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Abstract: We present a dataset of close range hyperspectral images of materials that span the visible
and near infrared spectrums: HyTexiLa (Hyperspectral Texture images acquired in Laboratory).
The data is intended to provide high spectral and spatial resolution reflectance images of 112 materials
to study spatial and spectral textures. In this paper we discuss the calibration of the data and the
method for addressing the distortions during image acquisition. We provide a spectral analysis based
on non-negative matrix factorization to quantify the spectral complexity of the samples and extend
local binary pattern operators to the hyperspectral texture analysis. The results demonstrate that
although the spectral complexity of each of the textures is generally low, increasing the number of
bands permits better texture classification, with the opponent band local binary pattern feature giving
the best performance.

Keywords: hyperspectral image; spectral analysis; effective dimension; spectral LBP; texture;
dataset; reflectance

1. Introduction

When electromagnetic waves are incident on a material’s surface, some part of it is absorbed
and some of it is reflected back. The reflected electromagnetic waves from a surface depends on
its material composition, physical and chemical properties, surface roughness and the geometry
of incident and reflected waves. The behavior of reflected waves from a surface in a particular
wavelength region is known as the spectral signature of that material. To obtain the spectral signature
from a surface, devices like spectrophotometers and hyperspectral cameras are used. The advantage of
hyperspectral devices is the acquisition of high resolution spectral and spatial information of a material
or scene, whereas the spectrophotometer is able to acquire spectral information from one point of the
selected surface.

For the acquisition of hyperspectral images, push broom cameras have been extensively used [1].
In the push broom imaging technique, line scanning of the scene is performed and the spectrogram of
a particular scan is recorded on a charged couple device sensor. Another method for the acquisition
of hyperspectral images is through the use of a liquid crystal tunable filter (LCTF) [2] and MEMS
Tunable Fabry-Pérot Filters [3] on top of a monochrome sensor. The use of such filters provides direct
imaging ability, and line scan of the scene is no longer required. The drawback of using such filters
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is the low speed of spectral sampling and the lower number of channels compared to push broom
cameras. Recently, low cost hyperspectral imaging devices have been introduced that use off-the-shelf
components for the conversion of an imaging sensor into a hyperspectral camera [4].

The analysis of hyperspectral images is performed for image data exploration, classification and
quantification tasks. There are various multivariate analysis techniques that are applied to hyperspectral
images for data decomposition, pre-processing and performing regression or classification analyses.
Some of the methods for hyperspectral data analysis include the principal component analysis [5],
linear discriminant analysis [6], partial least squares discriminant analysis [7], K-nearest neighbor
algorithm [8], support vector machine [9], least-squares support vector machine [10], artificial neural
network [11], deep recurrent neural network [12] and deep convolutional neural networks [13].
Hyperspectral imaging is widely used in a number of applications, e.g., remote sensing [14],
medical diagnosis [15], cultural heritage [16,17], face recognition [18], food quality control [19],
color management and printing [20,21]. A number of applications have been developed through
the multivariate analysis of hyperspectral images, including the investigation of dried blood spots [22],
the measurement of oil and protein contents in peanut varieties [23], the classification of muscle
foods [24], the detection of defects on peaches [25] and numerous other applications.

Hyperspectral images contain more spectral information compared to color images. The high
dimensionality of hyperspectral image data is an open challenge, and a trade-off between high
information content and practical handling is often required. To evaluate this compromise and
assess its performance, high quality data with high spatial and high spectral resolutions are required.
Creating such a dataset takes time and effort, but it is necessary to the research community.

Considering these needs, we present a hyperspectral image dataset of 112 textured objects falling
into five different categories. Images are reflectance data that span the visible and near infrared (NIR)
parts of the electromagnetic spectrum. The data is referred to as HyTexiLa (Hyperspectral Texture
images acquired in Laboratory). The idea behind creating this dataset is to provide a platform for the
benchmark analysis of various applications and processing. The areas where this data could be used
are in the fields of image processing, computational imaging and computer vision, such as surface
identification, spatio-spectral analysis of textured surfaces, image sensor simulation, color reproduction,
image relighting and so on. The availability of a high spectral and spatial resolution dataset will provide
easy access for the evaluation of different techniques and will allow the results to be compared. In this
paper, we present that dataset and analyze its spatial and spectral properties. We define the image
acquisition protocol, the distortions that occur during the acquisition of the objects, the method for the
correction of such distortions and the effect of such corrections. Our focus in this paper is to present a
hyperspectral dataset to the community and to provide an analysis on our dataset as a benchmark for
further research. We provide the methodology for pre-processing the raw hyperspectral data before
using it for the intended applications. This paper is organized as follows: First we analyze the existing
hyperspectral datasets and then, in Section 3, we discuss the hyperspectral image acquisition protocol
and the processing of spectral data for addressing the distortions that occur during the acquisition.
In Section 4, a spectral analysis of the data is provided. Section 5 consists of the texture analysis of the
object surfaces in our dataset, followed by the conclusions.

2. Comparison of HyTexiLa with Existing Hyperspectral Datasets

Several hyperspectral image datasets are publicly available. In this section, we provide an overview
of the existing hyperspectral image datasets that consist of close range images, including natural scenes
and indoor images of objects. In this section, we provide a brief review of existing hyperspectral image
datasets and compare them with the properties of our proposed dataset. We do not include the remote
sensing datasets in this section, because remote sensing does not assume the same imaging model. We also
exclude reflectance datasets obtained from pointwise spectrometers because they will not contain any
spatial relationship between spectra as well as those multispectral image datasets which contain less than
10 channels.
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Table 1 gives an overview of the existing hyperspectral image datasets. The datasets
in [26–34] consist of outdoor scenes which include vegetation and buildings. The wavelength range
in [26,30,34–38] is from 400 nm to 700 nm, while the datasets [27,30,31] have spectral ranges from 400 nm
to 720 nm. The spectral sampling in [26,27,29–33,35,36,39] is 10 nm. The dataset in [28,32,40,41] has a
spectral range of 400 nm to 1000 nm. The datasets in [35,36] consist of images of objects taken indoors.
There are some datasets which consist of a specific category of objects, like paintings [42], leaves from apple
tree [43], textiles [39], honey [41] and wood samples [44]. Most of the available datasets are sampled or
re-sampled at 10 nm intervals, while some of them have different sampling intervals, e.g., [28] has 1.25 nm
sampling step, while datasets in [41,43] have spectral sampling intervals of 6 nm and 4.7 nm, respectively.

In this paper, we provide a new dataset of hyperspectral images that has been made publicly
available. This dataset consists of samples from five different categories of materials. The spectral
range of this dataset is from 405.37 nm to 995.83 nm. As identified in Section 2, there are only a few
datasets that span both the visible and NIR regions. The information in NIR is valuable for material
classification [45–47], and the identification of textile fibers [48] and minerals [49]. Although some of
the hyperspectral datasets provide information in the NIR region, they are either for specific samples,
as in [41–43], or consist of outdoor scenes with many objects, as in [28,32]. Each image in our dataset
consists of one specific, rather flat, object. The spectral resolution of data is also an important aspect to
be considered. In most of the hyperspectral image datasets mentioned in Table 1, the spectral sampling
interval is 10 nm, which is considered enough to representat the spectra [50]. A spectral sampling
of 5 nm was recommended for Munsell spectra in [50], but it is also worth noting that more closely
sampled data may be required when spectra are less smooth. One of such cases is the presence of
spiky illumination spectral power distributions, where the use of more accurate spectral intervals is
required. The availability of high resolution spectral and spatial data will allow the development and
testing of advanced resampling methods. There is an existing dataset for textile samples [39] but it
contains spectral information in the visible region and the sampling has intervals of 5 nm between the
bands. Some datasets consist of food items [41,45] but do not provide high spatial resolution. Similarly,
the datasets containing images of urban and natural scenes do not provide high spatial resolution for
each material. The CAVE dataset [35] contains detailed images of various materials that are captured
from close range, but they are only in the visible region.

Our dataset was spectrally sampled at about 3.19 nm and can be used with simulations of most
fluorescent tube and light emitting diode-based illumination sources. The advantage of our dataset
when compared with already available datasets is the availability of high resolution spectral and
spatial data. The spectral range in our dataset covers both the visible and NIR regions. Each image in
the dataset contains a unique material, and it can be used as ground-truth spectral data for surface
identification applications. Our dataset is available for public use in the form of reflectance data in
which each image is cropped to a uniform size. The raw data consists of radiance images captured along
with the white diffuser and gray reflectance patch. Since the raw data is of large size (about 442 GB),
we do not provide it publicly but if someone is interested in processing the raw hyperspectral data,
it can also be provided upon specific request to the authors.
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Table 1. Summary of various characteristics of existing and our proposed hyperspectral image dataset
(N/A means information not available from the dataset description).

Dataset Nature of Images Camera
No. of
Images

Spatial
Resolution

Spectral
Range (nm)

No. of
Channels

Bristol (1994) [26]
Outdoor scenes

of vegetation
Pasecon integrating

camera tube
29 256 × 256 400–700 31

Natural scenes
(2002) [29]

Urban and
rural scenes

Pulnix TM-1010 with VariSpec
tunable birefringent filter

8 1024 × 1024 410–710 31

Natural scenes
(2004) [30]

Reflectance image
of natural scenes

Hamamatsu C4742-95-12ER
with VariSpec liquid crystal

tunable filter
8 1344 × 1024 400–720 33

Natural scenes
(2015) [31]

Radiance image
of natural scenes

Hamamatsu C4742-95-12ER
with VariSpec liquid crystal

tunable filter
30 1344 × 1024 400–720 33

Time-Lapse (2015) [27]
Images of 5 natural

scenes taken at
different times

Hamamatsu C4742-95-12ER
with VariSpec liquid crystal

tunable filter
33 1344 × 1024 400–720 33

ICVL (2016) [28]
Urban and

rural scenes
Specim PS Kappa D×4 201 1392 × 1300 400–1000 519

Harvard (2011) [33]
Indoor and

outdoor images
Nuance FX, CRI Inc. 50 1392 × 1040 420–720 31

UGR (2015) [32] Outdoor scenes Photon V-EOS 14 1392 × 1040 400–1000 61

CAVE (2008) [35] Materials and objects
Apogee Alta U260 with
VariSpec liquid crystal

tunable filter
32 512 × 512 400–700 31

East Anglia (2004) [36]
Everyday objects

placed in
viewing booth

Applied Spectral Imaging
Spectracube camera

22
Various

resolutions
400–700 31

SIDQ (2015) [40] Pseudo-flat objects HySpex-VNIR-1600 9 500 × 500 400–1000 160

Brainard (1998) [37] Indoor scenes
Kodak KA4200 CCD

with Optical Thin
Films filter

9 2000 × 2000 400–700 31

Nordic sawn
timbers (2014) [44]

Wood samples N/A 107 320 × 800 300–2500 440

Scien (2012) [45]
Various objects,
scenes and faces

N/A 106
Various

resolutions
Various
range

Various
channels

Paintings (2017) [42] Paintings IRIS II filter wheel camera 23 2560 × 2048 360–1150 23

Ancient manuscripts
(2012) [38]

Printed
documents

Hamamatsu C4742-95-12ER
with VariSpec liquid crystal

tunable filter
3 1344 × 1024 400–700 33

Apple tree leaves
(2018) [43]

Near infrared
images of healthy
& infected leaves

HySpex SWIR-320m-e N/A
Various

resolutions
960–2490 256

SpecTex (2017) [39] Textiles ImSpector V8 60 640 × 640 400–780 39

Honey (2017) [41] Honey samples
Surface Optic Corporation

SOC710-VP
32 520 × 696 400–1000 126

Singapore (2014) [34]
Outdoor images of natural

objects, man made
objects, buildings

Specim PFD-CL-65-V10E 66
Various

resolutions
400–700 31

HyTexiLa
Our proposed dataset

Textured materials from
5 different categories

HySpex VNIR-1800 112 1024 × 1024 400–1000 186

3. Image Acquisition and Processing

In this section, we present and discuss the objects being imaged and the hyperspectral image
acquisition setup. The issues faced during image acquisition and protocols to correct for those issues
are also part of this section. We describe how we correct for distortions inherent to the system and
how we compute reflectance images from the input radiance data.
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3.1. Notations

We first list the notations and conventions used in this article. Functions are usually denoted
in roman font, with sets in calligraphic font and scalar variables in italic font. All indexes start from
0, and [A] denotes the set of integers {0, 1, . . . , A− 1}. B is the set of wavelengths {λk}k∈[K] which
ranges from 405.37 nm to 995.83 nm at 3.19 nm intervals. The hyperspectral images are denoted in bold
font and spectral channels in italic font. D, I and R, respectively, denote the uncorrected (distorted)
radiance image, the radiance image and the reflectance image. These images are made of K channels of
M× N pixels associated with K spectral bands, centered at wavelengths λk ∈ B. Dk, Ik and Rk denote
the k-th channel of the respective hyperspectral images. A pixel coordinate, p, of an image is denoted
by a couple of bounded integer values: p = (x, y) ∈ [M]× [N] ⊂ Z2

+. Dp (resp. Ip, Rp) and D(x, y)
(resp. I(x, y), R(x, y)) denote the vector (spectral) value of D (resp I, R) at pixel p = (x, y). Similarly,
Dk

p (resp. Ik
p, Rk

p) and Dk(x, y) (resp. Ik(x, y), Rk(x, y)) denote the values of channel Dk (resp Ik, Rk) at
pixel p = (x, y). S = {S(λk)}λk∈B is a vector of values of the spectral power distribution of the scene
illumination, S, sampled at each λk ∈ B. Finally, b·e denotes the nearest integer function; d·e denotes
the ceiling function; 〈·, ·〉 denotes the inner product; and || · || denotes the Euclidean norm.

3.2. Objects in the Dataset

The different objects chosen for the dataset were divided into five classes: textile, wood, vegetation,
food and stone. These samples are a set of textured object surfaces that exhibit different properties while
remaining fairly flat. The imaged objects were reasonably flat so that the blurring effect due to distance
variations from camera was minimal during the scanning process. After the completion of image
acquisition, we analyzed each image thoroughly and discarded a few samples which were too blurry.
We also excluded materials that exhibited high gloss in the considered viewing conditions to maintain
a simple imaging model, as in Equation (1), which allows easy computation of reflectance values:

∀k ∈ [K], ∀(x, y) ∈ [M]× [N], Ik(x, y) = Rk(x, y) · S(λk). (1)

Finally, for this dataset we provide 65 textile samples of various types and colors. They were
selected among textile samples provided by the humanitarian association Don De Soie located in
Templeuve in France. In the wood category, there are 18 different samples of wood that can be
found in the area around Mjøsa lake in Norway. There are 15 images for the vegetation category,
which consist of leaves, flowers and one mushroom. The food category consists of 10 samples of tea,
coffee and spices, and there are four samples in the stone category. Image labels include the material
category, the acquisition sequence number and a specific name if the material has been precisely
identified. For the textile, wood, and vegetation samples, the labels also include the color of the
material (suffix _colorname if there are at least two samples of the same type but with different colors)
and/or the acquisition side (suffix _back if the back of the material has been acquired together with the
front). We provide the sRGB rendering of each image along with the dataset for natural visualization
of the imaged object. The sRGB values were computed from colorimetric computation on the spectral
data (see Section 3.7).

3.3. Acquisition Setup

We used a HySpex VNIR-1800 hyperspectral camera [51], manufactured by Norsk Elektro Optikk
AS. This is a line-scan camera, consisting of a focusing mirror that allows only a narrow line of
light in the scene to pass. This line is projected on a collimating mirror and then passed through
a transmission grating. This grating separates the incoming light into different wavelengths, and each
wavelength is focused onto a detector array (sensor). The camera is coupled with a close-up lens with
a working distance of 30 cm. The output from that array consists of a slice of hyperspectral image,
with spatial information in one direction and spectral information in the other. A combination of these
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line scans provide a full resolution hyperspectral image of the object or scene. The process of line scan
is illustrated in Figure 1.

Figure 1. HySpex VNIR-1800 line scan acquisition process and cross-track distortion illustration on the
x-axis. The camera acquires hyperspectral lines of pixels (x-axis). The hyperspectral image is obtained
by translation of the object onto the y-axis.

The output of the HySpex VNIR-1800 camera consists of a radiance image, D, made of
K = 186 channels associated with the spectral bands, centered at wavelengths λk ∈ B. The width
of the acquired image is M = 1800 which corresponds to the number of photodetectors along the
spatial dimension of the detector array of the camera (x-axis), while the height, N, is the number of
pixels in the scanning direction (y-axis) and is physically bounded by the size of the scene and the
translation stage. During image acquisition, we observed spatial distortions in the output radiance
images, which are addressed in the next section.

3.4. Corrections of Spatial Distortions

We observed a cross-track distortion on the x-axis and a shear distortion on the y-axis of the
output images. These distortions were observed during the acquisition of test targets (grid images
containing perfect squares, Macbeth ColorChecker, rulers). The correction of these distortions can be
modeled by two functions, h : [M]× [N]→ [M] and v : [M]× [N]→ [N], so we set the value of the
pixel given by (h(x, y), v(x, y)) of the distorted image to pixel (x, y) of the corrected image:

∀(x, y) ∈ [M]× [N], I(x, y) = D(h(x, y), v(x, y)). (2)

The function h considers cross-track distortion and is called sensor correction since the distortion
only depends on the physical properties of the sensor of the camera. This distortion is pointed out by
the manufacturer (see Section 3.4.1). The function v considers the shear distortion. This distortion is
due to a nonorthogonality between the sensor and the scan direction given by the translation stage.
The function v is called affine correction, since the shear distortion can be modeled by an affine
transformation (see Section 3.4.2).
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3.4.1. Cross-Track Distortion

The acquired images present a distortion across the scan direction called cross-track distortion.
This distortion is due to the fact that each pixel is associated with a surface element whose size varies
and is the same for each line of a channel and for each channel. Figure 1 shows the whole field of
view of the camera for a given line of pixels (yellow triangle). Point O (red cross) is denoted as the
intersection of the optical axis of the camera and the translation stage. The camera associates 850 pixels
to the left size of O and 949 pixels to its right side, as can be seen on the sensor of the camera. However,
the surface area observed on each side of O is the same. Consequently, the pixels on the left side will
be associated with higher surface elements (compression) than the pixels on the right side (expansion).
To overcome this distortion we use the sensor model function θ provided by the camera manufacturer
that represents the field of view of each pixel in an acquired line of pixels. The whole field of view of
the camera can be deduced as θ(1800)− θ(0) = 0.29 rad. We use θ(x) to compute the width of surface
element Ps(x) (in mm) observed by each pixel as

∀x ∈ [M], Ps(x) = H · (tan (θ(x) + β(x)/2)− tan (θ(x)− β(x)/2)) , (3)

where H = 340 mm denotes the distance between the camera lens, and O, and β(x) represents the
angular pixel size. The pixel size is undistorted at O (x = 850) and β(850) is equal to 1.6× 10−4 rad
(data provided by the camera manufacturer). The angular pixels’ sizes β(x) can be computed using
the following recurrence:

∀x ∈ [M], β(x) =


1.6× 10−4, if x = 850,

2θ(x + 1)− 2θ(x)− β(x + 1), if x < 850,

2θ(x)− 2θ(x− 1)− β(x− 1), if x > 850.

(4)

Figure 2 shows the pixel size Ps w.r.t. x coordinate. Note that
1799
∑

x=0
Ps(x) = 98.6 mm is the width

observed by our camera.

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800
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]

Figure 2. Size of surface element Ps(x) (in mm) observed by each pixel of coordinate x. The values
were computed using Equation (3), and the values of θ(x) were provided by the camera manufacturer.

To correct this distortion on acquired images, we measure the cumulative ratio Cr(x) with respect
to Ps(850) as

∀x ∈ [M], Cr(x) =
x

∑
i=0

(
1− Ps(i)

Ps(850)

)
. (5)
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Finally the sensor correction h is given by

∀(x, y) ∈ [M]× [N], h(x, y) = x + bCr(x)e. (6)

The pixel coordinate is rounded to the nearest integer to avoid artifacts due to the interpolation of
pixel values.

3.4.2. Shear Distortion

After the sensor correction, the image still exhibits a distortion on the y-axis due to the geometry
of the set-up. Indeed, the direction to which the material moves and the line sensor are not exactly
perpendicular. This implies that a rectangle in the scene becomes a parallelogram in the acquired
image (shear distortion). This can be assumed to be an affine transform, leading to the correction

∀(x, y) ∈ [M]× [N], v(x, y) = bax + bye, (7)

and the transform only depends on two parameters: a and b. The pixel coordinate is again rounded here
to the nearest integer to avoid interpolation artifacts. These parameters are experimentally estimated
using the following method: we acquire 10 images of a grid with different rotations (the rotation angle
ranges from 0 to π/4). Note that the grid is originally made of perfect squares: four equal sides and
four equal angles (π/2 rad). Then, we apply the transform given by Equation (7) onto the grid images
after sensor correction for different values for a and b. Finally, we measure the mean of the angles,
γ, between the “horizontal” and “vertical” lines obtained after Otsu thresholding [52] and Hough
transform [53] for all sensor-corrected grid images and three spectral channels, and retain the values
of a and b that minimize |γ− π/2| (i.e., values of a and b that create right angles on grid images).
We use the Otsu and Hough techniques here since they require few parameters and are adequate for
the estimation of lines in these simple grid images which are just made of dark straight lines on a light
background. The angular resolution for the Hough transform is set to arctan(2/1800) = 1.2× 10−3 rad
and represents the smallest angle between two lines of pixels in an image acquired by our camera.
Optimal values of a and b give

∀(x, y) ∈ [M]× [N], v(x, y) = b−0.021x + 1.032ye. (8)

Table 2 shows the mean and standard deviation of |γ − π/2| before and after applying the
correction of Equation (8). It can be seen that, after the correction, the mean γ of the angles of the
squares of the grid images is close to π/2 with a difference of 6× 10−4 rad which is lower than the
angular resolution (1.2× 10−3 rad).

Table 2. Mean and standard deviation of |γ − π/2| (in radians) on 10 grid images with different
rotations before and after applying affine correction of Equation (8), where γ is the angle between
a “horizontal” and a “vertical” line. It can be seen that the difference between γ and π/2 is strongly
reduced (i.e., γ close to π/2) after the affine correction and is lower than the angular resolution
(1.2 × 10−3 rad).

Value of |γ−π/2|
After sensor correction 0.0167 (0.0098)

After sensor and affine correction 0.0006 (0.0003)

Figure 3 represents the vector field of the correction on an image of size 1800 × 2000 pixels.
The origin of each vector is (h(x, y), v(x, y)), and its end is (x, y). Both corrections are translations
along the x-axis (Equation (6)) or y-axis (Equation (8)), so they can be done jointly or separately. At the
end, we obtain, for each acquisition, a corrected radiance image, I, made of K = 186 channels.
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Figure 3. Vector field of both the x-axis and y-axis corrections. The origin of each vector is
(h(x, y), v(x, y)), and its end is (x, y). For clarity, only vectors whose final coordinates (x, y) are
multiple of 100 are shown here.

3.5. Impact of the Corrections on Pixel Resolution

To quantify the impact of the sensor and affine correction on the pixel resolution, we acquire
an image of a ruler with equally spaced markings of 1 mm along the x-axis. Then, we measure the
pixel resolution in pixels·mm−1 thanks to the spaces between the markings of the single-channel image
resulting from an average on 19 spectral channels without corrections—after sensor correction and after
sensor and affine correction. Table 3 shows the means and standard deviations of these resolutions.

Table 3. Means and standard deviations of pixel resolutions (in pixels·mm−1) measured between each
marking or a ruler for a single-channel image resulting from an average of 19 spectral channels without
corrections—after sensor correction and after sensor and affine corrections. It can be seen that the pixel
resolutions are similar, on average, before and after applying the sensor correction, but the standard
deviation is reduced by 2 along the x-axis which means that the sensor correction correctly decreases
the cross-track distortion. Note that the affine correction does not impact the pixel resolution along
the x-axis.

Ruler along x-axis
Without corrections 18.30 (1.21)

After sensor correction 18.28 (0.60)
After sensor and affine correction 18.31 (0.61)

It can be seen that the pixel resolutions are similar, on average, before and after applying sensor
correction (without corrections, pixel widths are higher to the left of intersection O between the
translation stage and the optical axis than to the right, see Section 3.4.1), but the standard deviation is
reduced by 2 along the x-axis which means that the sensor correction correctly decreases the cross-track
distortion. Moreover, we notice that the pixel resolution, on average, is close to the theoretical one
given by 1/Ps(850) = 18.38 pixels·mm−1 (see Equation (3)) and the affine correction does not impact
the pixel resolution along the x-axis.
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To illustrate the impact of the corrections, images of the 49th channel (centered at 561.76 nm) of
the acquisition of the grid made of perfect squares without corrections, after sensor correction and after
sensor and affine correction are shown in Figure 4. It can be seen that without corrections, the pixel
resolution increases w.r.t. the x coordinate (sides of square are higher to the right of the image than
to the left). After sensor correction or both corrections, the pixel resolution is constant w.r.t. the x
coordinate (sides of squares remain constant) which means that the cross-track distortion has been
reduced. Moreover, we observe on the image after both corrections that the shear distortion has been
reduced (squares have right angles).

(a)

(b)

(c)

Figure 4. Images of the 49th channel of the acquisition of the grid made of perfect squares without
corrections (a), after sensor correction (b) and after sensor and affine correction (c). Without corrections,
the pixel resolution increases w.r.t. the x coordinate (sides of squares are higher to the right of the
image than to the left). After corrections, the pixel resolution is constant w.r.t. the x coordinate (sides of
squares remain constant). Moreover, the shear distortion is reduced after sensor and affine correction
since the squares have right angles. The red arrows and blue rectangles have been added as overlays
to obtain a better view of the distances and angles. Note that they are identical (same lengths) from
one image to another.

3.6. Reflectance Computation

In this section, we describe how we obtain the reflectance image R of a texture from the corrected
radiance image I. To properly estimate the reflectance on each surface element of a texture, we first
estimate the spectra, S = {S(λk)}λk∈B , of the illumination system provided with the HySpex
VNIR-1800. This illumination system (3900e DC Regulated ER Lightsouce) is manufactured by
Illumination Technologies, Inc. [54]. For the estimation of the spectral power distribution of this
illumination, we use the SG-3051 SphereOptics Diffuse Reflectance Tile [55] which provides a reflexivity
of 99% in the range of [400, 1000] nm. We then acquire each texture simultaneously with the SG-3051
tile to produce uncorrected radiance images D; then we correct them using Equation (2) to obtain
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radiance images, I. We noticed that the SG-3051 tile has a rough texture that produces shaded areas in
the acquired images. To produce a robust estimation of the illumination, we adopted the following
strategy for each acquired texture: we select a sub-image, P = {Pk}k∈[K], of 550× 550 pixels centered
in the SG-3051 tile in the radiance image, I; then we compute the summation image, P, of all channels:
P = ∑k∈[K] Pk and retain the set, Q, of the pixel coordinates (x, y), whose values in P are greater than
the 95th percentile. Finally, the estimation of the illumination is given by taking, for each channel (Pk),
the median value of the pixels in Q (to avoid the impact of saturated values):

∀k ∈ [K], S(λk) = Median
({

Pk(x, y)
}
(x,y)∈Q

)
. (9)

Now, we can compute the reflectance image, R, by dividing each channel of the radiance image, I,
by its corresponding value in S, inverting Equation (1):

∀k ∈ [K], ∀(x, y) ∈ [M]× [N], Rk(x, y) =
Ik(x, y)
S(λk)

. (10)

Reflectance images are cropped to 1024× 1024 pixels which corresponds to the minimum of the
most relevant regions of interest (ROIs) of the 112 selected textures (ROIs that really contain texture
elements). Figure 5 shows a sRGB rendering of two radiance images. For each radiance image, I,
the subimage, P, selected for illumination estimation is displayed as a red dashed square, and the
texture region that we retain as the reflectance image support, R, is displayed as a green solid square.
Note that pixel values that have undergone specular reflection of the light in the radiance image can
have values that are higher than the SG-3051 tile and produce values over one in the reflectance image.
We decided to keep them unchanged in the final dataset so that the original corrected radiance image
can be retrieved by multiplication with the original illumination spectra (which is provided in the
metadata of the reflectance image file, see Section 3.7).

As a reference, we also compute the reflectance image of a Macbeth ColorChecker. Figure 6 shows
the reflectances of the 24 color patches on average on 200× 200 pixels for each patch. As for the
reflectance measurements in [56], reflectance is mostly flat in the NIR.

Figure 5. sRGB rendering of two corrected radiance images. The subimage (red dashed square) inside
the SG-3051 reflectance tile is selected for illumination estimation and the texture region (green solid
square) is retained as final reflectance image support.
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Figure 6. Spectral reflectances of the 24 patches of a Macbeth ColorChecker computed from the data
acquired by the HySpex VNIR-1800 (on average on 200× 200 pixels for each patch). The color of
a curve is the sRGB color of the corresponding patch in the ColorChecker.

3.7. Dataset Description

The dataset is available on the websites of the team/laboratory of the authors (http://color.univ-
lille.fr/datasets and https://www.ntnu.edu/web/colourlab/software). Each one of the 112 texture
images is provided as both (i) a hyperspectral reflectance image in ENVI format and (ii) a sRGB
reconstructed image in PPM format. (i) The ENVI format consists of two files: a binary file
(extension .raw) of single-precision floating-point variables (32-bit) that stores the raw hyperspectral
reflectance image in the BSQ (Band SeQuential) data organization (channel by channel) and a text file
(extension .hdr) which contains the metadata of the image. The .hdr text file holds:

• A description of camera parameters (i.e., camera ID, integration time, aperture size, etc.). These
metadata were written by the HySpex acquisition software and we decided to keep them unchanged.

• Required information to open the associated binary raw file (i.e., image size, number of bands,
data type, etc.),

• Default bands (65, 45, and 18) whose band centers match with the primary Red, Green and Blue of
sRGB standards. Generally these are used to generate false color RGB images using three channels.

• Wavelength array that contain values of λk ∈ B in nanometers, for example, the center wavelength
of channel Rk is λk,

• Illumination array that contains the values of illumination {S(λk)}λk∈B provided by Equation (9).
The illumination can be used to compute the corrected radiance channels, Ik, using Equation (10).
The average value of this illumination over the 112 images is provided in Figure 7. It can be seen
that illumination around 400 is weak, and consequently, respective channels in the reflectance
images are likely to undergo noise [57]. We then measure the noise power by analyzing the
standard deviation on 200× 200 pixels on each gray patch of the reflectance image of the Macbeth
ColorChecker on Figure 8. In addition to the illumination effect, the problem of having a good
signal at low wavelengths is classically due to optics and low sensor sensitivity in this area,
where we are at the limit of the optical model that is being used . Nevertheless we chose to
provide these data and let the users decide if they want to use them in their simulations.

http://color.univ-lille.fr/datasets
http://color.univ-lille.fr/datasets
https://www.ntnu.edu/web/colourlab/software
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Moreover, we provide ImageJ plugins and Python code for opening and processing the data.
Matlab users can call the following instruction to open one hyperspectral reflectance image:
R = multibandread(’<image_name>.raw’,[1024,1024,186],’float32’,0,’bsq’,’ieee-be’);
These codes are available as Supplementary Materials.
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Figure 7. Average illumination computed over the 112 radiance images.
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Figure 8. Standard deviations of spectral reflectances for 200 × 200 pixels of each gray patch of
a Macbeth ColorChecker.

(ii) The reflectance images are converted from the 186-channel domain to the sRGB color
space. This transformation is performed using the CIE XYZ 2◦ standard observer functions.
Then, the reference white D65 is used to convert values from XYZ to the sRGB color space. The resulting
sRGB images are provided in PPM format. Figures 9 and 10 show the 112 sRGB samples of textures
with filenames.
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Figure 9. Reconstructed sRGB images from the food, stone, vegetation and wood categories of
the dataset.
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Figure 10. Reconstructed sRGB images from the textile category of the dataset.

4. Spectral Dimension Analysis

In hyperspectral images, the adjacent spectral bands are highly correlated [58]. Even though there are
many good arguments for processing hyperspectral images at full spectral resolution [59], dimensionality
reduction is often beneficial. It is performed by approximating the original hyperspectral data to a
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varying degree of precision with a smaller number of dimensions. The dimensionality or complexity
of acquired reflectance spectra define the dimension of the vector space that is required to describe
a spectrum.

There are various methods used for the computation of the effective dimension of spectral data,
which can mainly be divided into supervised and unsupervised techniques. Supervised methods aim
to preserve the a priori information, while unsupervised methods do not assume any prior information
about the input data. Among the unsupervised methods, principal component analysis (PCA) [60,61]
and independent component analysis (ICA) [62] are the most popular. PCA aims to maximize the
variance of the input data by projecting it into the orthogonal subspace, while ICA looks for the source
of changes in the input data, and these sources are assumed to be statistically independent from
each other. Among the supervised methods, Fisher’s linear discriminant analysis (LDA) [63] and
discriminative locality alignment (DLA) [64] are the prominent techniques, and many variants of these
techniques have been proposed in the literature. A review of linear and non-linear dimensionality
reduction methods can be found in [65].

Despite several previous studies being performed, there is still no agreement on the number of
effective dimensions to represent the spectral data. There are different conclusions by various authors
for the number of effective dimensions that can represent the spectral information. As an example,
for the Munsell reflectance dataset, different authors have provided different dimensions that effectively
represent it, ranging from 3 to 18 dimensional representations [66]. The required dimensionality of
data mainly depends on the statistical properties of the spectra being considered and the information
that one wants to preserve or emphasize. A review of the work done for finding the dimension of
spectral data is provided in [66].

4.1. Spectral Analysis of the Proposed Dataset

In this section we investigate the effective spectral dimension of the acquired hyperspectral
images. We do not assume any a priori knowledge about the data and provide a benchmark analysis
in the spectral domain. Having these goals in mind, we used the principal component analysis (PCA)
technique, which is mainly used to reduce the dimensionality of data consisting of a large number of
inter-related variables, while retaining the variance in data [61]. PCA has the ability to de-correlate the
spectral data and provide variance information through simple computational methods. This ability
makes it one of the most popular techniques for the computation of the effective spectral dimension in
hyperspectral imaging [67].

For the computation of effective spectral dimensions, each image is processed individually.
First, a covariance matrix is computed, and then eigen decomposition is applied on this matrix to
obtain the eigenvalues and eigenvectors. The eigenvectors are arranged relative to their eigenvalues in
descending order. These eigenvectors consist of the characteristic reflectances of the input hyperspectral
image. For each eigenvalue, corresponding eigenvectors exist, and a strong concentration of variance
is present in the first few eigenvectors. If reflectance spectra are linearly independent, then the
eigenvalues will all be significantly above zero. This shows that each wavelength contains independent
information and is not redundant. However, in the case of hyperspectral imaging, typically, only a few
eigenvalues are significantly higher, while the remaining values are close to zero, which indicates that
their corresponding eigenvectors contain less variance and are mostly redundant. For an effective
representation of the spectral data, we select only the first few eigenvalues, and the projection of
spectra on the corresponding eigenvectors is able to provide adequate representation of the acquired
data. This means that if we select the principal components containing 95% variance, the rest of
principal components can be discarded with a loss of 5% of information. The decision to keep a certain
percentage of the variance depends on the application for which a reduced set of representative data is
required. For this analysis, we computed the effective dimension for each hyperspectral image which
retained 99% and 95% of the total variance [66].
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Figure 11a shows the number of components required to retain 99% of variance, and Figure 12
gives information about the effective spectral dimensions of the whole dataset and also about each
of the five categories of materials. It can be observed that most of the hyperspectral images show an
effective dimension of two or three. All of the “stone” category images have an effective dimension
of two, while most of the “food” category show an effective dimension of three. Most of the “textile”
category images have an effective dimension between two and five, while some of the images have an
effective spectral dimension beyond seven. Among them, three images show effective dimensions of 33,
47 and 58. We further examined the image that showed the highest number of dimensions (textile_05
image) and found that 82.55% of the variance is retained by the first PC while 12.02% variance
is retained by the second component. The rest of components add very little to the information,
for example, the third PC contains 0.7% of the variance in this image. If the desired value of
retained variance is reduced to 95%, then most of the images in our dataset can be defined with
one or two principal components, while six images from the “textile” require a third component.
Figure 12b represents the number of images that require a certain number of dimensions to retain 95%
of the variance.

From these figures, it can be observed that the number of effective dimensions is dependent on
the nature of the materials being imaged and may be used as a feature to estimate the category of
imaged object. The reason why some of the images require a higher dimension for the description of
their spectral properties is due to the presence of anomalies, for example, a tiny part with specular
reflection which causes the effective dimension to rise. Figure 11 shows that by reducing the threshold
for retained variance, the number of dimensions required to represent the spectral data is reduced.

(a) Required number of components that retain 99% variance

(b) Required number of components that retain 95% variance

Figure 11. Results of the principle component analysis (PCA) on each image from the five categories
of the hyperspectral dataset. The x-axis represents the effective dimension, while the y-axis shows
the number of images with that effective dimension. Most of the spectral data in our dataset can be
represented by 1, 2 or 3 dimensions while retaining 95% of the variance.
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(a) Spectral analysis of whole dataset (b) Spectral analysis of each category of items in the dataset.

Figure 12. Number of components (x-axis) required to retain the variance percentage (y-axis). (a) shows
the results for the whole dataset, while (b) shows the results for each of the five categories in the dataset.
“Food” category images require more dimensions for their representation due to the variety of objects
in that category, while those in the “stone” category require the least number of dimensions since the
surfaces exhibit similar spectral properties.

4.2. Interpretation of the Effective Dimension

The effective dimension analysis of our dataset on the basis of PCA, as described in Section 4.1,
provided a number indicating the number of dimensions required to retain a certain percentage of
variance. However, it did not provide a physical meaning to the retained spectra since the principal
components contain both positive and negative values. In order to obtain the information about the
retained spectra, we used the non-negative matrix factorization (NMF) [68]-based decomposition on
the hyperspectral images in our dataset. NMF is used in remote sensing hyperspectral images for
spectral unmixing of the acquired data [69,70]. The advantage of NMF over PCA is that it extracts
sparse and meaningful features from the given data, and the non-negativity constraint ensures the
output is interpretable in terms of its physical meaning.

NMF is able to compute the spectral signature of end-members in a given hyperspectral image
and the presence of each end-member in each pixel in the image in the form of abundance maps.
The assumption behind this computation is the linear mixing model which states that the spectral
signature of each pixel is a linear combination of the spectral signature of end members at a particular
spatial location.

In NMF-based decomposition, the number of components to be retained is provided by the user,
which is mostly based on the prior knowledge of the end-members. For our dataset, we used PCA to
compute the required number of components. For the illustration of NMF based decomposition results,
we provide two examples in Figures 13 and 14, containing samples of a leaf and textile, respectively.
Figure 13b is the color rendering of the vegetation_leaf_03_green image from our dataset, and Figure 13c
shows spectra from randomly selected pixels in this hyperspectral image. We decomposed the image
into three components and the spectral signatures of computed components are shown in Figure 13c,e,g.
The corresponding abundance maps in Figure 13d,f,h, show the presence of extracted components
in the image. The first component in Figure 13c is significantly reflective in the near-infrared region,
while showing a lower response in the visible region. This spectra suggests that this component is
providing information about the chlorophyll in the leaf, and the abundance map in Figure 13d shows
the areas where the presence of chlorophyll is prominent. The second component is formed by the
veins and lower left part of the leaf, as can be seen in Figure 13f. The green color of leaf corresponds the
the third component, as seen in Figure 13g, and the abundance map in Figure 13h provides information
about the distribution of this component in the leaf.
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(a) Spectral samples from vegetation_leaf_03_green
image

(b) Color rendering of
vegetation_leaf_03_green image
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(c) First component from the non-negative matrix
factorization (NMF) decomposition

(d) Abundance map of the first component, indicating the
presence of chlorophyll in the leaf.
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(e) Second component from the NMF
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(f) Abundance map of the second component, consisting
of veins and the lower left part of leaf.
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(g) Third component from the NMF decomposition (h) Abundance map of the third component, indicating the
green color of the leaf

Figure 13. NMF-based decomposition of the vegetation_03_green image in three components.
Each component exhibits the spectral composition of leaf, showing the spectra of chlorophyll, veins and
the color of the leaf.
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(a) Spectral samples from the textile_22_cyan image (b) Color rendering of the
textile_22_cyan image
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(c) First component from the NMF decomposition (d) Abundance map of the first component showing the
regions in direct contact with illumination
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(g) Third component from the NMF decomposition (h) Abundance map of the third component indicating the
presence of a different material in the textile sample.

Figure 14. NMF-based decomposition of textile_22_cyan image in three components. The extracted
components consist of areas under direct illumination, shadow areas and the presence of different
materials in the textile sample.
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Figure 14 shows the decomposition results of the textile_22_cyan image. The first and second
components contain information about the reflectance from the textile surface which causes its
particular color appearance. It is interesting to note that although the spectral signatures of first
two components are almost the same in terms of shape in the visible region, they have different
intensities in the near-infrared region. Upon closer inspection of the abundance maps in Figure 14d,f,
it can be observed that the first component consists of directly illuminated regions while the second
component is composed of regions in shadows. There is a third component in this sample which
corresponds to a line in the abundance map (Figure 14h) and is probably caused by some component
in the textile which is not easily visible in a color image.

Although we have provided only two examples from the NMF-based decomposition of the
spectral data, the results indicate that such an analysis can provide interesting information about the
spectral composition of the materials present in an image. For example, the amount of chlorophyll in
vegetation, information about pigments and dyes in a textile, and the quality of food materials on the
basis of their spectral analysis. We used PCA to get information about the spectral dimension before
decomposing it through NMF. From the comparison of spectral behavior and the effective dimension, it
can be seen that effective spectral dimension of most of the objects in our dataset is within two to eight.
However, this dimension should not be directly related to the required number of spectral channels
needed for acquisition. Although there are some studies which have aimed to find the number of
filters that can best be used to acquire the maximum spectral information [71], there is no agreement
on the optimum number of channels since it is dependent on the nature of surface spectral properties.
Nevertheless, knowledge of the effective spectral dimension is useful for dimensionality reduction
and obtaining the components of spectra by decomposing it. In the next section, we study the impact
of dimensionality reduction on classification performances on the hyperspectral dataset using Local
Binary Pattern (LBP)-based descriptors.

5. Texture Classification

A texture image is a characterization of the spatial and spectral properties of the physical structure
of a material or an object. A texture analysis can be seen as a set of measures that quantify and provide
information about the spatial arrangement of the spectral responses of an object. During texture
classification, the goal is to assign an unknown sample texture image to a known texture class. For this
purpose, discriminant texture features are extracted from test images and compared to those extracted
from training images whose classes are known. To extract a feature from an image, a descriptor
is needed. The Local Binary Pattern (LBP) method is one of the most robust feature descriptors,
and characterizes the local level variation in a neighborhood of each pixel. Due to its discrimination
power and computational efficiency, LBP has become a popular approach for various applications [72].
LBP-based texture classification was first performed on gray-level images, since the original operator
only used the spatial information of texture [73]. Later, Palm [74] showed that classification based
on a color analysis outperforms the single use of intensity spatial information. Thus, texture feature
extraction is extended to the color domain by taking both spatial and color textural information into
account. Here, we propose to extend the color LBP-based descriptors to any K-channel radiance
image, I. Then, we propose to study the discriminative power of these descriptors on our dataset with
respect to an increasing number of channels.

5.1. Texture Features Based on Local Binary Patterns

The LBP operator, [73], characterizes the level variation in the neighborhood, N P,d, made of
P pixels at a spatial distance, d, from each pixel, p, of a gray-level image. The outputs of the LBP
operator over the multi-channel image are summarized as a concatenated histogram to form a texture
feature. Here, we extend four color LBP operators to hyperspectral LBP operators so that the LBP
operator is applied on a K-channel radiance image, I. This radiance image, I, is rendered using both
a reflectance image, R, for which values above 1 (that correspond to specular surfaces) are clipped
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to 1 and quantized on an 8-bit, and the standard illuminant, E, lights the whole spectrum uniformly.
Note that we only hold the reflectance information by using the illuminant, E, to allow independence
from the illumination properties in our study. Moreover, data are quantized on 8-bits since channels of
digital radiance and color images are often quantized on integer values.

We now detail each LBP operator and how their radiance value, Ik
p, of a channel, k, compares with

those in the neighborhood, N P,d, with respect to the value of p.

• Marginal LBP (LBP): The basic LBP operator is applied marginally to each channel Ik at each
pixel p as [75]

LBPk[I](p) = ∑
q∈N P,d

s(Ik
q , Ik

p) · 2ε(q), (11)

where ε(q) ∈ [P] is the index of each neighboring pixel, q, of p in N P,d, and the sign function,
s, is defined as s(α, β) = 1 if α ≥ β, or 0 otherwise. The final texture feature results from the
concatenation of the K 2P-bin un-normalized histograms of {LBPk[I]}k∈[K], and its size is K · 2P.

• The Opponent Band LBP (OBLBP): Mäenpää et al. [76] improved the LBP operator by taking
the inter-channel correlation into account. For this purpose, they considered the opponent band
(OBLBP) operator of each pair of channels, (Ik, Il), (k, l) ∈ [K]2 :

OBLBP(k,l)[I](p) = ∑
q∈N P,d

s(Il
q, Ik

p) · 2ε(q). (12)

The final texture feature results from the concatenation of the K2 histograms of
{OBLBP(k,l)[I]}k,l∈[K] and its size is K2 · 2P.

• Luminance-Local Color Contrast LBP (L-LCCLBP): This approach considers an image to
have both spatial information of luminance and inter-channel information of different bands.
The spatial information of the luminance results from the LBP operator being applied to the
pseudo panchromatic image (PPI) IPPI , which is computed as the average value over all channels
at each pixel [77]:

IPPI =
1
K ∑

k∈[K]
Ik. (13)

Regarding the inter-channel content, Cusano et al. [78] define the local color contrast (LCC)
operator that depends on the angle, Θ, between the value of a pixel, p, and the average value,
Īp = 1

P ∑q∈N P,d Iq, of its neighbors in the spectral domain:

Θ[I](p) = arccos
( 〈Ip, Īp〉
||Ip|| · ||Īp||

)
. (14)

The LCC operator is then given by

LCC[I](p) =

{⌈ 2·255
π Θ[I](p)

⌉
if 0 ≤ Θ[I](p) ≤ π/2,

255 otherwise.
(15)

The final texture feature is the concatenation of the histogram of LBP[IPPI ] and the histogram of
LCC[I], and its size is 2 · 2P.
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• Luminance-Opponent Band Angles LBP (L-OBALBP): As for L-LCCLBP, this approach first
applies the LBP operator to the PPI IPPI , and then Lee et al. [79] considers the angle between each
pair of bands, (k, l) ∈ [K]2, k 6= l, as

OBALBP[I](k,l)(p) = ∑
q∈N P,d

s

(
arctan

(
Ik
q

Il
q + η

)
, arctan

(
Ik
p

Il
p + η

))
· 2ε(q), (16)

where η is a constant of small value. The final texture feature is the concatenation of the
histogram of LBP[IPPI ] and the K(K − 1) histograms of {OBALBP(k,l)[I]}k 6=l∈[K]. Its size is
(1 + K(K− 1)) · 2P.

5.2. Assessment on Our Proposed Dataset

5.2.1. Covariance Analysis

Since 186 channels is too many to perform the proposed LBP descriptors, we propose to spectrally
downsample the 112 radiance images. We selected, for each radiance image, I, L channels whose
indexes uniformly ranged in [K]. The choice of a uniform distribution of channels was made to comply
with the datasets and hyperspectral devices presented in Table 1 that provide spectral channels whose
associated bands are uniformly distributed in their respective spectral range. The output is a spectrally
sampled radiance image, IL = {Ik}k∈CL where CL =

{
(l + 1)

⌈
K−1
L+1

⌉}
l∈[L]

. Note that respective band

centers, {λk}k∈CL , range uniformly in ]405.37, 995.82[ nm.
In order to determine the minimum number of channels, L, required to provide the best

discrimination between channels, we studied the normalized covariance matrix between each couple of
channels over the whole dataset computed in Section 4. Figure 15 shows that close channels in terms
of band center wavelength are more correlated than distant ones and that infrared channels are highly
correlated. The area inside the two red lines represents the covariance between channels with a distance
of less than seven channels. In this area, the inter-channel covariance is above 95%. Stating this, we
consider that a spacing of seven channels (22.33 nm) is enough, so in our study we considered a number
of channels, L, that ranged from 1 to 27 channels. In colorimetry and in the colour imaging communities,
it has been accepted that sampling spectra at 10 nm provides enough discrimination [80]. It is interesting
to note that in our case, such large steps would provide a good description.
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Figure 15. Normalized covariance between each couple of channels over the whole dataset.
Values range between 31% (black) and 100% (white). The two red lines are separated by seven
channels, and inside the red lines, the covariance is above 95%.
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5.2.2. Classification Scheme

A texture feature assessment was performed on our dataset by considering the 112 texture images
as 112 different classes. Each 8-bit hyperspectral radiance texture image, IL, of size 1024× 1024× L
was divided into 25 subimages of size 204× 204× L (without overlap), among which 12 were randomly
considered to be training images and the 13 others as test images. Supports of subimages according
to this random sampling and corresponding classes are available as Supplementary Material as two
text files (train.txt and test.txt). In a learning phase, LBP histogram features were extracted from each
training image. Then, to assign a test image to one of the classes, the same features were extracted
from each test image and compared to those of each training image. This comparison was performed
using a similarity/dissimilarity measure between test and train features. Finally, each test image
was assigned to the class of the training image with the best match by using a decision algorithm.
The performances of a classification algorithm are determined by the rate of well classified test images,
and depend on three main parts of classification, namely, the choice of discriminating textural features,
the feature similarity measure and the decision algorithm. In order to determine the most discriminant
texture features with respect to the number of channels, we propose retaining the 1-Nearest Neighbor
decision algorithm coupled with the similarity measure based on intersection between histograms [81],
since this classification scheme requires no additional parameter. Moreover, for simplicity, we propose
using the LBP neighborhood, N P,d, composed of P = 8 pixels at a spatial distance of d = 1.

5.2.3. Classification Accuracy

Figure 16 shows the classification performances reached by each texture feature presented in
Section 5.1 with respect to the number of selected channels, L (see Section 5.2.1). The results show
that, except for L-LCCLBP, increasing the number of channels improves the performance, and after
10 channels, the performance stabilizes. The marginal LBP operator, which takes only spatial correlation
into account, reached about 92% accuracy after 10 channels. By taking spectral correlation into
account, using information from opponent bands, the OBLBP and L-OBALBP operators reached
about 98% accuracy after 10 channels. Regarding the L-LCCLBP operator, the performance was
reduced, since instead of using spatial and spectral correlations for each channel, this operator uses
only projected information on the panchromatic intensity. Overall, the results improved from 79.40%
(LBP, OBLBP, L-LCCLBP and L-OBALBP with L = 1) to 98.76% (OBLBP with L = 18). In order to
highlight the interest of hyperspectral classification against the color classification, we simulated color
images using the three spectral sensitivities of the tri-CCD Basler L301kc color camera [82] and E
illumination. The results show that, for three operators, the selection of three narrow spectral bands
(two in the visible domain and one in the infrared domain) improves the performance compared to the
selection of three wide bands in the visible domain.

We conclude that by increasing the number of channels, LBP descriptors provide more
discriminative information about spatial and spectral correlations at the expense of feature size
and computation time, and except for L-LCCLBP, hyperspectral imaging improves the discriminatory
power of descriptors compared to color imaging.

In order to study the influence of channel distribution, we selected 10 sets of 10 random channels.
All of these provided performances that were less than or close to performances obtained with a uniform
distribution of 10 channels for the marginal LBP operator. We also considered the 10 channels with the
highest variance among our dataset. They provided weak classification performances compared to
uniform or random distributions, since all the related band centers are in the near infrared domain and
consequently, do not take into account the textural information observed in the visible range.
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Figure 16. Classification accuracy reached by each Local Binary Pattern (LBP) descriptor with respect to
the number of channels, L. LBP [73] (Equation (11)), Opponent Band LBP (OBLBP) [76] (Equation (12)),
Luminance-Opponent Band Angle LBP (L-LCCLBP) [78] (Equation (15)), L-OBALBP [79] (Equation (16)).
LBP-PCA refers to the marginal LBP operator applied to the PCA channels. Classification performances
were stabilized after L = 10 channels: about 92% accuracy for LBP, 98% accuracy for OBLBP and
L-OBALBP, 81% accuracy for L-LCCLBP and 95% accuracy for LBP-PCA. The best performance was
given by OBLBP with a 98.76% accuracy for L = 18 channels. The markers refer to the classification
accuracies of the descriptors applied on the L = 3 channels of simulated RGB images from the three
spectral sensitivities of the tri-CCD Basler L301kc color camera [82].

In order to study the discrimination of PCA for hyperspectral texture classification, we propose
the application of the marginal LBP operator over the projections of the 186-channel hyperspectral
images on the principal axis of the covariance matrix (denoted as PCA channels in the following).
Note that the OBLBP, L-LCCLBP and L-OBALBP operators are not relevant for this study since they
use spectral correlation which, by definition, does not exist between PCA channels. PCA channels
are computed for each image of the dataset by first projecting the 186-channel reflectance image onto
each principal axis, such that the first PCA channel is associated with the eigenvector with the highest
eigenvalue and so on. For a fair comparison with the previous operators, PCA channels are then
quantized on 8-bits using the same quantization function for all PCA channels of all 112 images.
The LBP-PCA accuracy is shown Figure 16, where L is the number of sorted (according to decreasing
eigenvalues) PCA channels that are considered for the LBP operator. By taking only the PCA channel
with the highest variance (1st channel), classification performances are lower than by taking one real
channel (93th centered at 699 nm). This can be explained by the specificity of our dataset. Since PCA is
a projection of all channels into one channel, two similar textures with different spectral properties are
barely discriminated using the PCA. For illustration purposes, Figure 17 shows the sRGB renderings,
the 93th channels and the 1st PCA channels of two textures that are spatially similar but spectrally
different (textile_14_orange and textile_14_blue). As can be seen, images of the 93th channel of the two
textures have different spatial properties and intensities, so they can be easily discriminated, whereas
the 1st PCA channels of both textures have similar spatial properties and intensities, so they can be
hardly discriminated. By increasing the number of PCA bands, useful information from all channels is
used so that it becomes more discriminative than taking each channel separately. In Figure 16, we can
see that after five PCA channels, performances exceed the marginal LBP and after 10 PCA channels,
the performances stabilize at about 95% accuracy. To conclude, using the PCA allows us to improve
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the performances by using only spatial correlation. However, in opposition to OBLBP and L-OBALBP
which provide the best performances, it ignores the spectral correlation that allows the comparison of
different channels, and thus, discriminates textures using their spectral properties.

Figure 17. Texture image sample: textile_14_orange (top) and textile_14_blue (bottom). From the left to
the right : sRGB rendering, 93th channel (centered at 699 nm) and 1st PCA channel. The images of
the 93th channel of the two textures have different spatial properties and intensities so they can be
easily discriminated, whereas the 1st PCA channels of both textures have similar spatial properties and
intensities so they can barely be discriminated.

6. Conclusions

In this paper, we introduced and described a hyperspectral reflectance dataset of close range
textured object surfaces. The spectral range of this dataset is from 405 to 995 nm, thus providing
spectral information in both visible and NIR regions. There are five classes of objects, and a total
of 112 images are provided. We discussed the hyperspectral image acquisition protocol and the
corrections that were applied to the data.

We performed a spectral analysis to quantify the spectral complexity of the samples and showed
that a limited number of components permits a good description of their reflectance. Furthermore,
we extended local binary pattern operators to a hyperspectral texture analysis. We observed that
increasing the number of bands permits better texture classification. We also showed that the opponent
band local binary pattern performed the best among the tested texture descriptors. Indeed, such
descriptor uses an inter-channel correlation to discriminate textures using their spectral properties.

This dataset is available for scientific use and simulations, and it provides a benchmark to test
various computer vision algorithms that are related to object classification and material identification.
This dataset will also help in designing optimal spectral sensors, computational imaging systems and
spectral reconstruction algorithms.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/18/7/2045/
s1, (i) Hyperspectral images (can be downloaded from the websites of the team/laboratory of the authors:
http://color.univ-lille.fr/datasets and https://www.ntnu.edu/web/colourlab/software). (ii) Two text files (train.txt
and test.txt) which contain supports of subimages of the random sampling for supervised classification of
Section 5.2.2 and corresponding classes (iii) ImageJ plugins (MSTools-v18-05.zip) and Python code (falseColors.py)
for opening and processing the data.

Author Contributions: Definition of the protocol: H.A.K. (20%), S.M. (20%), B.M. (20%), J.-B.T. (20%), J.Y.H. (20%).
Texture acquisitions with VNIR-1800 acquisition system in Colourlab: H.A.K. (50%), S.M. (50%). Abstract,
Introduction, Section 2 and Conclusion: H.A.K. (60%), S.M. (10%), B.M. (10%), J.B.T. (10%) and J.Y.H. (10%).
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