + 2ηηT + 2s(η×). (42)

Define the quaternion multiplication as:

q1 ◦ q2 =
+
[q1]

[
s2

η2

]
=

−
[q2]

[
s1

η1

]
, (43)

where,
+
[q] =

[
s −ηT

η sI + (η×)

]
,
−
[q] =

[
s −ηT

η sI− (η×)

]
.
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Then Equation (41) is equivalent to:

αM + γMlb + χMba + λMbg = q∗ ◦ βM ◦ q. (44)

Multiply both sides by q

q ◦
(

αM + γMlb + χMba + λMbg

)
= βM ◦ q. (45)

According to Equation (43), Equation (45) can be rewritten as:

0 =

( −
[αM]−

+
[βM]

)
q +

+
[q]
(

γMlb + χMba + λMbg

)
, π. (46)

Since the magnitude of the unit quaternion is 1, we can pose the problem as a unit
quaternion-constrained optimization [21,29]:

min
q,lb ,ba ,bg

∑
M

πTπ, s.t.qTq = 1. (47)

Ignoring the IMU biases and the lever arm, it is reduced to the Wahba problem [30], which is
famous in attitude determination:

min
q ∑

M
qT
( −
[αM]−

+
[βM]

)T( −
[αM]−

+
[βM]

)
q, s.t.qTq = 1. (48)

Denote K = ∑
M

( −
[αM]−

+
[βM]

)T( −
[αM]−

+
[βM]

)
, the solution of Wahba problem is the

eigenvectors belonging to the minimum eigenvalues of the matrix K. And the solution will be
taken as the initial angle of the following Newton-Lagrange method.

The iterative Newton-Lagrange method is chosen to tackle the nonlinearly constrained
optimization problem, and the Lagrangian equation for the problem (47) is defined as [31]:

L(x, µ) = ∑
M

πTπ + µ
(

qTq− 1
)

, (49)

where, x ,
[

qT lbT ba
T bg

T
]T

, µ is the Lagrange multiplier. The iterative algorithm is given as
below: [

xk+1
µk+1

]
=

[
xk
µk

]
+

[
∆x
∆µ

]
, (50)

where, ∆x and ∆µ are calculated by:

∇2L(x, µ)

[
∆x
∆µ

]
= −∇L(xk, µk). (51)

Namely: [
∇2

xxL(xk, µk) ∇2
xµL(xk, µk)

∇2
xµL(xk, µk)

T 0

][
∆x
∆µ

]
= −

[
∇xL(xk, µk)

qTq− 1

]
. (52)

The first and the second derivatives of L(xk, µk) are expressed as follows:

∇xL(xk, µk) = ∑
M

J− 2µ
[

qT 01×3 01×3 01×3

]T
,
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∇2
xµL(xk, µk) = −2

[
qT 01×3 01×3 01×3

]T
,

∇2
xxL(xk, µk) = ∑

M
H− 2µdiag

{[
11×4 01×9

]T
}

,

where, J ,
[

JT
1 JT

2 JT
3 JT

4

]T
is the Jacobian matrix of πTπ with:

J1 = 2
( −
[αM]−

+
[βM]

)T( −
[αM]−

+
[βM]

)
q

+2

 −[
γMlb + χMba + λMbg

]T
( −
[αM]−

+
[βM]

)
+

( −
[αM]−

+
[βM]

)T −[
γMlb + χMba + λMbg

]q
,

J2 = 2γT
M

+

[q]T
( −
[αM]−

+
[βM]

)
q + 2γT

M

(
γMlb + χMba + λMbg

)
,

J3 = 2χT
M

+

[q]T
( −
[αM]−

+
[βM]

)
q + 2χT

M

(
γMlb + χMba + λMbg

)
,

J4 = 2λT
M

+

[q]T
( −
[αM]−

+
[βM]

)
q + 2λT

M

(
γMlb + χMba + λMbg

)
,

and H ,


H11 H12 H13 H14

HT
12 H22 H23 H24

HT
13 HT

23 H33 H34

HT
14 HT

24 HT
34 H44

 is the Hessian matrix of πTπ with:

H11 = 2
( −
[αM]−

+
[βM]

)T( −
[αM]−

+
[βM]

)
+2

 −[
γMlb + χMba + λMbg

]T
( −
[αM]−

+
[βM]

)
+

( −
[αM]−

+
[βM]

)T −[
γMlb + χMba + λMbg

] ,

H12 = 2

( −
[αM]−

+
[βM]

)T +
[q]−

+[( −
[αM]−

+
[βM]

)
q
]γM,

H13 = 2

( −
[αM]−

+
[βM]

)T +
[q]−

+[( −
[αM]−

+
[βM]

)
q
]χM,

H14 = 2

( −
[αM]−

+
[βM]

)T +
[q]−

+[( −
[αM]−

+
[βM]

)
q
]λM,

H22 = 2γT
MγM, H23 = 2γT

MχM, H24 = 2γT
MλM,

H33 = 2χT
MχM, H34 = 2χT

MλM, H44 = 2λT
MλM.

4. Simulation and Experiment

To verify the performance of the proposed optimization-based initial alignment algorithm,
simulations and experiments are performed in this section.
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4.1. Simulation and Analysis

The vehicle is assumed to be located at medium latitude 45◦ and equipped with a triad of
gyroscopes (drift 0.02◦/h, noise 0.002◦/h/

√
Hz) and accelerometers (bias 100 µg, noise 10 µg/

√
Hz)

at a sampling rate 100 Hz. The IMU misalignment angle is [20′ 10′ 30′]T. The odometer is displaced
from the IMU by the lever arm lb = [1 3.2 − 0.5]T in meters and the odometer scale factor error is
0.002. White noise of velocity (standard variance 0.02 m/s) is simulated in odometer measurements.
The initial attitude error is [1◦ 1◦ 10◦]T, the initial position error is 10m for each direction in latitude,
longitude and height.

Firstly, the simulations are designed to mimic the typical motions of a land vehicle, the vehicle
trajectory is designed as follows. The total simulation time is 1000 s. The maneuver mode includes
the accelerating, turning, pitching and slowing down. The vehicle’s running trajectory is shown in
Figure 2, the outputs of IMU are shown in Figure 3.
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Figure 2. The vehicle’s simulation trajectory.
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Figure 3. The IMU data of typical motions simulation. The left three figures are the angular rate
measured by gyroscopes, the right three figures are the specific forces.

According to the results of observability analysis in the previous section, the self-calibration
algorithm is applied to all the segments that the vehicle has no attitude maneuver and the acceleration
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is not zero. The trajectory data of the first 100 s are used for the simulation. As shown in Figure 4,
the odometer scale factor is effectively estimated at about 55 s after the vehicle accelerating. And the
IMU misalignment angle in Figure 5 is also effectively estimated once the vehicle starts to move at
30 s. As expected, the estimated result deviates from the truth value after the vehicle turning at 70 s,
because the applicable conditions of the algorithm are not satisfied. The estimated values k = 1.00198,
αx = 20.02′, αz = 29.85′ will be considered to be known states in the following simulations.
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Figure 4. The estimation of odometer scale factor. The blue solid line denotes the estimation by
self-calibration algorithm, and the green dashed line denotes the truth value.
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Figure 5. The estimation of IMU misalignment angle. The blue solid line denotes the estimation by
self-calibration algorithm, and the green dashed line denotes the truth value. The upper figure is the
misalignment angle of x axis, and the bottom figure is the misalignment angle of z axis.

Next, an extended Kalman filter (EKF) is implemented as a comparison of the proposed
optimization-based alignment (OBA) method. Figure 6 presents the alignment result of attitude error
by EKF (the blue dashed line) and OBA (the rad solid line). Roll and pitch gradually converge after 70 s
(turning), and the convergence accuracy is better than 0.01′. And due to the large initial error setting,
the convergence of the yaw is relatively slow and accuracy is about 0.1′. For the estimation of attitude
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error, the proposed OBA method is relatively better than EKF as shown in Table 1. The estimation of the
lever arm is shown in Figure 7. For horizontal arm (x axis and y axis), the EKF method is expected to
converge rapidly after the course turn, and the vertical arm (z axis) converges gradually after pitching.
Compared with EKF, the convergence of OBA method is more quickly and the estimation accuracy is
much higher. To present the estimate results clearly, the estimate errors are listed in Table 1.
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Figure 6. The estimation of attitude error. The red solid line denotes the estimation by OBA, and the
blue dashed line denotes the estimation by EKF. The three figures are the attitude errors of pitch, roll
and yaw respectively.
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Table 1. The estimate results of typical motion simulation.

Estimate Error EKF OBA

Attitude (min) [0.0032 0.0042 0.0949]T [−0.0023 −0.0023 0.0413]T

Lever arm (m) [−0.0071 0.0347 −0.0387]T [0.0010 0.0037 −0.0032]T
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Then, we designed a trajectory with alternating yawing and pitching motion, and the IMU outputs
are shown in Figure 8. The estimate results of attitude are shown in Figure 9. It can be seen that the
estimation of OBA is similar to the last simulation, but the estimate results of EKF vary obviously
with the oscillation amplitude about 0.4′. The estimation of lever arm is shown in Figure 10, and the
estimate result of EKF has obvious oscillations with the attitude motion too. The estimate errors of EKF
and OBA are listed in Table 2. It is clearly that the EKF is susceptible to disturbance of angular motions,
while OBA is hardly affected. The OBA algorithm can track attitude motion and it is inherently not
influenced by any angular motions.
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Figure 8. The IMU outputs of angular motion simulation. The left three figures are the angular rate
measured by gyroscopes, the right three figures are the specific forces measured by accelerometers.
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Figure 9. The estimation of attitude error. The red solid line denotes the estimation by OBA, and the
blue dashed line denotes the estimation by EKF. The three figures are the attitude errors of pitch, roll
and yaw respectively.



Sensors 2018, 18, 2081 15 of 19
Sensors 2018, 17, x  15 of 19 

 

 
Figure 10. The estimation of lever arm. The red solid line denotes the estimation by OBA, and the blue 
dashed line denotes the estimation by EKF. The three figures are the lever arm of x axis, y axis and z 
axis respectively. 

Table 2. The estimate results of angular motion simulation. 

Estimate Error EKF OBA 
Attitude (min) [0.0134  0.0107  −0.2233]T [−0.0130  −0.0087  0.0878]T 
Lever arm (m) [−0.0242  0.0308  0.0028]T [−0.0033  0.0005  −0.0004]T 

4.2. Experiment and Analysis 

A vehicle test was conducted to validate the actual performance of the proposed algorithm. The 
SINS/odometer system parameters are the same with the simulation condition. A high-precision GPS 
equipment was chosen as position reference, with the position accuracy less than 3 m and the velocity 
accuracy 0.1 m/s. And the attitude reference was given by SINS/GPS integrated navigation system. 
The vehicle test trajectory is shown in Figure 11, and the velocity measured by odometer is shown in 
Figure 12.  

 
Figure 11. The vehicle test trajectory measured by GPS. 

0 100 200 300 400 500 600 700 800 900

0.95

1

1.05

x 
ax

is
 

Lever arm (m)

0 100 200 300 400 500 600 700 800 900
2.8

3

3.2

y 
ax

is
 

0 100 200 300 400 500 600 700 800 900

-0.6

-0.5

-0.4

-0.3

z 
ax

is
 

Time (s)

 

 

OBA
EKF

-200 -100 0 100 200 300 400
-500

-400

-300

-200

-100

0

100

200

East / m

N
or

th
 / 

m

Figure 10. The estimation of lever arm. The red solid line denotes the estimation by OBA, and the blue
dashed line denotes the estimation by EKF. The three figures are the lever arm of x axis, y axis and z
axis respectively.

Table 2. The estimate results of angular motion simulation.

Estimate Error EKF OBA

Attitude (min) [0.0134 0.0107 −0.2233]T [−0.0130 −0.0087 0.0878]T

Lever arm (m) [−0.0242 0.0308 0.0028]T [−0.0033 0.0005 −0.0004]T

4.2. Experiment and Analysis

A vehicle test was conducted to validate the actual performance of the proposed algorithm.
The SINS/odometer system parameters are the same with the simulation condition. A high-precision
GPS equipment was chosen as position reference, with the position accuracy less than 3 m and the
velocity accuracy 0.1 m/s. And the attitude reference was given by SINS/GPS integrated navigation
system. The vehicle test trajectory is shown in Figure 11, and the velocity measured by odometer is
shown in Figure 12.
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Figure 11. The vehicle test trajectory measured by GPS.
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Figure 12. The vehicle test velocity measured by odometer.

The odometer scale factor and IMU misalignment angle estimated by the OBA are shown in
Figures 13 and 14. The figures shows that the proposed method can correctly estimate the OD scale
factor error, and the SINS installation angle error can be estimated after the vehicle turning as we
expected. The estimate results of attitude error are shown in Figure 15. As can be seen from Figure 15,
the heading error can reach an accuracy of 5′ within 200 s, and the two-level misalignment angles can
reach an accuracy of 1′.
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Figure 14. The estimation of IMU misalignment angle. The upper figure is the misalignment angle of x
axis, and the bottom figure is the misalignment angle of z axis.
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5. Conclusions

This paper has proposed a novel algorithm for the joint estimation of SINS/odometer attitude and
associated parameters including the odometer scale factor, lever arm, IMU misalignment angle and
inertial sensor biases. The global observability analysis of INS/odometer system is conducted at first.
Then, based on the observability analysis results, an integration algorithm for identifying odometer
scale factor and IMU misalignment angle was designed, and the initial alignment and calibration
algorithm based on optimal algorithm is established. Later on, the initial alignment and calibration
problem is posed as a unit quaternion-constrained optimization on attitude, lever arm, accelerometer
bias and gyroscope drift, and the Newton-Lagrange algorithm is derived to solve the problem. Finally,
simulation and experiment studies show that this new technique has the capability of self-initialization
and calibration without any prior attitude and sensor noise information, and the performance of OBA
method is superior to the EKF method during the angular motion.



Sensors 2018, 18, 2081 18 of 19

Author Contributions: K.G., S.R., and X.C. conceived and designed this study. X.C. and Z.W. performed the
experiments. K.G. wrote the paper. S.R. reviewed and edited the manuscript. All authors read and approved
this manuscript.

Funding: The above research is supported in part by the National Natural Science Foundation of China (61703123)
and in part by the 13th Five-year Equipment Pre-research Foundation (4141708031).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Titterton, D.; Weston, J.L. Strapdown Inertial Navigation Technology; IET, Lavenham Press Ltd.: London, UK, 2004.
2. Huang, W.; Fang, T.; Luo, L.; Zhao, L.; Che, F. A Damping Grid Strapdown Inertial Navigation System Based

on a Kalman Filter for Ships in Polar Regions. Sensors 2017, 17, 1551. [CrossRef] [PubMed]
3. Chang, L.; Li, J.; Chen, S. Initial Alignment by Attitude Estimation for Strapdown Inertial Navigation

Systems. IEEE Trans. Instrum. Meas. 2015, 64, 784–794. [CrossRef]
4. Huang, Y.; Zhang, Y. A New Process Uncertainty Robust Student’s t based Kalman Filter for SINS/GPS

Integration. IEEE Access 2017, 5, 14391–14404. [CrossRef]
5. Lu, J.; Lei, C.; Li, B.; Wen, T. Improved calibration of IMU biases in analytic coarse alignment for AHRS.

Meas. Sci. Technol. 2016, 27, 075105. [CrossRef]
6. Huang, Y.; Zhang, Y.; Wang, X. Kalman-Filtering-Based In-Motion Coarse Alignment for Odometer-Aided

SINS. IEEE Trans. Instrum. Meas. 2017, 66, 3364–3377. [CrossRef]
7. Che, Y.; Wang, Q.; Gao, W.; Yu, F. An improved inertial frame alignment algorithm based on horizontal

alignment information for marine SINS. Sensors 2015, 15, 25520–25545. [CrossRef] [PubMed]
8. Silson, P.M.G. Coarse alignment of a ship’s strapdown inertial attitude reference system using velocity loci.

IEEE Trans. Instrum. Meas. 2011, 60, 1930–1941. [CrossRef]
9. Hong, W.; Han, K.; Lee, C.; Paik, B. Three stage in flight alignment with covariance shaping adaptive filter

for the strapdown inertial navigation system (SDINS). In Proceedings of the AIAA Guidance, Navigation
and Control Conference, Toronto, ON, Canada, 2–5 August 2010. [CrossRef]

10. Yan, G.M.; Qin, Y.Y. Novel approach to in-flight alignment of micro-mechanical SINS/GPS with heading
uncertainty. Chin. J. Sens. Act. 2007, 20, 238–242.

11. Wang, Y.G.; Yang, J.S.; Yu, Y.; Lei, Y.L. On-the-move alignment for SINS based on odometer aiding.
Syst. Eng. Electron. 2013, 35, 1060–1063. [CrossRef]

12. Tang, Y.; Wu, Y.; Wu, M.; Wu, W.; Hu, X.; Shen, L. INS/GPS Integration: Global Observability Analysis.
IEEE Trans. Veh. Technol. 2009, 58, 1129–1142. [CrossRef]

13. Ali, J.; Ushaq, M. A consistent and robust Kalman filter design for in-motion alignment of inertial navigation
system. Measurement 2009, 42, 577–582. [CrossRef]

14. Skog, I.; Händel, P. In-Car Positioning and Navigation Technologies—A Survey. IEEE Trans. Intell.
Transp. Syst. 2009, 10, 4–21. [CrossRef]

15. Georgy, J.; Karamat, T.; Iqbal, U.; Noureldin, A. Enhanced MEMS-IMU/odometer/GPS integration using
mixture particle filter. GPS Solut. 2011, 15, 239–252. [CrossRef]

16. Li, J.; Xu, J.; Chang, L.; Zha, F. An improved optimal method for initial alignment. J. Navig. 2014, 67, 727–736.
[CrossRef]

17. Chang, G. Fast two-position initial alignment for SINS using velocity plus angular rate measurements.
Adv. Space Res. 2015, 56, 1331–1342. [CrossRef]

18. Li, W.; Wu, W.; Wang, J.; Wu, M. A novel backtracking navigation scheme for autonomous underwater
vehicles. Measurement 2014, 47, 496–504. [CrossRef]

19. Pan, X.; Wu, Y. Underwater Doppler Navigation with Self-calibration. J. Navig. 2015, 69, 295–312. [CrossRef]
20. Wu, Y.; Wu, M.; Hu, X.; Hu, D. Self-calibration for Land Navigation Using Inertial Sensors and Odometer:

Observability Analysis. In Proceedings of the AIAA Guidance, Navigation, and Control Conference, Chicago,
IL, USA, 10–13 August 2009. [CrossRef]

21. Wu, Y.; Pan, X. Velocity/Position Integration Formula Part I: Application to In-Flight Coarse Alignment.
IEEE Trans. Aerosp. Electron. Syst. 2013, 49, 1006–1023. [CrossRef]

22. Zhang, Y.; Luo, L.; Fang, T.; Li, N.; Wang, G. An Improved Coarse Alignment Algorithm for Odometer-Aided
SINS Based on the Optimization Design Method. Sensors 2018, 18, 195. [CrossRef] [PubMed]

http://dx.doi.org/10.3390/s17071551
http://www.ncbi.nlm.nih.gov/pubmed/28671631
http://dx.doi.org/10.1109/TIM.2014.2355652
http://dx.doi.org/10.1109/ACCESS.2017.2726519
http://dx.doi.org/10.1088/0957-0233/27/7/075105
http://dx.doi.org/10.1109/TIM.2017.2737840
http://dx.doi.org/10.3390/s151025520
http://www.ncbi.nlm.nih.gov/pubmed/26445048
http://dx.doi.org/10.1109/TIM.2011.2113131
http://dx.doi.org/10.2514/6.2010-7854
http://dx.doi.org/10.3969/j.issn.1001-506X.2013.05.27
http://dx.doi.org/10.1109/TVT.2008.926213
http://dx.doi.org/10.1016/j.measurement.2008.10.002
http://dx.doi.org/10.1109/TITS.2008.2011712
http://dx.doi.org/10.1007/s10291-010-0186-4
http://dx.doi.org/10.1017/S0373463314000198
http://dx.doi.org/10.1016/j.asr.2015.07.005
http://dx.doi.org/10.1016/j.measurement.2013.09.022
http://dx.doi.org/10.1017/S0373463315000703
http://dx.doi.org/10.2514/6.2009-5970
http://dx.doi.org/10.1109/TAES.2013.6494395
http://dx.doi.org/10.3390/s18010195
http://www.ncbi.nlm.nih.gov/pubmed/29324698


Sensors 2018, 18, 2081 19 of 19

23. Xue, H.; Guo, X.; Zhou, Z.; Wang, K. In-motion Alignment Algorithm for Vehicle Carried SINS Based on
Odometer Aiding. J. Navig. 2017, 70, 1349–1366. [CrossRef]

24. Wu, Y.; Wang, J.; Hu, D. A New Technique for INS/GNSS Attitude and Parameter Estimation Using Online
Optimization. IEEE Trans. Signal Process. 2014, 62, 2642–2655. [CrossRef]

25. Chang, L.; Li, J.; Li, K. Optimization-based alignment for strapdown inertial navigation system: Comparison
and extension. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 1697–1713. [CrossRef]

26. Chang, L.; He, H.; Qin, F. In-motion Initial Alignment for Odometer Aided Strapdown Inertial Navigation
System based on Attitude Estimation. IEEE Sens. J. 2017, 17, 766–773. [CrossRef]

27. Noureldin, A.; Karamat, T.B.; Georgy, J. Fundamentals of Inertial Navigation, Satellite-Based Positioning and Their
Integration; Springer Science & Business Media: Berlin, Germany, 2012.

28. Isidori, A. Nonlinear Control Systems, 2nd ed.; Springer: Berlin, Germany; New York, NY, USA, 1989.
29. Bar-Itzhack, I.Y. REQUEST: A recursive QUEST algorithm for sequential attitude determination. J. Guid.

Control Dyn. 1996, 19, 1034–1038. [CrossRef]
30. Wahba, G. A least squares estimate of spacecraft attitude. SIAM Rev. 1965, 7, 409–411. [CrossRef]
31. Nocedal, J.; Wright, S. Numerical Optimization; Springer: New York, NY, USA, 1999.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1017/S0373463317000340
http://dx.doi.org/10.1109/TSP.2014.2312317
http://dx.doi.org/10.1109/TAES.2016.130824
http://dx.doi.org/10.1109/JSEN.2016.2633428
http://dx.doi.org/10.2514/3.21742
http://dx.doi.org/10.1137/1007077
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Formulate Problem 
	System Description 
	The System Observability Analysis 

	Self-Calibration & Initial Alignment Algorithm 
	Self-Calibration Algorithm 
	Initial Alignment and Calibration Algorithm 
	Optimization-Based Attitude and Parameter Estimation 

	Simulation and Experiment 
	Simulation and Analysis 
	Experiment and Analysis 

	Conclusions 
	References

