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Abstract: The evolving role of modern navies has required increasingly higher levels of capability in
the Radio Frequency (RF) shipboard systems that provide radar, communications, Electronic Attack
(EA) and Electronic Support (ES) functions. The result has been a proliferation of topside antennas and
associated hardware on naval vessels. The notion of MultiFunction RF (MFRF) systems has drawn
considerable interest as an approach to reversing this trend. In a MFRF system, RF functions are
consolidated within a shared set of electronics and antenna apertures that utilize Active Electronically
Scanned Array (AESA) technology. This paper highlights a number of issues to be considered in
the design and implementation of a naval MFRF system. Specifically, the key requirements of the
RF functions of interest are first reviewed, and MFRF system design trade-offs resulting from costs
and/or performance limitations in existing hardware technology are then discussed. It is found that
limitations in hardware technology constrain the implementation of practical MFRF systems. MFRF
system prototype development programs that have been conducted in other countries are described.
MFRF resource allocation management is identified as an important future research topic.

Keywords: naval systems; multifunction RF systems; active electronically steered arrays; radar;
electronic support; electronic attack; communications

1. Introduction

The evolving role of modern navies has required increasingly higher levels of capability in the
Radio Frequency (RF) shipboard systems that provide radar, communications and Electronic Warfare
(EW) functions, including in the latter case both Electronic Attack (EA) and Electronic Support (ES).
The result has been a proliferation of topside antennas on naval vessels. It has been estimated that
the number of topside antennas has roughly doubled on ships launched in the 1990s relative to those
launched in the 1980s, with the antenna count on a typical 1990s-era destroyer for example being on
the order of 80 [1]. This has led to a number of problems, including increased mutual electromagnetic
interference, larger ship Radar Cross Section (RCS), and higher life-cycle costs associated with the
operation of multiple unique RF systems.

Since the late 1990s, the idea of MultiFunction RF (MFRF) systems has drawn considerable interest
as an approach to addressing this issue. In a MFRF system, several RF functions are consolidated
within a shared set of electronics and antenna apertures. Active Electronically Scanned Array (AESA)
technology is a key enabler for these systems. A modern AESA employs a separate transmit (Tx)
and/or receive (Rx) channel for each of its radiating elements, with a high-power amplifier (HPA) and
low-noise amplifier (LNA) in each of the transmit and receive channels respectively. Often, there is
also some type of beamforming element in each channel, such as a phase shifter or true time-delay
(TTD) circuit. The HPAs, LNAs and beamforming elements are typically packaged into Monolithic
Microwave Integrated Circuit (MMIC) modules that are incorporated in the array structure to be
as close as possible to the radiating elements, thereby minimizing system losses. In general, the
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AESA architecture allows dynamic reconfiguration of the antenna aperture, including partitioning
of the array elements into subarrays, to form multiple simultaneous transmit and/or receive beams
in independent directions with different beam patterns and waveforms. This provides the level of
flexibility that is required to support multiple RF functions with the same antenna aperture.

The use of shared hardware in a MFRF system facilitates intelligent control of the RF functions
with common resource allocation management software. In general terms, an intelligent Resource
Allocation Manager (RAM) in a MFRF system performs the critical task of adaptively allocating system
assets to the RF functions based on the dynamically changing priorities and resource requirements
of these functions within a given mission scenario and sensed RF environment. System assets under
RAM control broadly comprise waveform generators, AESAs, receivers, communication modems and
signal/data processing resources. The waveform generators, receivers and modems are largely digital
and software controlled, which accommodates rapid reconfiguration of these assets to provide the
waveform and receiver characteristics required by the supported RF functions.

A high-level conceptual diagram of a MFRF system is shown in Figure 1. The general configuration
depicted has separate receive and transmit AESAs, the advantages of which are discussed in Section 3.
However, for certain MFRF implementations, a single aperture that combines both receive and transmit
functions may be more desirable. The figure illustrates the notion that different sections of the apertures
can be used to form simultaneous independent beams allocated to different RF functions. In this
instance, a transmit beam is being used by the radar to illuminate an incoming anti-ship missile for the
purpose of supporting the ship’s fire control system, while a second radar transmit beam is tracking
a helicopter within its search volume. The EA function is utilizing a third transmit beam to jam the
fire control radar of an approaching hostile fighter aircraft. With the receive array, a receive beam
is formed in the direction of a satellite to establish a communication link. A second receive beam in
the direction of a ship target is being used by the ES function. The radar is utilizing another receive
beam to capture signal returns from the helicopter target that it is simultaneously illuminating. Note
that the beamforming task is not explicitly broken out as a separate block in this figure because it is
generally performed by a combination of the assets shown, depending upon the particular system
implementation. Also, communications modems are not separately depicted, as their modulation and
demodulation functions can conceptually be included in the waveform generator and receiver blocks.
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MFRF systems can potentially provide the following benefits:

• Reduction of the ship RCS: By reducing the number of topside antennas, the aggregate
contribution of the antenna apertures to the ship’s RCS is mitigated.

• Performance optimization of RF functions: In general, the overall performance of the suite of
RF functions controlled by a central RAM is improved as a result of more tightly integrated
scheduling of RF tasks. Of particular note, coordination of frequency usage between RF
functions as part of waveform generation control by the RAM results in lower risk of mutual
electromagnetic interference, as compared to the situation with separate RF subsystems where
frequency management through less centralized control is generally suboptimal.

• Lower integration and life-cycle costs: The decrease in both the number of topside antennas and
the amount of associated hardware can lead to less hardware integration effort and cost at the
installation stage. Furthermore, the use of common hardware for the RF functions in a MFRF
system can substantially reduce life-cycle costs as a result of requiring less unique spare parts,
less maintenance training, and fewer personnel to operate and maintain equipment, relative to
the situation with multiple single-purpose RF subsystems.

While MFRF systems may yield important benefits, it is also worthwhile to note a potential
risk: the consolidation of RF functions within a fewer number of antenna apertures may increase
vulnerability to a single point of failure. For example, if the topside antenna of a MFRF system is
destroyed in battle, overall ship RF functionality may be more severely degraded than would be
the case if the antenna supported only a single RF function. This risk would be considered in the
cost/benefit analysis conducted to inform a decision on a MFRF system deployment.

This paper highlights a number of factors and challenges to be considered in the design and
implementation of a naval MFRF system, and identifies MFRF resource management as a key topic
for future research in this area. The next section reviews the requirements for naval radar, EA, ES
and communications functions that have specific impact on MFRF system design. In Section 3,
MFRF system design considerations and trade-offs are summarized. Specific MFRF system prototype
development programs that have been previously conducted are described in Section 4. Section 5
provides a description of MFRF resource management, and conclusions are contained in Section 6. It is
assumed throughout the paper that the reader is somewhat familiar with the underlying AESA theory
and terminology. If not, one of a number of references can be consulted, such as [2–5].

2. Requirements for Naval RF Functions

The particular requirements for naval RF functions that most impact MFRF system design relate
to transmit and/or receive specifications, since these are the requirements that can pose the greatest
challenge to sharing a common set of electronics and antenna apertures between multiple RF functions.
Table 1 provides a comparison of key transmit/receive requirements that are representative of naval
radar, ES, EA and communications functions, with further explanation following the table.
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Table 1. Comparison of transmit/receive requirements for naval RF functions.

RF Function
Frequencies of

Operation
(GHz) *

Signal
Bandwidth

(MHz)

Dynamic
Range
(dB)

EIRP
(dBW)

One-Way
Beamwidth

(deg)

Duty
Cycle (%)

Signal
Polarization

Radar–volume search L-band or
S-band 2 90 S-band: 90

L-band: 75 2 20 Linear (V)

Radar–horizon search S-band or
X-band 5 90 90 2 20 Linear (V)

Radar–target
illumination X-band negligible N/A 90 N/A ≤100 Linear (V)

Electronic support 0.5–40 1000 60 N/A 1 N/A All
Electronic attack 0.5–40 1000 N/A 50 N/A ≤100 All

Comms–X-band
SATCOM

7.3–7.8 (Rx)
7.9–8.4 (Tx) 125 70 55 2 ≤100

Circular
(Tx/Rx

orthogonal)

Comms–Ku-band
SATCOM

10.7–12.8 (Rx)
13.8–14.5 (Tx) 55 70 65 1 ≤100

Linear
(Tx/Rx

orthogonal)

Comms–Ka-band
SATCOM

19.2–21.2 (Rx)
29.0–31.0 (Tx) 125 70 65 0.5 ≤100

Circular
(Tx/Rx

orthogonal)

Comms–TCDL 14.4–14.8 (Rx)
15.2–15.4 (Tx)

300 (Rx)
90 (Tx) 70 45 2 ≤100 Circular

* See more details on frequency band designations in Table A1.

A description of the terminology in Table 1 is provided below.

• Frequencies of operation: This refers to the range of frequencies over which the RF function is
required to operate. For the radar function entries in the table, IEEE frequency band designations
are used to characterize the frequencies of operation, as is a common practice in the radar field.
These designations are defined in Annex A for convenience.

• Signal bandwidth: Signal bandwidth refers to the maximum instantaneous bandwidth of the signals
that must be accommodated by the RF function. This requirement impacts design of the MFRF
system receiver channels, in that the receiver analog bandwidth, as well as the sampling rate of
the analog-to-digital converter (ADC) needed to digitize the signal, must be at least equal to the
instantaneous signal bandwidth. It is notable that one disadvantage to increasing the receiver
bandwidth is that it leads to a larger system noise bandwidth, which may make noise-limited
detection of signals more challenging. Another system design area that may be affected by this
requirement is the array beam steering. If the instantaneous signal bandwidth is large enough,
TTD beam steering may be necessary, as opposed to a simpler implementation with phase shifters.

• Dynamic range: This refers to the instantaneous dynamic range of the receiver, which is a metric
that reflects the ability of a receiver to accommodate a range of input power levels from the
antenna. It is calculated as the ratio of the strongest to weakest input power levels that can be
properly measured by the receiver.

• EIRP: The Effective Isotropically Radiated Power (EIRP) is a standard measure of transmitted
power that is calculated as EIRP = PGt, where P is the peak transmitter power and Gt is the
antenna boresight gain upon transmit. For an AESA antenna, the peak transmitter power is
determined by the sum of the peak power outputs from all of the HPAs utilized. As the HPA is
often the most costly component in an AESA design, the EIRP requirement represents one of the
most significant AESA cost drivers.

• One-way beamwidth: The one-way beamwidth requirement listed in Table 1 refers to the width of
the beam formed upon transmit or receive, as measured between the −3 dB points of the beam
mainlobe pattern. For naval radar and communications functions which employ both Tx and Rx
beams, the transmit and receive beamwidths may be different if differently sized subarrays on the
antenna aperture are used to form the transmit and receive beams, or separate Tx and Rx arrays
of different sizes are employed. However, they are often the same in practice, and are assumed to
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be so for the purposes of this table. Narrower beamwidths allow more accurate localization and
tracking of detected targets for RF functions such as radar and ES, but slow down the scanning
process in a given search volume.

• Duty cycle: The duty cycle value in Table 1 is a characteristic of transmitted waveforms for those
RF functions that involve signal transmission. It is calculated as τ/T where τ is the time duration
of the transmitted waveform and T is the waveform repetition interval.

• Signal Polarization: The signal polarization that must be accommodated upon transmit and/or
receive has a significant impact on the design of the required radiating elements in the array.
For signals with a single linear polarization, a relatively simple radiating element design can be
used, whereas for any other signal polarization, a more complex dual orthogonally-polarized
element design is needed.

Note that in addition to the requirements listed in Table 1, there is a common requirement for
all naval RF functions to provide full or almost full hemispherical coverage above the ship deck.
Specific discussion of the requirements as they apply to the different RF functions is provided in the
subsections below.

2.1. Radar Function Requirements

The naval radar function can be broadly divided into three main subfunctions: volume search
(VS), horizon search (HS), and terminal illumination (TI). VS involves scanning the upper hemisphere
above the ship deck to detect and track air targets primarily, although the coverage volume extends
down to the horizon to also allow detection of larger surface vessels. Because air targets can be
relatively fast, the VS subfunction is designed to provide a long-range detection capability so that
incoming air threats are registered as soon as possible. HS more specifically focuses on detection and
tracking of targets at low elevation angles out to the horizon, including both smaller surface targets
and low-flying air targets. The design of this subfunction is driven primarily by the requirement to
detect the supersonic sea-skimming anti-ship missile (ASM) threat with sufficient warning time to
deploy countermeasures. Compared to VS, the search ranges and volumes in HS mode are relatively
small, but significant challenges exist in dealing with very small ASM RCS values, low-angle sea
clutter, multipath interference nulls, and anomalous propagation conditions such as surface ducting.
TI is a radar subfunction that supports onboard fire control systems when semi-active missiles are
deployed. In this event, the radar must illuminate the target during the missile terminal guidance
phase, so that the missile seeker can home in on the reflected signal.

As indicated in Table 1, VS typically operates at a frequency within L-band or S-band. These are
the bands of choice for long-range detection since signals at these frequencies suffer less attenuation
from precipitation than would be the case at higher frequencies. Conversely, HS most often employs
higher S-band or X-band frequencies for primarily the following two reasons:

• At lower frequencies, there is a wide null in the radar propagation factor that forms in the
elevation plane for small target elevation angles, due to multipath interference between the direct
target signal return and the specular reflection of the signal return from the ocean surface. This
would make detection in HS mode of certain targets like small surface vessels or sea-skimming
ASMs particularly difficult [6]. Multipath nulls are present for this scenario at higher frequencies
as well, but are narrower in elevation angle, and therefore have less of an adverse effect.

• The use of higher frequencies allows beamwidth and antenna gain requirements to be met with a
smaller and lighter antenna, since beamwidth varies inversely as frequency, and antenna gain
varies as the square of frequency. An important benefit of a smaller antenna is that it can be
installed at a greater height above the ship’s deck to extend the distance to the horizon as much
as possible, which is desirable in HS mode.
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Finally, the TI function operates at an X-band frequency for compatibility with the seekers typically
employed in semi-active missiles. Traditionally, multiple radars operating in different frequency bands
have been installed on a vessel to collectively provide VS, HS and TI functionality. For example, an
S-band radar would be employed for VS and HS, while a separate X-band radar would be used for TI.
Alternatively, an X-band radar would provide both HS and TI, and another radar operating at L-band
or S-band would be utilized for VS.

Since radar returns are simply replicas of the transmitted waveforms, the instantaneous
bandwidth requirements listed for the VS and HS subfunctions reflect the instantaneous bandwidths
of their transmitted waveforms. The waveform bandwidths are selected to achieve a desired range
resolution, where the highest obtainable range resolution ∆R is given by ∆R = c/2B, with c being
the speed of light and B being the waveform bandwidth. The required instantaneous bandwidth
for the HS function is generally somewhat larger than that for VS, because HS employs transmitted
waveforms with higher range resolution. Better range resolution leads to a smaller effective radar
resolution cell, since the resolution cell area Ac for low radar grazing angles is given by Ac ≈ ∆Rθr,
where θ is the azimuth beamwidth and r is the radar range. A smaller radar resolution cell provides
higher tracking accuracy, but more importantly for HS mode, improves the detection of slow-moving
surface targets due to the fact that the amount of low-angle sea clutter returns that compete with
target signal returns in the resolution cell containing the target is reduced. The larger instantaneous
bandwidth required for HS mode implies a larger receiver bandwidth, which, as indicated previously,
leads to a resulting increase in competing system noise power during the detection process. However,
in the case of radar, the signal-to-noise ratio (SNR) is not affected under these circumstances, as long as
the waveform bandwidth is matched to the receiver bandwidth, and matched filtering, often referred
to as pulse compression, is applied upon reception. Under these circumstances, the signal enjoys a
proportionately higher pulse compression gain that allows the SNR to be maintained despite a larger
value of system noise power. With regard to the TI function, the instantaneous bandwidth requirement
is negligible, since the transmitted waveform is essentially monochromatic.

The receiver dynamic range requirements for the VS and HS subfunctions are determined by
the ratio of the strongest expected clutter-plus-target return power to the weakest expected target
return power. Dynamic range is not relevant for the TI subfunction since this radar mode has no
receive component.

The naval radar function generally has the highest EIRP requirements relative to the other RF
functions under consideration. For VS and HS subfunctions, the required EIRP is driven primarily by
operational requirements that dictate maximum detection ranges for different types of targets. The
operational requirements for VS typically involve longer detection ranges compared to HS, but on the
other hand, some targets of interest in HS may have relatively smaller RCS values, especially for the
ASM case. The required EIRP for operation of the VS subfunction at L-band is somewhat less than
that for operation at S-band or X-band because of the better propagation characteristics of the lower
frequencies, as noted earlier. It should be pointed out that the array receive gain Gr also factors into the
radar range equation to determine target detection capability of the VS and HS subfunctions, in that
the SNR of the received radar signal is proportional to EIRP × Gr. Consequently, increasing Gr allows
EIRP to be decreased proportionately without affecting detection ranges. For simplicity, the EIRP
requirements listed in Table 1 for VS and HS are based on the assumption that the array receive gain is
the same as the transmit gain, which would typically be the case for radar. The EIRP specification for
the TI function is determined by the signal strength of the reflected target illumination required by the
missile seeker for terminal guidance.

The requirements for one-way beamwidths listed in Table 1 are approximately the same for
VS and HS radar subfunctions. The minimum achievable beamwidth is inversely proportional to
array dimensions, so the beamwidth requirements directly impact the size of the AESA. For the VS
function, required beamwidth values mainly derive from operational tracking accuracy requirements
and required scan revisit times. These factors are considerations for the beamwidth specification
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of the HS function as well. However, as discussed earlier, the impact of radar resolution cell size
on signal-to-clutter ratio for detection of surface targets additionally plays a role in arriving at the
HS beamwidth requirement. In the case of the TI subfunction, there is no independent beamwidth
requirement; the beamwidth used is just a consequence of the array size needed to provide the transmit
gain that allows the EIRP requirement to be met.

The duty cycle requirements listed in Table 1 for the HS and VS subfunctions arise from a number
of considerations, such as desired unambiguous range, size of range blind zone, and average waveform
power, the latter of which is seen in the radar range equation to affect target detection. These duty cycle
values are considerably less than the values listed for the TI subfunction and the other RF functions.
In the case of the TI function, the illumination waveform is essentially narrowband continuous wave,
which may have a transmission duty cycle of up to 100%, depending upon the capability of the
semi-active missile seeker. Some semi-active missiles, such as the Evolved Sea Sparrow Missile [7],
have seekers that support interrupted continuous wave illumination for terminal guidance, which
allows the radar TI function to transmit with a duty cycle of less than 100%.

As indicated in Table 1, all radar functions typically use linear vertical polarization, primarily
because there are distinct advantages to doing so for HS and no disadvantage to using vertical
polarization for the other naval radar subfunctions. The advantages of using vertical polarization in
HS mode are twofold. First, it has been observed that at radar grazing angles less than a few degrees
(which is typically the case for the HS function) and higher sea states, sea clutter returns for vertical
polarization are less than those for horizontal polarization [8]. Secondly, forward specular reflections off
the ocean surface at low grazing angles are less for vertical polarization than for horizontal polarization
due to the Brewster angle effect [9]. With lower specular reflections, the formation of multipath nulls
in the radar propagation factor that adversely impact target detection at small target elevation angles
is somewhat mitigated, although still remaining an issue.

2.2. ES Function Requirements

The ES function operates passively in a receive-only mode to monitor the RF environment around
the ship. This function comprises automatic detection, analysis, identification, classification and
angle-of-arrival measurement of received RF signals, especially radar signals. The analysis task from
the above list specifically involves measurement of signal waveform parameters such as time of
arrival, frequency, pulse repetition interval, pulse width and waveform modulation, and determination
of threat radar parameters such as beamwidth and antenna scan revisit time. The ES function can
often detect an approaching platform through its RF emissions before any other onboard sensor.
Consequently, it serves to provide early threat alerts for emitters classified as hostile or unknown,
and cues fire control systems if necessary with threat bearing information. Also, the EA function
depends upon receiving information from the ES function to maximize its effectiveness, particularly
threat bearing to enable it to point its beams accurately in the threat direction, and threat waveform
parameters to allow optimization of the jamming technique. This support to the EA function is
especially important when multiple threats are present simultaneously.

The frequencies of operation listed in Table 1 for the ES function refer to the frequency range over
which the ES function is required to detect RF emissions. Emitters of interest include communications
systems that typically operate below 5 GHz, surveillance and fire control radars which usually transmit
in the 1–12 GHz range, and active missile seekers which mostly radiate at frequencies above 8 GHz.

As seen from Table 1, the typical instantaneous bandwidth required for the ES function is much
higher than those listed for the radar subfunctions. This is largely a consequence of the potential need
for an ES system to detect and properly characterize high bandwidth waveforms from emitters such
as airborne synthetic aperture radars and low probability-of- intercept radars. It is worthwhile to
note that unlike radar functions, there is no a priori knowledge of the received waveforms to allow
matched filtering, and consequently, the increased system noise power due to large instantaneous
receiver bandwidths results in lower sensitivity (i.e., lower SNR) that can adversely impact signal
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detection and analysis. The ES function can mitigate this impact for weak narrowband signals by
digitally reprocessing the data captured within the wide instantaneous receiver bandwidth through a
bank of narrowband filters before the detection process occurs.

The required receiver dynamic range for the ES function is based on the ratio of the strongest
expected threat emitter power at the receiver input to an input level corresponding in strength to the
receiver noise floor power.

There is no EIRP requirement for the ES function, as it is operates in a receive-only mode. The
beamwidth requirement indicated in Table 1 applies to the beam that is formed by the AESA upon
receive. The value for this requirement reflects the accuracy to which angle-of-arrival (AoA) of
incoming emissions detected within a receive beam must be measured to allow useful determination of
threat bearing. It should be noted however that a beam does not necessarily have to be formed by the
AESA in order to determine AoA. If a strong RF signal arrives with a sufficiently high SNR, then the
phases of the signal detected on a relatively small subset of array elements can be directly compared
and processed with an interferometric algorithm to determine AoA with sufficient accuracy to meet
the requirement. For such signals, this technique is relatively simple to implement, and essentially
allows instantaneous detection and AoA measurement over the entire beamwidth of an array element,
which typically represents a broad range of angles. However, for a weak signal, the antenna gain
associated with the formation of a narrow receive beam may be needed to improve its SNR such that it
can even be detected, with the AoA measurement in that case simply corresponding to the direction of
the beam in which the detection is made.

Since duty cycle by definition is a feature of transmitted waveforms, there is no duty cycle
requirement specified in Table 1 for the passive ES function.

In general, the ES function must be able to detect RF signals of all polarizations, due to the diversity
of emitters that may represent potential threats. For example, many types of military communication
systems use circular polarization. On the other hand, naval radars typically use vertical polarization
for reasons discussed previously, while airborne radars usually employ horizontal polarization because
sea clutter returns are significantly lower, compared to the vertical polarization case, at the larger radar
grazing angles experienced by aircraft. The requirement to detect all polarization states dictates the
use of dual orthogonally-polarized radiating elements in the AESA, which also gives the ES function
the capability to measure the polarization characteristics of emitters as another identification attribute.

Due to its critical mission role, a unique requirement of the ES function is that it must always
be fully operational, in the sense that it must continuously monitor the RF environment over the
entire duration of the mission, without suffering any interruptions or performance degradation due to
interference from the other onboard RF functions. In contrast, the other RF functions may be inactive at
times, depending upon the scenario. Even the radar may be shut off during periods of covert operation.

2.3. EA Function Requirements

In general, a naval EA suite may utilize both onboard and off-board active devices, as well as
off-board passive decoys, to provide platform self-protection by executing soft-kill countermeasures
against threat RF systems. Since a MFRF system would be an onboard implementation, only the portion
of the EA suite functionality represented by the onboard active device is considered for inclusion in
such a system.

The EA function transmits a RF signal to jam a threat electronic system, which is usually a radar.
The following generic categories of jamming techniques are typically employed:

• Noise jamming
• Multiple false targets
• Range gate pull-off (RGPO)
• Angle gate pull-off (AGPO)
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Noise jamming of a threat radar is intended to prevent the hostile platform from detecting the
ship or at least denying it range information until it gets much closer, making it more susceptible to a
counterattack. Generation of multiple false targets within the coverage area of the threat radar makes
it more difficult for the threat platform to identify or lock on to the ship, or can result in a threat missile
being launched with less accurate targeting information. The goal of RGPO and AGPO is to lure the
tracking gates of a threat radar off the ship’s signature in range and angle respectively. This leads to a
break-lock situation in the case of a fire control radar, preventing the launch of a threat missile, while
for the scenario of an active missile seeker being jammed, a successful AGPO causes the threat missile
to miss the target.

In modern EA systems, these techniques are executed coherently, meaning that the jammer
transmits a replica of the threat radar waveform based on digital samples of that waveform which
have been captured and stored internally in a high-speed digital radio f requency memory (DRFM) [10].
Consequently, the jamming waveform enjoys the same pulse compression gain in the threat radar as
the original radar signal, thereby reducing the amount of jamming power needed to be effective. The
jammer may also modify the replica before re-transmitting, such as adding a time delay to effectively
impart a range offset to a false target. In the case of noise jamming, so-called “spot” noise can be
generated with a bandwidth matched to that of the captured waveform in the DRFM, to ensure that
the full jammer power is injected into the instantaneous bandwidth of the threat radar.

The frequency range of operation for the EA function, as shown in Table 1, corresponds to the
frequencies of a wide variety of threat systems that the EA function may be required to jam. The largest
threats of concern are represented by active missile seekers, as well as surveillance and fire control
radars that may be used to target the ship. It is seen that the frequencies of operation for the ES and
EA functions are the same.

The instantaneous bandwidth requirement also mirrors that of the ES function, and refers in this
case to the maximum bandwidth of the threat signal that it may need to replicate and transmit as part
of a coherent jamming technique.

As a point of clarification, a conventional active EA system has its own receive channels and
digitizers to capture and store threat system waveforms in DRFMs for implementation of coherent
jamming, as mentioned above. However, as part of a MFRF system, the receive portion of the EA
function would likely be provided by the ES function, since the frequencies of operation, instantaneous
bandwidths and polarization requirements of the ES function are compatible with those of an EA
receive subsystem. Consequently, the EA function is considered to operate in a transmit-only mode
within a MFRF system, and therefore, has no dynamic range requirement.

The EIRP requirement specified for the EA function assumes the use of previously mentioned
coherent jamming techniques, which maximize the effect of the available jamming power on threat
radar systems. With coherent jamming, an EA technique will generally be successful to some extent if
the jammer signal power arriving at the threat radar antenna is higher than that of the radar returns
from the ship target. It is seen in Table 1 that the EIRP requirement for the EA function is significantly
less than the corresponding radar subfunction values, where these values can be considered to be
representative of threat radar systems as well. However, the EA function enjoys a relative signal power
advantage that is proportional to r2, where r is range to the threat radar, because of the fact that the
jamming signal only suffers one-way geometric propagation losses proportional to r2 along the path
from the ship to the threat radar, as opposed to the two-way geometric propagation losses proportional
to r4 that are experienced by the threat radar returns from the ship. Consequently the jamming signal
arriving at the threat radar antenna can be significantly stronger than the ship’s signature even though
the EIRP value for the EA function may be less than that of the threat radar.

There is no independent beamwidth requirement for the EA function. The beamwidth is simply
determined by the AESA size that provides the transmit gain needed to meet the EIRP requirement.

When the EA function is active, the duty cycle of its transmission may be up to 100%, as would be
the case for example when AGPO is being attempted against a threat radar that is illuminating the
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ship with a CW waveform for the purposes of providing terminal guidance to a semi-active missile.
The EA function cannot tolerate any interruptions while active.

The EA function is required to have the capability to transmit on any polarization. This is due
to the fact that threat radar or communication systems may operate with linear, vertical or circular
polarization, as mentioned in the ES function discussion of Section 2.2. The EA function may obtain
the necessary information on the polarization state of the threat system from the list of threat signal
attributes determined by the ES function. Alternatively, operation at the correct polarization is ensured
if digital samples of the threat signal that have been captured on orthogonal polarizations by the ES
function and stored in DRFMs are re-transmitted by the EA function.

2.4. Communication Function Requirements

In general, communication function requirements are fundamentally determined by the
Shannon-Hartley Theorem, which states that:

C = Bc log2(1 + SNR),

where: C is the capacity of the communication channel, defined as the maximum achievable error-free
data rate, in bits/second; Bc is the channel bandwidth in Hz; and the signal-to-noise ratio SNR is
defined as the ratio of the average received signal power to the average channel noise-plus-interference
power, where it is assumed that the noise and interference can be characterized by Gaussian white
noise. The received signal power is a function of the EIRP of the transmitting terminal, signal
losses over the propagation path, and gain of the receive antenna. In lower frequency bands, where
communication services have historically been located due to good signal propagation characteristics
at these frequencies, data rates tend to be less because channel bandwidths are constrained by spectrum
crowding. In higher bands, namely X-band and above, larger channel capacity is possible because
greater spectrum availability allows wider channel bandwidths to be used. However, if the benefit
of a wider channel bandwidth is to be realized, the EIRP and receive antenna gain of a shipboard
communication terminal must typically be larger than those used in lower bands, in order to overcome
the higher rain attenuation suffered at these higher frequencies along the signal propagation path.

A naval vessel employs different types of communication services that span frequencies up to Ka

band. However, some of these services are not attractive candidates for inclusion in an AESA-based
MFRF system. For example, there are a number of terrestrial-based services with low data rates,
including voice and tactical data links (such as Link 16 and Link 22), which are operated at UHF
frequencies or lower. These services typically employ omnidirectional monopole or dipole antennas,
which are relatively simple and inexpensive, but must be large in length to provide efficient radiation
at the low frequencies involved. These necessary antenna characteristics preclude such low-frequency
services from consideration for an AESA implementation.

There are also requirements for a naval vessel to utilize communication services involving military
satellite systems operating in UHF, X and Ka bands, as well as commercial satellite systems in L, Ku

and Ka bands. Some examples include the military Wideband Global SATCOM system operating at X
and Ka bands, and the commercial Telstar 12 VANTAGE system at Ku band. Compatibility with future
V-band satellite systems may also be a requirement, but the characteristics of ground terminals for such
systems are not yet standardized. Consequently, V-band systems will not be discussed here. A common
characteristic of all existing communication satellite systems is the use of geostationary orbits. This
results in very slow changes of the ship-to-satellite pointing angle, since the only contributor to
such changes is the ship translational motion. UHF and L-band satellite communications (SATCOM)
terminals for shipboard application commonly employ simple low-gain helical and/or conical antennas
to provide a hemispherical beam pattern, which removes the need for any pointing stabilization.
Examples of such systems are the Thales QHASS UHF SATCOM terminal [11], which is currently
on several of the Royal Canadian Navy Iroquois-class and Halifax-class vessels, and the L-band JRC
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JUE-87 Inmarsat C terminal [12]. These antenna packages are also compact, being less than 0.5 m in
both diameter and height. Such low-gain antennas lead to EIRP values in the order of only 15 dBW,
which are nonetheless sufficient because both communication data rates and rain attenuation of the
RF signal are very low at these frequencies. Given the simplicity and compactness of these SATCOM
antennas, their contributions to ship system life-cycle costs and ship RCS are already very small
compared to those of other RF functions. Consequently, there is no obvious motivation to add UHF
and L-band SATCOM services to an AESA-based MFRF system.

Current shipboard terminals for SATCOM services at the higher X, Ku and Ka bands typically use
parabolic reflector antennas, commonly referred to as “dish” antennas. An example of this is the Thales
SURFSAT-L naval SATCOM terminal [13], which is a dual-band system that can accommodate any
two of the three specified bands. Consequently, a minimum of two such terminals is needed to cover
all three bands. The antenna is isolated from ship roll, pitch and heading changes through a gimbal
mounting with 3-axis or 4-axis inertial stabilization. It is noted that the diameter of the parabolic
reflector needs to be in the order of 1–2 m to achieve the required gain at the frequencies of interest.
Consequently, the RCS presented by such an antenna to a threat radar may be significant. For example,
the maximum RCS of a parabolic reflector with a diameter of 1.5 m would be approximately 15 dBm2, as
seen by an L-band threat radar [14]. These terminal antennas also occupy large physical footprints–the
Thales SURFSAT-L antenna assembly above deck, including the radome, gimbal mounts and a
parabolic reflector with a diameter of 2.1 m, has an overall diameter of about 2.7 m, a height of
3 m, and a weight of 380 kg. These considerations motivate incorporation of the X-band, Ku-band and
Ka-band SATCOM services in a MFRF system.

A communication service referred to as Tactical Common Data Link (TCDL) is another common
requirement for naval vessels. TCDL is a secure Ku-band data link developed by the US military to
send data and images from airborne platforms to surface platforms. It utilizes the Common Data Link
(CDL) waveforms and protocol that have been mandated by the US Department of Defence as the
wideband communications standard for transferring intelligence, surveillance and reconnaissance
(ISR) sensor data between both manned and unmanned platforms. A typical example of a currently
available shipboard TCDL antenna is the CPI SST-100 [15]. The entire above-deck antenna assembly,
including a radome, stabilization gimbal mounts and a parabolic reflector antenna with a diameter of
0.8 m, has an overall diameter of 1 m, a height of 1.1 m and a weight of 200 kg. An antenna such as
this would be needed for each independent TCDL link. Studies within the US Navy have indicated
that at least four independent TCDL links are currently required, with future projections of up to
24 independent links [16]. Given the physical size of these parabolic reflector assemblies, the amount
of available deck/superstructure space on a ship significantly limits the number of TCDL links that
can be currently supported. Migration of the TCDL function to an MFRF system would alleviate this
constraint, by virtue of the flexibility afforded by AESA use.

To summarize then, the communication functions that are considered for candidates in a MFRF
system comprise the SATCOM services in the X, Ku and Ka bands, and the TCDL service. Referring to
the frequencies of operation for these functions in Table 1, it is noted that the Rx and Tx operations
are conducted over separate non-overlapping frequency sub-bands. This allows simultaneous
reception and transmission, referred to as full duplex communication, on one antenna without causing
self-interference. There is some further discussion provided on this issue in Section 3.

The instantaneous bandwidth requirements listed in Table 1 correspond to the channel bandwidths
that are specified for the different communication services.

The dynamic range requirements for the communication services are largely driven by the
variation in signal input levels corresponding to advanced high-order Quadrature Amplitude
Modulation (QAM) schemes that support increasingly higher bit rates.

The shipboard EIRP requirements in Table 1 for the communication services reflect values that
are necessary to compensate for rain attenuation of the signal at these frequencies, and for the one-way
geometric propagation loss over the signal path, such that the SNR at the off-board receiver is high
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enough to support the desired channel capacity. The EIRP requirement for the TDCL function is
noticeably lower than that for the SATCOM services primarily because TDCL is specified to operate
over ranges of only up to 200 km, whereas the one-way signal propagation distances involved in
SATCOM are approximately 36,000 km for geostationary satellites.

The one-way beamwidth values that appear in Table 1 are not independent beamwidth
requirements. Rather, as the antenna gain can be computed from the beamwidth, the beamwidth
values serve to indicate in this case the associated antenna gains required to ensure that the SNR value
of the signal received at the shipboard receiver is consistent with the desired channel capacity.

The transmission duty cycle of a communication function may be up to 100% when the function
is activated. The polarization requirements listed in Table 1 are somewhat different depending
upon the service. A common characteristic of the SATCOM services is that Rx and Tx polarizations
are orthogonal, where orthogonality is achieved for linear polarizations by using horizontal and
vertical polarizations, and for circular polarization by using right-hand circular polarization and
left-hand circular polarization. The use of polarization orthogonality provides added isolation
between Rx and Tx channels beyond that afforded only by duplex operation. More importantly
however, this capability allows a SATCOM satellite to use orthogonal polarizations within the same
frequency channel. This frequency re-use doubles the satellite’s communication capacity within a
given bandwidth constraint, which is especially important for the crowded Ku spectrum. Orthogonal
polarizations are not required for TCDL. Circular polarization is used for X-band SATCOM because
at X-band frequencies and lower, Faraday rotation of linear polarizations in the ionosphere [17]
causes unacceptable leakage between orthogonal polarization states, which adversely affects frequency
re-use. In contrast, horizontal/vertical polarizations are employed for Ku-band SATCOM because
Faraday rotation is not an issue for linear polarization at Ku frequencies and above, and although rain
causes leakage between all orthogonal polarization states at these frequencies due to the interaction
of the SATCOM signal with large flattened raindrops along the propagation path, the leakage is
less pronounced for orthogonal linear polarizations [18]. Note that the use of linear polarization
requires precise stabilization of the shipboard antenna in the presence of ship motion to prevent
misalignments between the shipboard antenna and satellite antenna that can contribute to leakage
between polarization states. Notwithstanding the depolarization effects of rain described above,
circular polarization is used for Ka-band SATCOM to address a greater concern. Signals at Ka

frequencies are generally more severely attenuated by rain than Ku and lower frequencies, and in
particular, there is a more significant difference in attenuation between orthogonal linear polarizations
at Ka-band for large raindrops, due to the fact that they have dimensions comparable to Ka-band
wavelengths [18]. Specifically, the polarization along the axis of the widest dimension of the flattened
raindrop is more attenuated than the orthogonal polarization. Because the angle of fall of the raindrops
along the propagation path of the SATCOM signal is unknown, extreme signal fading due to an
unfortunate alignment of linear signal polarization with the raindrop shape may occur. This situation
is mitigated with circular polarization. Finally, TCDL employs circular polarization due to the difficulty
of ensuring that shipboard and airborne antennas remain sufficiently aligned with each other during
the communication link to allow linear polarization to be used. Shipboard antennas are fully stabilized
in all three degrees of freedom, but airborne TCDL antennas are often stabilized in only azimuth and
elevation to reduce the physical size and weight of the antenna assembly, particularly for a platform
like a helicopter or unmanned aerial vehicle (UAV) where space is scarce. An example of this is the
Honeywell AC-27 airborne TCDL antenna [19]. Consequently, certain types of motion experienced by
the airborne platform with this type of antenna could result in excessive misalignment between the
airborne and shipboard antenna orientations, leading to signal fade if linear polarization is employed.
Use of circular polarization avoids this problem.
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3. MFRF System Design Considerations

3.1. Ideal MFRF System Architecture

To provide context for the discussion in this section, it is useful to consider the key features of an
ideal MFRF system architecture that would allow all AESA elements and Tx/Rx channel hardware to
be utilized by any of the RF functions of interest. Such a configuration would maximize the potential
benefits discussed in Section 1.

The principal hardware components of a Tx and Rx channel in an ideal MFRF system architecture
are depicted in the simplified block diagram of Figure 2 for a single AESA element. If the radiating
elements are dual-polarized, each element polarization has a similar Rx and Tx channel associated
with it.Sensors 2018, 18, x 13 of 36 
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The above figure conveys the notion that each radiating element is shared by a Tx channel and
a Rx channel, where generally each of the two channels can be used by a different RF function at
the same time. The circulator is the key element that enables this configuration. A circulator is a
nonreciprocal three-port device that utilizes the properties of certain magnetic materials like ferrite to
allow an RF signal to pass between ports in ideally only one direction, while preventing the signal
from proceeding in the reverse direction around the circulator. So referring to Figure 2, the transmit
signal entering the circulator is routed to the radiating element, and blocked in the reverse direction so
that it does not emerge from the circulator into the Rx channel. Thus, the circulator serves to isolate
the sensitive LNA in the Rx channel from the high power output of the HPA during transmission. This
is important because while the limiter in the Rx channel is designed to attenuate excessively large RF
power inputs that could cause LNA damage, signals at the input of the LNA may still be large enough
to saturate the LNA, resulting in nonlinear amplification and resulting distortion of any input signals.
Signal distortion could lead to adverse effects such as increased bit error rates for SATCOM signals or
degradation of ES function capability to characterize modulation attributes of a threat radar signal.
Use of the circulator also ensures that a RF signal entering the circulator from the radiating element is
sent to the receive channel only, thereby providing isolation between the radiating element and HPA
under these circumstances. Otherwise, RF energy may potentially be fed back into the HPA due to
external signals picked up by the radiating element, or reflections from the radiating element as a
result of element impedance mismatches. If such signals are large enough, the HPA may be damaged
and/or suffer performance degradation [20].
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Typically, the circulator, limiter, HPA and LNA are packaged together as part of a transmit/receive
(T/R) module that is located close to the radiating element to mitigate system losses. In an ideal
system, these T/R module components, along with the associated radiating elements, would have
a sufficiently large bandwidth to accommodate the operating frequencies of all RF functions which
may use the Tx and Rx channels. Based on the information in Table 1, this implies that operating
frequencies of the radiating elements and T/R module components must extend from 0.5 GHz to
40 GHz for a naval MFRF system.

Each radiating element of an array used in an ideal MFRF system is also dual orthogonally
polarized so as to support all polarization states. This is necessary to meet all of the polarization
requirements listed in Table 1, particularly those for the EA and ES functions. To prevent grating lobes
in the array gain pattern for typical maximum array scan angles of ±60◦, the radiating elements are
spaced at a distance of 0.54λg, where λg is the wavelength value at the highest frequency of operation.
From Table 1, the highest frequency is 40 GHz, implying an element spacing of 0.4 cm.

In an ideal architecture, each Tx channel has its own digital waveform generator (DWG), which
can also access a DRFM to support coherent jamming for the EA function. A DWG performs the
following steps: receive arbitrary waveform parameters from the signal/data processor of the MFRF
system; digitally generate samples of the desired waveform with a direct digital synthesizer (DDS),
or extract waveform samples from a DRFM; use a digital-to-analog converter (DAC) to convert the
samples to the analog domain; and finally, translate the waveform to the required frequency band
with analog modulation circuitry. The presence of a DWG in each Tx channel provides the ultimate
flexibility when using the array for transmission, in the sense that from one point in time to the next,
the array can be instantly repartitioned through software control into Tx subarrays of arbitrary size,
with each subarray forming an independent Tx beam for a RF function. This high level of array
reconfiguration capability facilitates optimal MFRF system performance under normal circumstances,
and graceful performance degradation if parts of the array suffer failure. A second key advantage of
including a DWG in each Tx channel is that TTD beamforming can be readily achieved by digitally
introducing a time delay between identical waveforms generated for adjacent radiating elements in a
subarray. This approach ensures that Tx beams employing wideband waveforms can enjoy maximum
array gain when steered off boresight, without the need for analog TTD circuits elsewhere in the
Tx channels. TTD beamforming is necessary primarily for the EA function, since the instantaneous
bandwidth of waveforms transmitted by this function may be as high as 1 GHz. Finally, a DWG in
each channel also provides a straightforward means to weight the waveform amplitude across the
subarray elements for sidelobe control or adaptive placement of nulls in the Tx beam.

The digital receiver in each Rx channel contains an ADC that digitizes the signal received from
the radiating element. This element-level digitization permits receive beams to be formed entirely in
the digital domain, that is, without the need for RF phase shifters or TTD circuits elsewhere in the Rx
chain. This scheme has three key benefits. First, many simultaneous receive beams can be formed in
different directions using the same set of array elements, thereby providing instantaneous coverage
of a large volume. The maximum number of these independent simultaneous beams is limited only
by available signal processing power. This is a particularly useful capability for the ES and radar
functions which must detect and localize threats as quickly as possible within a large surveillance
area. Secondly, TTD formation of receive beams can be easily realized in software by introducing
time shifts between digitized signals from adjacent array elements before coherent summation across
the elements. TTD beamforming on receive is important for the ES function, which must be capable
of detecting and characterizing signals of instantaneous bandwidths up to 1 GHz. For such signals,
conventional beamforming with phase shifters would result in reduced array gain at scanning angles
off boresight, compared to TTD beamforming which provides the highest achievable array gain at
all scan angles for signals of any bandwidth. Consequently, TTD beamforming optimizes detection
for a MFRF system. Finally, element-level digitization, similar to the benefit provided by a DWG in
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each Tx channel, allows the maximum flexibility in allocation of array resources to receive operations
associated with the different RF functions.

In this ideal case, the element-level digitization is done directly at RF. To accommodate all RF
functions of interest, this implies a required ADC sampling rate capability of 40 gigasamples per
second (GSPS), corresponding to the highest frequency of operation listed in Table 1. The ADC in
each digital receiver must also have sufficient dynamic range to meet the most stringent dynamic
range requirement indicated in Table 1. This corresponds to a dynamic range value of 90 dB for radar
functions, which implies about 15 bits of digitization. Once the Rx signal is digitally captured in
this way, all other traditional receiver functions, such as filtering and quadrature demodulation, can
be done through digital signal processing. Furthermore, the same digitized set of signal data can
be processed in parallel in different ways, to meet the needs of different RF functions. For example,
a digitized signal data set can be digitally filtered at the frequencies utilized by the VS radar function
(assuming that there was a corresponding VS radar transmission to generate radar return signals), and
pulse compressed as the first step in the target detection process. Concurrently, for the ES function,
banks of bandpass filters spanning the full ES monitoring range can be applied to the same digitized
data, using different filter bandwidths to mitigate the effect of system noise on detection of both
wideband and narrowband weak emitter signals. This scheme would essentially allow instantaneous
searching of threat signals over the entire frequency range of interest, eliminating the need for a
separate instantaneous f requency measurement (IFM) receiver typically required in many current
ES systems.

3.2. Practical Limitations and Trade-Offs

The ideal MFRF system architecture described above is not currently achievable in practice, due
to costs or performance limitations in existing hardware technology that force design trade-offs and
compromises to be made. The trade-offs broadly fall into three categories: (1) combined vs. separate
Tx/Rx arrays [21]; (2) wideband vs multiband operation [22]; and (3) element-level vs. subarray-level
digitization/waveform generation. It is expected that all three of these trade-offs would factor into a
system design. These trade-offs and their implications, which are further explored in the subsequent
sections, generally result in a larger number of AESAs and less flexibility in array utilization than
would be the case for the ideal architecture.

Some comments on costs are also included in the following discussion. However, meaningful
estimates and comparisons of system-level costs cannot be provided without detailed system designs,
which are beyond the scope of this study.

There is no discussion in this section of potential constraints in system design and performance
that may be imposed by signal/data processing resources. This type of technology continues to advance
rapidly, driven by requirements in diverse fields such as artificial intelligence, cloud computing
and gaming. For example, Graphics Processing Units (GPUs), which have been developed and
used extensively for all three of these applications, are also well-suited for use in massively parallel
architectures that exhibit the large data throughput, high computational performance, low latency
and easy scalability required by AESA-based radar signal processing algorithms [23]. Given its
continued fast pace of development, computing technology is consequently viewed as a much less
significant limiting factor for MFRF system performance than the other hardware issues that will be
addressed below.

3.2.1. Combined vs. Separate Transmit/Receive Arrays

In practice, a wideband microstrip circulator that may be used in a T/R module does not
completely suppress signals travelling in the reverse direction around the circulator. At best, currently
available circulators can provide about 30 dB of such suppression between circulator ports, as
exemplified by the JC2S8000T12K0G2 microstrip circulator (JQL Electronics, Rolling Meadows, IL,
USA) [24] which operates over 8–12 GHz. This is sufficient for isolation of the HPA from signals
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returned by the array element, but not for isolation of the LNA from the HPA output. The issue is that
for a typical wideband LNA, exemplified by the HMC1049LP5E LNA (Analog Devices, Norwood,
MA, USA) for instance, the input power corresponding to the 1-dB gain compression point is about
1 mW [25]. The 1-dB compression point on the LNA gain curve indicates the point at which the LNA
starts to become saturated. With a circulator providing 30 dB of isolation between Tx and Rx channels,
the peak HPA output power must consequently be less than 1 W to ensure that leakage into the Rx
channel does not drive the LNA into saturation if transmitting and receiving simultaneously. For
some naval RF functions with a high EIRP requirement, such as radar, this is an onerous constraint.
Normally, naval radars employ T/R modules with peak powers of at least 10 W to achieve the required
EIRP with a reasonable number of modules. Consequently, usage of lower power T/R modules to
accommodate simultaneous transmitting and receiving would imply the need for many more such
modules to meet EIRP requirements, leading to increased cost, size and weight of the array.

A potentially more serious issue relates to power reflected back from the radiating element during
transmission due to impedance mismatches between the antenna element and free space. This reflected
power emerges unattenuated from the circulator into the Rx channel, and as such, represents another
source of leakage from the Tx channel. In a traditional mechanically scanned antenna, where the
residual impedance mismatch is only a function of frequency, this mismatch can be electronically
tuned out near the antenna to mitigate the problem. However, with an AESA, mutual coupling
between radiating elements in the array result in an element impedance mismatch that varies both
with frequency and scan angles, making it much harder to control [2]. This leads to element reflection
coefficients that can be as high as −6 dB when measured over a ±60◦ scan sector and across a wide
range of frequencies [26]. Assuming the same LNA characteristics as in the previous paragraph, and a
−6 dB element reflection coefficient, the peak HPA output power must be less than 4 mW to ensure
that this reflected power does not saturate the LNA during simultaneous transmitting and receiving.
Along the lines of the discussion in the previous paragraph, this would clearly impose a problematic
limitation on AESA design with regard to those RF functions with high EIRP requirements.

If separate Tx and Rx arrays are used, Tx and Rx channels are largely electrically disconnected.
In this case, the principal source of leakage becomes electromagnetic (EM) coupling between the two
arrays, which can be reduced to an acceptable level simply by increasing the physical separation
between them. For example, with a separation of a few metres between edges of a Rx and Tx array in
the same plane, isolation values of greater than 80 dB can be readily achieved over a wide range of
frequencies and array scanning angles [27]. With this level of isolation, high-power HPAs can be used
on the Tx array without affecting simultaneous reception on the separate Rx array.

It should be pointed out that a combined Tx/Rx array, meaning an array that uses T/R modules
to enable sharing of each array element by a Rx and Tx channel, can be configured to emulate separate
Tx and Rx arrays by utilizing two subarrays on the same aperture with a separation between them.
In this scenario, only the Tx channels of the T/R modules for one subarray and only the Rx channels
for the other one would be employed. Consequently, the EM coupling between the two subarrays
would be the only contributor to leakage from the Tx to the Rx channels. EM simulation results at
C-band have been reported for this type of configuration, involving two small subarrays separated by
about 2 m on an array of wideband flared notch elements [28]. The simulations indicated acceptable
isolation between the subarrays of at least 70 dB, modelled with the Tx subarray beam pointed at
boresight and the Rx subarray beam scanning over ±60◦ in both azimuth and elevation. However,
a potential problem with this approach is that given the fixed size of the array, the only way to increase
subarray separation to achieve the isolation required for simultaneous transmission and reception is to
reduce the size of the subarrays. This leads to lower EIRP (due to a smaller numbers of T/R modules
in the subarray and lower subarray gain) and larger widths for the Tx and Rx subarray beams. As a
result, the subarray EIRP and beamwidths may fail to meet the requirements of the RF functions for
which the subarrays are to be used.
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Another potential advantage of using separate Tx and Rx arrays is that it affords greater design
flexibility than that which is possible with a combined Tx/Rx array. For example, antenna gain and
beamwidth, which are functions of the AESA size, can in general be different for Rx and Tx operations.
Separated arrays allow for the possibility of differently sized Rx and Tx arrays to be used to achieve this.
Also, with separated Tx and Rx arrays, different technologies in principle can be more easily employed
for fabrication of the Tx and Rx modules with which the respective arrays would be populated. For
example, older gallium arsenide (GaAs) technology could be used for Rx modules since it is well
suited for the fabrication of low-noise wideband LNAs. On the other hand, newer gallium nitride
(GaN) technology, while currently more expensive than GaAs technology, is attractive for use in Tx
modules, since it allows HPAs to be fabricated with five times more power output than GaAs HPAs
within the same chip footprint [29].

The obvious disadvantage of employing separate Tx and Rx arrays in a MFRF system is that the
number of required antenna arrays would be greater than that needed for the case where combined
Tx/Rx arrays are used. The general rule of thumb is that AESAs provide useful coverage over scan
angles of θ0 = ±60◦ relative to boresight. This results from the practical fact that impedance matching
of AESA elements over large scan angles becomes increasingly difficult, and also from the theoretical
observation that for any AESA antenna, the antenna gain varies as cos θ0 and the beamwidth varies
as (cos θ0)

−1. At θ0 = ±60◦, the resulting antenna gain drop of 3 dB and the beamwidth increase
factor of 2 start to become significant. Consequently, if combined Tx/Rx arrays are used, at least three
such arrays are required to provide hemispherical coverage, and often four are preferred to minimize
performance degradation at the edge of the scan patterns. Now considering the case of separate Rx
and Tx arrays, these numbers would be doubled, adding at minimum another three topside antennas
to provide the required coverage volume. Thus, the use of combined Rx/Tx arrays mitigate to a larger
extent the contribution of topside antennas to overall ship RCS, and may simplify antenna installation
due to the fewer number of antenna arrays involved.

It is worthwhile to note that for stand-alone naval radar systems or communication systems,
the problems with combined Tx/Rx arrays discussed in this section are not necessarily relevant. For
naval radars, which typically use a pulsed waveform with a relatively low duty cycle, there is no
requirement to receive while transmitting. Consequently, an electronic switch can be included in the
Rx path between the LNA and circulator, and opened during radar pulse transmission to provide
sufficient isolation for the LNA. In the case of fully duplexed communication systems, transmission
and reception are conducted on different frequency bands, as indicated in Section 2. As a result, any
residual HPA output power leaking from the Tx channel into the Rx channel through the circulator
would be outside of the Rx band, and can consequently be attenuated by a bandpass filter inserted into
the Rx channel between the LNA and circulator. Furthermore, radar and communication functions
are assigned different frequency bands of operation, so that they would generally not interfere with
each other in a MFRF system. It is only when the ES and EA functions are included in a MFRF
system that isolation between Rx and Tx channels becomes critical, because the ES function must
continuously monitor a large range of frequencies including those at which the other RF functions
may be simultaneously transmitting, and the EA function may be required to transmit at frequencies
over which the other RF functions are simultaneously receiving. This discussion suggests a possible
MFRF system design compromise, in which radar and communication functions share a combined
Tx/Rx array, while the EA and ES functions employ separate Tx and Rx arrays, respectively, to enable
simultaneous transmission and reception.

3.2.2. Wideband vs. Multiband Operation

In the ideal MFRF system architecture, all of the hardware components are sufficiently wideband
to support the full range of operating frequencies for the RF functions of interest. This implies
component bandwidths of 0.5–40 GHz, based on the RF function requirements of Table 1. However,
such bandwidths are not available with current state-of-the-art technology.
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Referring to Figure 2, limitations begin with the radiating element itself. A number of different
types of antenna elements have been designed for use in dual-polarized wideband AESAs, but the
element design that provides the largest bandwidth along with relatively good cross-polarization and
reflection coefficient properties remains the well-known flared notch, often referred to as a Vivaldi
antenna [26,30]. Figure 3 depicts a single AESA element comprising two flared notches positioned
orthogonally to provide dual linear polarization operation. The metal flared notches can simply be
printed on dielectric substrates, which facilitates cost-effective fabrication and assembly of a large array
of such elements, with small element separation if necessary. The bandwidth is largely determined by
the element aspect ratio h/d, while the element separation on the array corresponds to the dimension d.
The maximum instantaneous bandwidth achievable with a flared notch element occurs with an aspect
ratio of h/d ≈ 5, which yields a bandwidth of about 10:1, or a decade of bandwidth. However, the
overall required 0.5–40 GHz range of operating frequencies for the naval RF functions represents almost
two decades of bandwidth. Consequently, the limitation on achievable AESA element bandwidth
necessitates the use of multiple AESAs operating in different bands that collectively cover the entire
operating band of interest.

Sensors 2018, 18, x 18 of 36 

 

 

Figure 3. Dual polarized AESA element based on flared notches. 

 

Figure 4. Geometry of dual-band array. 

Another AESA-related issue is the separation between elements on the array. As indicated in 

Section 3.1, in order to prevent grating lobes within the full operating frequency range and scan angle 

sector of ±60°, this spacing should be 0.54λg. However, assuming a wideband AESA with a 10:1 

bandwidth, this means that for all but the highest frequency within the supported bandwidth, the 

number of elements populating the AESA would be more than required, by a factor between one and 

10. This is a concern because the cost of an AESA implementation is largely proportional to the 

number of elements used, with the cost of the Rx and/or Tx channel electronics associated with each 

element being the main cost driver. To appreciate the scale of the problem, consider a MFRF system 

utilizing an AESA with a 10:1 instantaneous bandwidth covering 1–10 GHz. Referring to Table 1, if 

the radar volume search function is being conducted in L-band at 1 GHz, then the one-way 

beamwidth requirement of 2° for that RF function dictates that the array size is about 7.6 m per side. 

If the element spacing is then set to 0.54λg to avoid grating lobes at 10 GHz, then a total number of 

220,000 radiating elements is required for the AESA. One way to reduce the overall element count is 

to further divide the frequency range of interest into multiple smaller bands, each band with its own 

AESA. This allows the AESAs covering lower frequency bands to utilize less elements as a result of 

larger allowed element spacing. However, this solution carries with it all the previously mentioned 

disadvantages of additional antenna apertures that need to be installed on the ship. An alternative 

multiband approach that maintains use of the single wideband array with the same overall size and 

bandwidth is based on the implementation of different element spacing in various zones on the 

AESA. This idea has been referred to as a wavelength-scaled array [32]. The concept is depicted in 

Figure 5 which indicates the element locations within the different zones on a wavelength-scaled 

AESA. In this example, the element spacing in Zone 3 is twice that of Zone 2, which, in turn, is twice 

the element spacing of Zone 1, where the Zone 1 element spacing is chosen to ensure that there are 

no grating lobes at the highest frequency of operation. The outer dimensions of each zone are 

Figure 3. Dual polarized AESA element based on flared notches.

In considering various multiband MFRF system designs, one design approach is to populate
every AESA with elements that are as wideband as possible, with the aim of accommodating all RF
functions that operate within the large bandwidth of each array. An alternative scheme could include
some AESAs that are designed to be utilized only by RF functions that have relatively small operating
frequency ranges, albeit in different bands. This potentially allows narrowband elements to be used
for those arrays. For example, a dual-band dual-polarization AESA design has been reported that
supports operation at both S-band and X-band [31]. The geometry of the array is shown in Figure 4.
The spacing of the S-band and X-band elements is chosen to minimize grating lobes in their respective
bands. The radiating elements themselves consist of metal patches printed on different sides of four
stacked dielectric substrates. The separation distance between the stacked substrates is adjusted to
optimize the bandwidth of the elements. Each X-band element comprises two stacked diamond-shaped
patches–one patch is active and the other is parasitic. There are two feed ports to the active patch on
adjacent corners to realize dual orthogonal polarizations. Each S-band element consists of stacked
patches that include two modified coupling feed patches, an active perforated patch and a parasitic
perforated patch. The purpose of the perforations is to expose four X-band elements that underlie
each S-band element, so that the presence of the S-band element does not affect the performance of
the X-band elements. The measured bandwidths of the S-band and X-band elements are 0.6 GHz and
2.7 GHz respectively, corresponding to operating frequency ranges of 2.8–3.4 GHz and 9.0–11.7 GHz.
The element reflection coefficient is less than −10 dB over these frequency ranges. This type of AESA
would appear to be a good candidate for shared usage by the S-band and X-band radar subfunctions
listed in Table 1. The array design provides the flexibility of allowing any part of the AESA to be
accessed simultaneously by radar functions in both bands. Furthermore, the employment of relatively
narrowband radiating elements in the AESA yields the attendant benefit of being able to readily source
narrowband components with the required performance characteristics for the associated Rx and
Tx channels.
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Another AESA-related issue is the separation between elements on the array. As indicated in
Section 3.1, in order to prevent grating lobes within the full operating frequency range and scan angle
sector of ±60◦, this spacing should be 0.54λg. However, assuming a wideband AESA with a 10:1
bandwidth, this means that for all but the highest frequency within the supported bandwidth, the
number of elements populating the AESA would be more than required, by a factor between one
and 10. This is a concern because the cost of an AESA implementation is largely proportional to
the number of elements used, with the cost of the Rx and/or Tx channel electronics associated with
each element being the main cost driver. To appreciate the scale of the problem, consider a MFRF
system utilizing an AESA with a 10:1 instantaneous bandwidth covering 1–10 GHz. Referring to
Table 1, if the radar volume search function is being conducted in L-band at 1 GHz, then the one-way
beamwidth requirement of 2◦ for that RF function dictates that the array size is about 7.6 m per side.
If the element spacing is then set to 0.54λg to avoid grating lobes at 10 GHz, then a total number of
220,000 radiating elements is required for the AESA. One way to reduce the overall element count is
to further divide the frequency range of interest into multiple smaller bands, each band with its own
AESA. This allows the AESAs covering lower frequency bands to utilize less elements as a result of
larger allowed element spacing. However, this solution carries with it all the previously mentioned
disadvantages of additional antenna apertures that need to be installed on the ship. An alternative
multiband approach that maintains use of the single wideband array with the same overall size and
bandwidth is based on the implementation of different element spacing in various zones on the AESA.
This idea has been referred to as a wavelength-scaled array [32]. The concept is depicted in Figure 5
which indicates the element locations within the different zones on a wavelength-scaled AESA. In this
example, the element spacing in Zone 3 is twice that of Zone 2, which, in turn, is twice the element
spacing of Zone 1, where the Zone 1 element spacing is chosen to ensure that there are no grating lobes
at the highest frequency of operation. The outer dimensions of each zone are successively doubled in
progressing from Zones 1 to 3. Assuming that the AESA is required to operate over a 10:1 bandwidth,
say from 1–10 GHz, then Zones 1 to 3 support grating lobe-free operation within frequency ranges
of 1–10 GHz, 1–5 GHz and 1–2.5 GHz respectively. This implies that RF functions operating in the
1–2.5 GHz band may use the full array, namely, Zones 1 to 3; those functions operating at frequencies
between 2.5–5 GHz are restricted to use of elements in Zones 1 and 2; and RF functions active in the
5–10 GHz band may only employ the Zone 1 elements. The total element count for the AESA in this
case is about six times less than that which would be required if the array was fully populated with
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elements at spacing d = 0.54λg. In addition to lower costs, this reduced element count also results
in less AESA weight. However, the disadvantage of the wavelength-scaled array approach is that it
reduces flexibility in configuring the AESA of a MFRF system. For example, the decreasing size of
the array area available to RF functions as their operational frequency band increases leads to formed
beams that have approximately the same minimum widths for all functions. This outcome may not
have a significant impact though, as Table 1 indicates that beamwidth requirements for all RF functions
are comparable. Another resulting restriction in AESA use occurs with formation of transmit beams.
Because RF functions operating in higher frequency bands of the supported bandwidth are constrained
to use a smaller area of the AESA, the ability to generate multiple simultaneous transmit beams from
different parts of the array to accommodate these RF functions may be adversely affected.
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Most of the analog components in the Tx and Rx channels have bandwidth limitations which may
be additional drivers in a decision to use several AESAs to cover multiple frequency bands within the
0.5–40 GHz range of interest. These limitations are described as follows:

• Circulator: For a combined Tx/Rx array that requires use of a circulator, currently available
microstrip circulators typically are designed to have bandwidths of 0.5–4 GHz and isolation
values of 20–30 dB. There are a few wider-bandwidth circulators available, such as the UIY Model
UIYBMC1212A (Shenzhen, China) [33]. This circulator has a bandwidth of 10 GHz, extending
from 8–18 GHz, but only provides about 13 dB isolation between ports, which may be inadequate.
Connectorized circulators can have bandwidths of up to 12 GHz [34], but these circulators are
likely too bulky to be included in T/R modules, and have isolation values of only about 15 dB
as well.

• Limiter: There are limiters available that cover the full frequency range of interest. An example is
the 1GC1–8053 (Keysight Technologies, Santa Rosa, CA, USA) which is a MMIC diode limiter that
covers 0–65 GHz, with power limiting beginning at 10 mW [35].

• LNA: A number of wideband GaAs MMIC LNAs are commercially available with good
performance specifications, although there appears to be none that cover the full operational
frequency range. For instance, the Analog Devices HMC1049LP5E maintains a gain of 15 dB with
a noise figure of less than 4 dB over 0.3–20 GHz [25], while the Analog Devices HMC-ALH445
operates over 18–40 GHz with 9 dB gain and acceptable noise figure of less than 5 dB [36].
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• HPA: The Table 2 lists some key specifications for several commercially available MMIC HPAs
with different bandwidths and operating frequencies [37,38]. The first HPA listed uses GaAs
technology, while all of the others in the table are GaN devices. As mentioned earlier, GaAs HPAs
cannot produce power outputs as high as similar-sized GaN-based HPAs, but this one is included
because a GaN device with a similar ultrawide bandwidth could not be found. The quantity PAE
indicated in the table is power-added efficiency, calculated as PAE = (PRF_out − PRF_in)/PDC_in,
where PRF_out is the maximum HPA RF power output, PRF_in is the maximum RF power input,
and PDC_in is the DC supply power required by the HPA. PAE represents the percentage of the
DC supply power that is converted in the HPA to useful RF output power, with the remainder
being dissipated as heat. All else being equal, a low value of PAE for the HPAs implies that a
larger DC power supply must be provided for the AESA, and that the thermal cooling design
for the array becomes more challenging. The table indicates that both HPA output power and
PAE generally decrease as bandwidth and operating frequency increase. While the first HPA in
the table covers the full frequency range of interest, its output power of 0.25 W and PAE of 10%
are by far the lowest of the HPAs listed. As mentioned in Section 3.2.1, an output power of at
least 10 W per element is generally required to accommodate high EIRP RF functions like naval
radar, so this HPA would be unsuitable. The other HPAs listed may be appropriate MFRF system
candidates, although they cover smaller bandwidths. The TGA2813 and TGM2635-CP (Qorvo,
Greensboro, NC, USA) are designed specifically for S-band and X-band radars. Their favourable
output power and PAE specifications highlight the benefits of potentially using narrowband HPAs
in conjunction with a multiband AESA such as the dual-band array described above.

Table 2. Representative specifications for HPAs [37,38].

Device Frequency (GHz) Gain (dB) Output Power (W) PAE (%)

Analog Devices HMC930A 0–40 13 0.25 10
Analog Devices
HMC1087F10 2–20 11 7 20

Analog Devices HMC8205 0.3–6 26 40 38
Qorvo TGA2590 6–12 35 30 25
Qorvo TGA2813 3.1–3.6 22 100 55

Qorvo TGM2635-CP 8–11 26 100 35
Qorvo TGA2595 27.5–31 23 9 24

Regarding the digital receiver in the Rx channel of Figure 2, a critical specification is the number of
bits of digitization that must be provided by the ADC to meet the highest dynamic range specification
of 90 dB in Table 1. While ADC technology is evolving rapidly, ADCs with the roughly 15 bits required
are not yet available at the 40 GSPS sampling rates needed to perform direct RF sampling over the full
0.5–40 GHz range of RF function operating frequencies. The current state-of-the-art in commercially
available ADCs is represented by the entries in the table below [39]. It is observed that number of
digitization bits decreases with increasing sampling rate. The 24-bit digitizer listed is applicable only
for narrowband RF functions like naval radar. The ADC models with 14 and 16 bits may be suitable for
all RF functions, while the 12-bit device could accommodate the ES function with its lower dynamic
range specification of 60 dB. However, none of these ADCs have the bandwidth to allow direct RF
sampling, except in the lower end of the operating frequency range. Consequently, an analog tuner
would generally need to be included in the digital receiver in front of the ADC to translate the RF signal
frequency down to an intermediate frequency that falls within the bandwidth of the ADC. This implies
the need to have several AESAs or subarrays within the AESAs that are assigned to different bands
which collectively cover the full operating frequency range, assuming that instantaneous coverage of
the operating spectrum is an important goal (which would certainly be the case for the ES function).



Sensors 2018, 18, 2076 22 of 37

Finally, the DWG in the Tx channel must be able to generate waveforms with instantaneous
bandwidths as high as 1 GHz, based on the EA function requirements listed in Table 1. This capability
appears currently achievable with commercially available technology. For example, the Analog Devices
AD9914 includes both a DDS and a 12-bit DAC on the same board, and supports output waveform
bandwidths up to 1.4 GHz [40]. From a performance perspective then, currently available DWG
technology appears to pose no significant limitation with regard to use in a naval MFRF system.

As a general concluding observation, the discussion in this section points to ADC technology as
representing the most severe impediment to wideband MFRF system implementation, given that the
most stringent RF function dynamic range requirements can only be met when ADC bandwidths are
restricted to 1–3 GHz.

3.2.3. Element-Level vs. Subarray-Level Digitization/Waveform Generation

Section 3.1 discusses the key advantages of element-level digitization and waveform generation.
The main deterrents to performing these operations at the element level for an AESA are added cost
and design complexity, given that there are typically several thousand elements on an array and each
element, if dual-polarized, would require two DDSs and two ADCs. As a rough order-of magnitude
indication of incremental per-element costs, the Analog Devices DDS is listed at about $140 USD
per unit, while the Texas Instruments ADCs in Table 3 (TI, Dallas, TX, USA) are priced in order of
decreasing bandwidth as $2000 USD, $850 USD, $400 USD and $20 per ADC. There is an obvious
correlation of decreasing price with narrower ADC bandwidths.

Table 3. Representative specifications for ADCs.

Device Number of Bits Sampling Rate (GSPS)

Texas Instruments ADC12DJ3200 12 6.4
Texas Instruments ADC32RF45 14 3.0

Texas Instruments ADS54J60 16 1.0
Texas Instruments ADS1675 24 0.004

The alternative approach to an element-level design is to divide the AESA into fixed subarrays,
with each subarray, rather than each element, serviced by a single digital receiver and/or DWG. This
is illustrated in Figure 6 for the simple case of a two-element subarray on a combined Rx/Tx AESA.
In a typical implementation, the waveform signal from the DWG is split and injected into the Tx
channels of the subarray, while the received signals in the Rx subarray channels are summed in a
combiner before digitization by the digital receiver. Note that subarray sizes for Tx and Rx operations
can generally be different, even with combined Tx/Rx arrays. Also, either digitization or waveform
generation may be implemented at the element level, while the other is realized at the subarray level.
For a subarray-level approach, analog beamf orming (BF) elements must be included in the Rx and
Tx paths. These may be phase shifters in the case of narrowband waveforms or more complex TTD
circuits for wideband signals. A waveform can be considered narrowband from a subarray viewpoint
if Ls � c0/2B, where Ls is the maximum dimension of the subarray, c0 is the speed of light, and B is the
waveform bandwidth [28]. For the waveform bandwidth of B = 1 GHz that must be accommodated
by the EA and ES functions, the subarray dimensions must therefore be much less than 15 cm to meet
this narrowband criterion. However, these subarray dimensions would be comparable to the actual
element spacing, given the frequency ranges of operation in Table 1, so larger subarrays with TTD
beamforming elements must be used. TTD formation of Tx beams with maximum array gain is then
accomplished by employing the DWGs to introduce relative waveform time delays between subarrays,
and the TTD beamforming elements to generate additional relative waveform time delays between
radiating elements within each subarray. For TTD formation of Rx beams, the TTD beamforming
elements impose relative time delays between signals received from different elements within each
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subarray, and after combining and digitization at the subarray level, relative time offsets between the
subarrays are added in the digital domain before coherent summation.
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Compared to an element-level implementation, subarray-level digitization/waveform generation
results in less flexibility to dynamically configure the AESA. Since the subarrays assigned to DWGs
and/or digital receivers in a subarray-level implementation are essentially fixed in size by the hardware
design, the RAM is restricted to partitioning the AESA into areas that are multiples of this smallest
subarray size. If these subarrays are relatively large, this constraint may have an adverse effect on the
ability of the AESA to accommodate multiple RF functions.

In the case of subarray-level digitization, a potentially more serious impact on MFRF system
performance results from the loss of ability to digitally form multiple simultaneous Rx beams in
different directions using signals received from the same set of AESA elements. With digitization at
the subarray-level, only one Rx beam can be formed with the elements in a subarray, restricting the
maximum possible number of simultaneous independent Rx beams to the total number of designated
subarrays on the AESA. This may be problematic for some RF functions like ES and radar that benefit
from the use of simultaneous Rx beams to provide rapid, if not instantaneous, coverage of a large
surveillance area. Consequently, modern stand-alone naval radar systems are increasingly employing
element-level digitization, especially since the cost/benefit trade-off in the case of these narrowband
systems has become much more favourable due to the current availability of suitable low-cost ADCs,
such as the Texas Instruments ADS1675 at a $20 USD unit price.

An alternate approach to subarray-level digitization/waveform generation is a fully connected
architecture with hybrid beamforming [41]. This architecture reduces the number of digital receivers
and/or DWGs but has greater flexibility than the use of fixed-size subarrays. For example, the use of
Butler matrix-based analog beamforming on transmit could allow the beams to be changed dynamically
depending on the channel condition and the number of dominant beams.

4. MFRF System Prototype Development Programs

MFRF systems have been slow to find their way into operational use, likely due to the technical
challenges discussed in this paper, as well as perceptions of higher programmatic risk associated with
procurement and deployment of such systems in comparison to multiple traditional single-purpose
RF systems. However, the interest in MFRF systems remains high, and in particular, there have
been three notable MFRF system prototype development programs conducted in recent years–the
Advanced Multifunction RF Concept (AMRFC) program, the Integrated Topside (InTop) program and
the Multifunction Active Electronically Steered Array (M-AESA) program. These are discussed below.
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4.1. AMFRC

4.1.1. Overview

The AMRFC program was carried out from 1998–2009 by the US Naval Research Laboratory
(NRL) under the sponsorship of the Office of Naval Research (ONR) [1,42]. Its goal was to demonstrate
for the first time the concept of a MFRF system, with real-time radar, EW, EA and communications
functions sharing usage of waveform generators, receivers and a single pair of separated Rx and
Tx AESAs. The main contractors involved were Raytheon [43] (Waltham, MA, USA) and Northrop
Grumman (Falls Church, VA, USA). Lockheed Martin (Bethesda, MD, USA) was responsible for the Rx
array and digital receivers, Raytheon built the real-time signal/data processor, operator display system
and the portion of the DWGs that produced the digital waveform samples, and Northrop Grumman
provided the Tx array and the DACs for the DWGs.

After development and integration, the AMRFC testbed was installed on a cliff top at Chesapeake
Bay (MD, USA). Throughout 2004, trials were conducted to demonstrate the unique capability of the
system to simultaneously maintain radar surveillance of the area, intercept threat emissions using
its ES function, jam threat radars with the appropriate EA technique, and establish and maintain
SATCOM and terrestrial CDL communication links. Surface vessels provided targets of opportunity
for the radar function, while RF simulators located on Tilghman Island in Chesapeake Bay and aboard
the NRL P3 test aircraft emulated threat radars and active missile seekers to exercise the ES and EA
functions. CDL terminals on the island and aboard the test aircraft supplied the means to establish
terrestrial communication links with AMRFC.

ONR had hoped that the AMRFC technology would be transitioned to the US Navy’s new
DDG 1000 destroyer that was about to begin development in 2005. However, despite the technical
success of the AMRFC program, the overall MFRF system technology was deemed to still be too
immature to move directly into an acquisition program. This was reflected in the assessment that
the AMRFC testbed was at best at Technology Readiness Level (TRL) 6, whereas TRL 7 is considered
to be the minimum level required for a new technology to be considered ready for operational
deployment. Another issue was that the US defence funding and acquisition process has traditionally
been “stove-piped” into separate radar, EW and communications areas, which was not conducive
to acquisition of multifunction systems. The only component of the AMRFC program that was
immediately adopted for operational use was some of the technology associated with the ES function,
which was further refined to TRL 7 as the Multifunction EW (MFEW) Advanced Development Model
(ADM). From 2005 to its conclusion in 2009, the AMRFC program carried on with reduced resources,
focusing mainly on continued development of enabling technologies in the area of digital arrays and
RF components, particularly HPAs.

The total cost of the AMRFC program was in excess of $200 M USD, including the cost of the
MFEW ADM development, and at its peak, involved more than 200 people, including both government
personnel and industry contractors.

4.1.2. Technical Description

The system was designed to operate over 6–18 GHz. The original AMRFC design was based on
a lower band, with an emphasis on the radar function. However, the US Navy decided early in the
development to prioritize demonstration of modern EW and communication capabilities, which was
better accommodated by the high band design. The AMRFC testbed design represents the trade-offs
of Section 3 that were made in this case, based on the state-of-the art in RF and digitizer technologies
at that time [44]. Other design decisions were driven by the goal to demonstrate real-time operation,
given the limitations in processing power in the late 1990s compared to today. Key features of the
AMRFC testbed design are described below.
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• The separate Rx and Tx arrays were each approximately 32 cm square, and populated with
wideband dual-polarized radiating elements based on orthogonal flared notches. The element
spacing was set on the Tx array to ensure grating lobe-free operation up to 18 GHz over
a scan volume of ±50◦ in azimuth/elevation. The arrays had a centre-to-centre separation
in the same plane of about 3.7 m to ensure sufficient EM isolation when transmitting and
receiving simultaneously.

• The Tx array had 1024 elements, segmented into four quadrants of 256 elements each, with each
quadrant further subdivided into four subarrays to yield a total of 16 subarrays. There was
a RF Tx module behind each subarray, comprising a HPA and a pair of RF channels (one per
polarization) feeding the subarray elements, with full amplitude and phase control provided
in each polarization path. The HPA was a GaAs device, capable of generating several watts
across the operating band in either linear or saturated modes. Note that with this relatively low
HPA power, combined with the small Tx array size, the EIRP was only high enough to allow
demonstration of a radar function equivalent to a short-range navigation radar, rather than the
naval radar functions of Table 1; this was a reflection of program priorities, as well as limitations in
cost and HPA technology at that point in time. There was a separate DWG allocated to each array
quadrant, where each DWG included a DRFM component for coherent EA, and was capable of
generating waveforms of up to 1 GHz bandwidth. By using photonic switches, each DWG could
be routed to any or all of the four array quadrants for maximum flexibility. This configuration
allowed the formation of Tx beams using any combination of quarter, half or full array, up to a
maximum of four independent simultaneous beams (one per quadrant).

• The Rx array had 1152 elements in total, grouped into nine 128-element subarrays, with an Rx
module behind each element. Each Rx module had four independent RF receive channels: three
linearly polarized channels, which were each fed by one of the two orthogonal flared notches of
the dual-polarized element, and one polarization agile channel, which carried the sum of the two
polarization signals from each element. It appears that there were no beamforming elements in
the Rx channels. The Rx channel data was utilized as follows.

# The RF signals from nine elements arranged in an interferometer configuration on
the Rx array were downconverted and routed to a remote ES processor for precision
direction-finding of narrowband strong emitters. This involved processing the phases
between the nine inputs using interferometric algorithms to compute azimuth and
elevation. The interferometric approach, while only feasible for strong emitter signals, has
the advantages of covering a wide range of operating frequencies and wide field-of-view.
The RF signals from two other elements were provided directly to auxiliary receivers for
potential use by the DWG DRFMs in support of coherent EA techniques.

# The RF signals from all the Rx modules in each subarray were combined downstream on a
channel basis, that is, all of the Channel 1 signals from the Rx modules in a subarray were
combined, all of the Channel 2 signals were combined, etc. These combined signals were
then provided on four ports on each of the nine subarrays for the following processing.

� The RF signals from three of the four subarray ports on each of the nine subarrays
were sent to three nine-channel analog beamformers (i.e., one beamformer per port)
for SATCOM links. Since beam pointing angles for SATCOM links change slowly,
the capability afforded by digital beamforming to rapidly change beam direction
was not needed, and the load on digital processing resources could consequently
be reduced by the use of analog beamformers.

� The RF signals from three subarray ports on each subarray were provided to
narrowband digital preprocessors, where they were downconverted to IF, sampled
with 14 bits at 60 MHz and passed on to three nine-channel digital beamformers
(i.e., one beamformer per port), where beams were computationally formed by
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phase shifting. Up to four simultaneous Rx beams per narrowband beamformer
could be formed, resulting in a total of up to 12 beams. These beams were used for
radar, CDL communication links, and ES.

� The RF signals from two subarray ports were provided to wideband digital
preprocessors, where they were downconverted to IF with a bandwidth of 230 MHz,
sampled with 8 bits at 960 MHz, digitally downconverted to a complex baseband
signal, and passed on to two nine-channel digital beamformers implemented
with vector processors. Up to two simultaneous beams per beamformer could be
formed, where TTD processing was employed. These beams were mainly used
for ES surveillance of weak emitter signals, where the detection of such signals
benefits from the Rx array beamforming gain. As mentioned in Section 3.1, the
wideband digitization and TTD beamforming accommodates detection of emitter
signals with large instantaneous bandwidth.

As a point of interest, the design decision in the AMRFC program to implement only
subarray-level Rx beamforming without element-level beamforming capability has the following
implications: (1) With only nine inputs to each beamformer, the maximum coherent Rx array gain was
only ≈19 dB; (2) The presence of grating lobes in the beamformed Rx array pattern was effectively
determined by the centre-to-centre subarray spacing, rather than the element spacing. The subarray
separation was about 11 cm, which was larger than 0.54λ for all frequencies within the operating band
of 6–18 GHz. Consequently, grating lobes at scan-off angles were likely an issue. The lack of any
element-level beamforming in the design is an unusual decision that may have been motivated by cost,
and perhaps by a conclusion that this feature was unnecessary for the purposes of demonstrating the
benefits of MFRF systems.

4.2. InTop

4.2.1. Overview

The ONR-sponsored InTop program was initiated in 2009 as a follow-on to AMRFC and is still
ongoing. It has the goal of further advancing wideband array and RF component technology for use
in MFRF systems, based on modular, scalable, open RF architecture [42,45]. The main InTop effort
involves the demonstration of such technology through the development of five RF system prototypes,
each with less MFRF capability than that designed into the AMRFC testbed, but ideally with higher
TRL. Given the obstacles to transitioning the more ambitious AMRFC into operation, this was seen
to be a more prudent approach that would facilitate spinning off demonstrated core capabilities into
acquisition programs, similar to the path followed by the MFEW project. The five prototypes are briefly
summarized as follows. A more detailed technical description is provided in subsequent subsections.

• MFEW ADM: The MFEW ADM was largely developed under AMRFC, but was completed
under the InTop program. Northrop Grumman was the industry lead on this development.
As initially mentioned in Section 4.1.1, the MFEW ADM was based on some of the ES functionality
incorporated in the AMRFC testbed. The MFEW technology has subsequently been transitioned
to the US Navy’s Surface EW Improvement Program (SEWIP) Block 2 acquisition program [46].

• EW/IO/Comms ADM: This ADM supported EA, information operations (IO), and line-of-sight
(LOS) terrestrial communications using a common set of AESAs and RF subsystems. Northrop
Grumman was the prime contractor for this work, with announced contracts totalling $87 M
USD [47]. The ADM has been completed, and the technology has transitioned to the US Navy’s
SEWIP Block 3 acquisition program.

• Submarine Wideband SATCOM Antenna Subsystem: This subsystem involved a set of AESAs that
was designed for mounting on a submarine mast to provide the capability for simultaneous
SATCOM links in different bands. Lockheed Martin was awarded the development contract
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worth roughly $32 M USD [48], and has completed the work. The technology is being transferred
to the Advanced High-Data-Rate (AdvHDR) submarine SATCOM acquisition project. The work is
also applicable to SATCOM for ships.

• LowRIDR ADM: The Low-band RF Intelligent Distribution Resource (LowRIDR) ADM aims to
consolidate several RF functions that operate in a low frequency band, including communications,
EA and ES, into a common set of antennas and related hardware. The ADM is not yet completed.

• FlexDAR ADM: The primary RF functions that are included in The Flexible Distributed Array
Radar (FlexDAR) ADM are radar, EA and ES. A missile data link capability is also provided.
Raytheon is developing the FlexDAR arrays under contract to ONR [48], including the associated
Rx and Tx channels, while NRL is providing the back-end functionality, such as the RAM and
signal/data processing. The FlexDAR concept actually comprises two systems that will be
network-linked together to also demonstrate the benefits of multistatic radar operation in the
form of improved detection, tracking and electronic protection. The ADM is scheduled for
completion in the 2018–2019 time frame.

4.2.2. MFEW ADM

The MFEW ADM antenna utilized 20 dual-polarization sinuous receive elements arranged in an
interferometer configuration. Sinuous elements are planar with a circular shape [49]. They feature a
low RCS, a bandwidth as high as 9:1, a large element beamwidth, and a phase centre that is stable
with frequency, all of which are desirable for interferometer applications. (However, sinuous elements
have a relatively large diameter, making them unsuitable for use in AESAs, where half-wavelength
inter-element spacing is required to avoid grating lobes when beamforming. For example, the Randtron
Antenna Systems (Menlo Park, CA, USA) Model 53640 sinuous antenna element [50] covers a wide
frequency range of 2–18 GHz, but has a physical diameter of 6 cm. In an AESA, this would imply a
minimum inter-element spacing of 6 cm, which would result in potential beamformer grating lobes for
all frequencies above 2.7 GHz).

Each antenna element had an associated tuner and digital receiver which captured a signal
bandwidth of 400 MHz. The digitized signals from each receiver were then filtered with a bank of
32 MHz digital filters before detection processing to maximize sensitivity while minimizing the effects
of external interference. The tuners were employed in a scanning architecture to cover all frequency
bands of interest. The scanning process utilized a priori information about emitter parameters and
frequency concentration to optimize overall response time of the ES function.

Determination of AoA was done with 14 of the antenna elements which formed an L-shaped
pattern. This arrangement essentially provided two orthogonal interferometers to allow computation
of both azimuth and elevation of an emitter signal. A RAM dynamically allocated these antenna
elements to either frequency scanning or AoA determination tasks as required.

As discussed in Section 2.2, implementation of the ES function without an AESA and the associated
advantages of beamforming generally limited the system to detection of stronger emitter signals.

4.2.3. EW/IO/Comms ADM

The EW/IO/Comms ADM utilized one array set per quadrant of surveillance volume, where
each array set consisted of a Rx and Tx AESA [16]. Each Tx array provided up to four independent
beams, while each Rx array supported from four to 16 independent beams through the use of four Rx
channels per element, as was the case with the AMRFC testbed design.

The specifications of the Tx AESA and associated channel components were driven mainly by the
EA function requirements, the most important being an operating frequency range from C band to
Ka band, and sufficient EIRP to provide self-protection for a platform with a large RCS. The design
also included an interface with the ship’s ES system, the information from which was used by the EA
function to track hostile emitters in angle, and aid in design of the jamming techniques.
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The IO functionality was provided through interfaces to the ship’s signal exploitation equipment
that provides threat identification information. The EA function incorporated this information in its
response. The communications requirements for the ADM included two independent legacy system
X-band CDL links, at least four independent TCDL links, and a Ku-band network communications
waveform within each quadrant covered by an array set.

4.2.4. Submarine Wideband SATCOM Antenna Subsystem

The submarine SATCOM antenna subsystem employed separate Tx and Rx arrays to supply
SATCOM services from C-band through to V-band. It supported from four to at least eight
simultaneous communication links.

4.2.5. LowRIDR ADM

The frequency range of operation for the lowrider ADM is VHF to C-band. Communications, EA
and ES functions are supported throughout this frequency range. In the case of the communications
function, the focus is on line-of-sight terrestrial communications, specifically Link 16, Identification
Friend or Foe (IFF) and Tactical Air Navigation (TACAN) [51].

4.2.6. FlexDAR ADM

The two AESA-based FlexDAR ADM systems operate only in S-band, which is a typical band
for the radar function. Consequently, while EA and ES functions are included in FlexDAR, their
implementation is restricted to this relatively narrow band of frequencies. The FlexDAR design
features element-level digitization of the AESA Rx channels.

4.3. M-AESA

4.3.1. Overview

The M-AESA program was a joint Sweden-Italy initiative aimed at developing new technology
and system concepts for a next generation AESA-based MFRF system that integrated radar, EA, ES and
communication functions [52]. The ultimate goal was to be able to potentially insert this technology
into future Swedish and Italian ground, air and naval platforms, utilizing common RF hardware
modules. The industrial consortium of Saab Microwave Systems AB (Stockholm, Sweden), Selex
Sistemi Integrati (Rome, Italy) and Elettronica Group (Rome, Italy) was awarded the contract in 2005
to conduct this program.

There were three program phases:

• Phase 1 (2005–2006): Technology concept/application formulation–analysis of existing system and
related technology base to outline potential future system applications. Deliverables: (1) Statement
of Work (SOW) and Work Breakdown Structure (WBS) for Phase 2, and (2) schedule and cost
estimates for Phases 2 and 3.

• Phase 2 (2006–2010): Concept refinement–development of RF building blocks, selection of
architecture for the M-AESA system. Deliverables: M-AESA system prototype at TRL 4.

• Phase 3 (2011–2014): Technology development. Deliverables: M-AESA system prototype at TRL 6.

Work completed in Phases 1 and 2 was reported in the open literature and is summarized in the
next section.

4.3.2. Technical Description

The M-AESA system provided Tx functionality from 4.5–18 GHz and Rx functionality from
2–18 GHz. The extended frequency coverage at the low end of the spectrum for Rx, as compared to Tx,
was to accommodate certain communication services.
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Two main antenna configurations were considered for the M-AESA program for the notional
ship-mounted case [52]. The first configuration involves a wideband combined Rx/Tx AESA for each
quadrant that is shared by radar, EA, ES and communication functions. It is representative of the
ideal MFRF system architecture presented in Section 3.1, with all of its potential benefits. The second
antenna layout comprises: a multiband or at least more narrowband combined Rx/Tx array that is
utilized by radar functions and some in-band communication services; a smaller wideband Tx array
for use by the EA function and the Tx portion of communication links; and a linear wideband Rx
array to support ES and the Rx side of communication links. Note that beams formed with the linear
array are narrow in azimuth but wide in elevation, so that AoA determination in the ES function is
restricted to the azimuth dimension. Referring to the trade-off discussions in Section 3.2, the second
configuration ensures sufficient isolation between Rx and Tx channels during periods of simultaneous
reception and transmission. It also allows components of narrower bandwidth to be used at least for
the radar function, with attendant advantages such as the availability of higher power HPAs and faster
ADCs with higher dynamic range. It appears that this second configuration was ultimately selected,
based on the developed RF components described below.

The primary RF building blocks developed under the M-AESA program were wideband antenna
arrays [28] and wideband T/R modules incorporating analog TTD beamforming elements [53,54]. The
wideband arrays were based on the type of flared notch element depicted in Figure 3. A test array
was fabricated during Phase 2 of the M-AESA program [28]. It consisted of 25 × 25 dual-polarized
elements spaced about 1.5 cm apart, which provided grating lobe-free beamforming up to 10.5 GHz for
scan angles within ±60◦. The reflection coefficient for the centre element of the array was measured to
be less than −10 dB over 2–18 GHz and over all scan angles.

The simplified block diagram of the T/R module is presented in Figure 7. The wideband amplifiers
(AMP), switches, attenuator, and TTD beamforming element were packaged together as a GaAs MMIC
core chip. The entire T/R module had dimensions of 1.4 cm wide × 5 cm long × 0.4 cm thick. The
1.4 cm width requirement was a challenging one that was set by the specification for 1.5 cm element
spacing in the array.
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The switches served to select between Rx and Tx paths, with isolation of greater than 40 dB
provided over 2–18 GHz. Note that this design precluded the possibility of simultaneous reception and
transmission within the same T/R module. The depicted arrangement of the two switches allowed the
same TTD beamforming element to be used by either Rx or Tx signals. The TTD beamforming circuit
provided up to 124 ps of time delay (equivalent to 3.7 cm in free space) by switching between “artificial”
transmission lines realized with inductor-capacitor networks. This approach was used because physical
transmission lines would have occupied an unacceptable amount of chip area for the required delay.
The delay was controlled with a 5-bit word, where the least significant bit was equivalent to 4 ps of
delay. The attenuator in the Rx chain was included to allow for tapering of the Rx signal across the
array, which might have been desired for sidelobe suppression during beamforming. The purpose of
the wideband amplifiers in both the Rx and Tx channels (to the left of the TTD element in Figure 7)
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was to compensate for insertion losses introduced by the switches, attenuator and, mainly, the TTD
beamforming element. The HPAs were GaAs MMIC devices, with their characteristics indicated in
Table 4 for two different models that were developed. HPA 1 was aimed at use in transmit modules for
the wideband arrays in the second antenna configuration, while HPA 2 was intended for T/R modules
that would be employed for the radar array in that configuration. While the operating frequency
range of HPA 2 was somewhat less than that of HPA 1, it was still large enough to accommodate a
C-band or X-band radar function. The obvious advantage of using HPA 2 for radar functions was the
higher output power. These HPA specifications compared favourably to those of similar devices on the
market in the 2010 time frame that the M-AESA HPAs were developed. However, the emergence of
GaN technology since that time has resulted in currently available HPAs that are significantly superior,
as indicated by comparisons to the HPA specifications in Table 2. Lastly, the wideband LNA used in
the T/R module design yielded an overall measured noise figure for the module of less than 4.1 dB
over the entire Rx operating frequency range of 2–18 GHz, and less than 2.9 dB over typical radar
operating frequencies of 6–13.5 GHz.

Table 4. Specifications for M-AESA HPAs.

Device Frequency (GHz) Gain (dB) Output Power (W) PAE (%)

HPA 1 4.5–18 19 2 (CW and pulsed) 25–30%
HPA 2 5–12 20 4 (pulsed) 25–30%

The M-AESA design utilized subarray-level waveform generation and digitization. Consequently,
the total time delays required for TTD beamforming were achieved by a combination of digital domain
implementation at the subarray level, and analog delays at the element level. Specifically, the design
called for the capability to provide analog delays of up to 1144 ps (equivalent to 34 cm in free space)
for the signals from/to each array element. As mentioned previously, a maximum of 124 ps of delay
was available in each T/R module, where this number was likely constrained by the available space on
the core chip for the delay line implementation. Thus, to meet the analog delay requirement, a separate
analog TTD board that serviced each subarray provided up to an additional 1020 ps of delay for each
array element, with the delay controlled by an 8 bit word with the least significant bit equivalent to
4 ps. The TTD board contained the same core chip as in the T/R module to provide the first 5 bits of
delay, and then microstrip transmission lines were employed to implement the higher order 3 bits.
Switches were also included on the board to select between Rx and Tx modes.

5. MFRF System Resource Management

As discussed in the previous sections, the design trade-offs that prevent realization of the ideal
MFRF system architecture are driven primarily by existing performance limitations and/or costs of
hardware technologies related to array radiating elements, ADCs, and RF components such as HPAs,
LNAs and circulators. Consequently, the continued advancement of these technologies will be the
most significant factor in enabling the optimal design and cost-effective deployment of naval MFRF
systems. It will be valuable to maintain a technology watch in these areas with the aim of identifying
future MFRF system design concepts that can exploit advances in the underlying hardware technology.
The technology watch effort would involve monitoring the available literature to recognize relevant
emerging technology trends, and periodically surveying commercial-off-the-shelf products to establish
current state-of-the-art.

A key area of future research in MFRF systems is resource management, a task which is executed
by the Resource Allocation Manager (RAM) depicted in the block diagram of Figure 1. In the past,
most research in RAM architectures and algorithms as they pertain to RF systems has focused on
resource management for phased array radars, since radar comprises a number of functions, and
historically was the first and largest application of phased arrays. There has been significant previous
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work carried out in adaptive radar resource management (RRM) [55–57]. This work provides a solid
foundation for investigating RAM implementations for MFRF systems, since many of the techniques
studied for RRM are somewhat generic in their application. The challenge in extending this work to
MFRF systems lies in the fact that not only must more RF functions be accommodated within the set
of shared electronics and AESAs, but some of the additional functions also have priorities as high
as or even higher than those of the radar functions. For example, the ES function must always be
allocated a portion of system resources to enable continuous monitoring for threat emissions, and
the EA function, when active, commands the highest priority due to its critical self-protection role.
Consequently, a careful study of resource management techniques for MFRF systems is required to
determine the extent to which potentially suboptimal resource allocation to any single RF function
during system overload conditions may impact their performance.

Signal processing for RF functions is another important area of future research. This topic is
not discussed here due to space constraints. Instead, the reader may consult references on signal
processing for radar [58], ES [59], EA [60], and communications [61]. Based on the above observations,
key elements of resource management for MFRF systems are presented below.

5.1. Development of Modelling and Simulation Capability

Evaluation of resource management techniques for multifunction systems in complex scenarios
relies heavily on modelling and simulation. A modelling tool for resource management would need to
include the following capabilities:

• model for a real-time scheduler that accounts for radar, ES, EA and communications tasks.
• modelling of radar search and track modes.
• dynamic arbitrary partitioning of arrays to accommodate operation of multiple RF functions that

in general are activated at different points in time.
• separation of Rx and Tx modes to provide the flexibility of utilizing different transmit/receive

array gains and beamwidths, as would be the case if a MFRF system was configured with separate
Rx and Tx arrays for example.

• inclusion of threat emitters in the scenario to stimulate the ES function.
• modelling of ES, EA and communication functions, including hand-off of threat emitter

information from the ES to the EA function.

With regard to the last item, it would likely suffice to implement relatively simple models for
ES, EA and communications functions, since the purpose of the study would be to evaluate resource
management techniques rather than the effectiveness of specific waveforms or algorithms used in these
functions. For example, when EA is activated in the model, it can simply be assumed that suitable
jamming waveforms are being used without the need to explicitly model them. The focus instead
would be on modelling the action taken by the RAM at that instant to provide the EA function with
sufficient system resources to transmit at the required EIRP for the length of time deemed necessary
to likely defeat the threat. In the case of ES, modelling of the emission detection process would be
implemented in a similar fashion to the radar range equation-based scheme utilized for modelling
radar detections, except that a one-way version of the radar range equation would be used in the case
of ES. Beyond that, modelling of the ES function would include assignment of system resources by the
RAM to allow continuous monitoring for threat emissions across the frequency spectrum, and timely
coverage of the required surveillance volume with a receive beamwidth narrow enough to achieve
required AoA measurement accuracies.

5.2. Development and Evaluation of Resource Management Techniques

Once a suitable modelling and simulation tool has been developed, it would be used to explore
the capabilities and limitations of different RAM schemes for a MFRF system. Resource management
techniques that have been found to be effective for RRM would be good candidates for initial
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investigation. If necessary, these RRM techniques may be modified to optimize them for the MFRF
system application. Also, new approaches may additionally be developed and tested.

The specific configuration and performance characteristics of the MFRF system hardware assets
that are under RAM control are key factors in ultimately determining the extent to which resource
management techniques can mitigate RF function performance degradation in challenging threat
scenarios. Consequently, careful effort would be required in selecting a MFRF system architecture
for this study which will be representative of the technology available within the timeline of interest.
Based on the discussions in Section 3, a preliminary recommendation is that the modelled baseline
MFRF system architecture include the following high-level features:

• Separated Rx and Tx arrays: For the foreseeable future, this is the only configuration that ensures
sufficient isolation between Rx and Tx channels to allow simultaneous transmission and reception
at the same frequencies, which is a requirement when ES and EA functions are involved.

• Multiband: Given the bandwidth limitations of a number of the required hardware components, it
is prudent to assume a multiband system that covers the full operating frequency range up to
40 GHz with several bands. Examination of currently available technology described in Section 3
suggests that the performance characteristics of key components, namely HPAs, LNAs and ADCs,
are good enough now or will be in the near future to support one such band that roughly covers
from 4–10 GHz. This frequency range is significant, because it notionally encompasses all of
the radar subfunctions (VS, HS and TI), as well as the X-band communication function, and an
important part of the operating range for EA and ES functions. Thus, this band provides the
greatest potential to yield a challenging overload situation for a RAM, and would consequently
be the focus of the resource management study.

• Element-level digitization and subarray-level waveform generation: The flexibility to arbitrarily partition
Rx arrays and digitally form any given number of multiple simultaneous Rx beams from the
same part of the AESA are key motivations to using element-level digitization in a MFRF system.
Element-level digitization has already been implemented in some commercially available radars,
and the continuing strong trend in ADC technology towards higher performance and lower cost
suggests that this design feature will be increasingly utilized in the near future. On the other
hand, the benefits of element-level waveform generation are not as significant. Utilization of
subarray-level waveform generation sacrifices some flexibility in configuring the Tx array, as
discussed in Section 3, and requires the insertion of passive phase shifters or TTD circuits in
the Tx channels to perform beamforming, but these disadvantages are likely outweighed by the
reduction in system cost and complexity achieved by implementing fewer DWGs.

The modelling effort would include at least two scenarios–benign and challenging. These are
described as follows.

• Benign scenario: In this baseline scenario, there would be no threats to which the MFRF system
would need to respond. Consequently, the only functions activated would be ES, VS/HS radar,
and occasionally X-band communications. The RAM would be able to allocate sufficient resources
to each of these functions to allow them to operate at full performance.

• Challenging scenario: A number of threats would be inserted in this scenario to force the activation
of EA and TI radar functions in addition to the functions operating in the benign scenario. Under
these overload conditions, it is expected that the ideal amount of resources required by each RF
function would not be available at every point in the scenario. The ability of the RAM to optimally
allocate resources in this situation would be a key determinant of RF function performance.

6. Conclusions

This paper discusses the key issues that must be considered in the design and development of
an AESA-based MFRF system that replaces a number of single-purpose RF systems and associated
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topside antennas on a modern naval vessel. The RF functions that are candidates for consolidation
within a MFRF system are radar, EA, ES and communications. Radar subfunctions comprise Volume
Search, Horizon Search, and Terminal Illumination. Communication services that are suitable for
inclusion in an AESA-based MFRF system are X-band, Ku-band and Ka-band SATCOM, as well as
Ku-band TCDL.

The key transmit and receive requirements of the candidate RF functions were reviewed, namely,
frequencies of operation, signal bandwidth, dynamic range, EIRP, one-way beamwidth, duty cycle,
and signal polarization. These particular requirements pose the greatest challenges to development of
a system that allows sharing of AESA radiating elements and RF components between multiple RF
functions. Factors that drive these requirements for each RF function were also discussed.

An ideal MFRF system design architecture was presented that would accommodate the
requirements of the individual RF functions, minimize the number of required AESAs and provide
the maximum flexibility to facilitate dynamic assignment of system resources to these functions by
a resource allocation manager. The key features of this ideal architecture are: (1) each radiating
element in an AESA is shared by a transmit and receive channel, where generally each of the two
channels can be used by a different RF function at the same time; (2) the AESA radiating elements
are dual orthogonally polarized to allow reception/transmission at all signal polarizations; (3) all
components have sufficient bandwidth to support the full operating range of frequencies for the
RF functions of interest; and (4) each transmit channel and receive channel has its own digital
waveform generator and digital receiver respectively to fully capture the benefits of element-level
digitization and waveform generation. Currently, costs and/or performance limitations in existing
hardware technology result in design trade-offs and compromises that prevent achievement of this ideal
architecture. The trade-offs fall into three categories (1) combined vs. separate transmit/receive arrays;
(2) wideband vs. multiband operation; and (3) element-level vs. subarray-level digitization/waveform
generation. The considerations involved in these trade-offs were discussed in detail. The consequences
of departure from the ideal MFRF system architecture are generally a larger number of required AESAs,
and less flexibility in assigning AESA resources to the different RF functions.

A description was provided of MFRF system prototype development programs that have been
conducted in other countries. The AMRFC program, which was carried out from 1998–2009 under the
sponsorship of the US ONR, demonstrated for the first time the concept of a MFRF system covering
6–18 GHz, with real-time radar, EW, EA and communications functions sharing usage of waveform
generators, receivers and a single pair of separated receive and transmit AESAs. The InTop program
was initiated by ONR in 2009 as a follow-on to AMRFC and is still ongoing. It has the goal of further
advancing wideband array and RF component technology for use in MFRF systems through the
development of five RF system prototypes, each with less MFRF capability than the AMRFC testbed,
but with higher TRL to facilitate spin-off into acquisition programs. The M-AESA program was a
joint Sweden-Italy effort conducted from 2005–2014. Its aim was to develop and implement new
hardware technology and system concepts in a next generation AESA-based MFRF system prototype
that integrated radar, EA, ES and communication functions over a 2–18 GHz operating range. The
primary RF building blocks that emerged from the M-AESA program were wideband antenna arrays
and wideband T/R modules incorporating analog TTD beamforming elements.

Finally, MFRF system resource management was presented as an important future area of research.
A specific emphasis of this work would be the effectiveness of resource management techniques to
mitigate the impact of a system overload condition, where all RF functions must be activated in
response to the detected threat scenario. Under these circumstances, it is assumed that there may
not be sufficient system resources to ensure that the optimal amount of resources required by each
RF function would be available at every point in the scenario. Evaluation of proposed resource
management techniques in both benign and overload scenarios would be accomplished largely through
modelling. The critical capabilities of a modelling and simulation tool for MFRF resource management
were identified. A MFRF system architecture was proposed for use in the modelling effort, largely
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based on hardware technology that is available now or will likely be so in the near future. The key
features of this configuration are separated multiband transmit/receive arrays, with element-level
digitization and subarray-level waveform generation.
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Appendix A

Table A1. IEEE frequency band designations.

Band Frequency Range

HF 3–30 MHz
VHF 30–300 MHz
UHF 300–1000 MHz

L 1–2 GHz
S 2–4 GHz
C 4–8 GHz
X 8–12 GHz

Ku 12–18 GHz
K 18–27 GHz
Ka 27–40 GHz
V 40–75 GHz
W 75–110 GHz

mm 110–300 GHz
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