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Abstract: The complex nature of rubbing faults makes it difficult to use traditional signal analysis
methods for feature extraction. Various time-frequency analysis approaches based on signal
decomposition, such as empirical mode decomposition (EMD) and ensemble EMD (EEMD), have
been widely utilized recently to analyze rub-impact faults. However, traditional EMD suffers from
“mode-mixing”, and in both EMD and EEMD the relevance of the extracted components to rubbing
processes must be determined. In this paper, we introduce a new informative intrinsic mode function
(IMF) selection method for EEMD and a hybrid feature model for diagnosing rub-impact faults of
various intensities. Our method uses a novel selection procedure that combines the degree-of-presence
ratio of rub impact and a Kullback–Leibler divergence-based similarity measure into an IMF quality
metric with adaptive threshold-based selection to pick the meaningful signal-dominant modes.
Signals reconstructed using the selected IMFs contained explicit information about the rubbing faults
and are used for hybrid feature extraction. Experimental results demonstrated that the proposed
approach effectively defines meaningful IMFs for rubbing processes, and the presented hybrid feature
model allows for the classification of rub-impact faults of various intensities with good accuracy.

Keywords: degree-of-presence ratio; ensemble empirical mode decomposition; fault diagnosis;
feature extraction; intrinsic mode function selection; Kullback–Leibler divergence; rotating machinery;
rub-impact faults

1. Introduction

Rotating machines, such as turbines, are widely used for power generation and usually operate
under severe operating conditions characterized by high temperatures and high rotational speeds.
The goal of the turbine design process is to maintain a small clearance between the rotor blades and the
stator to increase torque and reduce air reluctance. Rubbing occurs when the turbine blades interact
with the stationary parts, either due to blade expansion resulting from high temperatures or due to
faults, such as misalignment of the shaft and self-excited vibrations [1]. If faults are not detected at
an early stage, rubbing can cause excessive damage to the rotating machine, significantly increasing
the maintenance cost. Therefore, the purpose of rub-impact fault diagnosis is to extract intrinsic
information about rub impact and apply the extracted features to a classifier to determine rubbing
faults at different intensities.

Rubbing faults are recognized as highly complex nonlinear and nonstationary faults [2,3], which
cause a large number of transients to appear in the signal. This makes it difficult to utilize traditional
signal-processing techniques for feature extraction, such as time-domain and frequency-domain
fast Fourier transform (FFT) analysis, which cannot efficiently detect transient phenomena in a
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nonstationary rub-impact signal due to the inherent constraints of these methods. Therefore,
the features extracted from rubbing signals by these methods may not be informative and may
not reflect the actual rubbing processes but rather the qualities of a particular test rig and testing
environment. In general, the quality of such features is not high enough to differentiate rub-impact
faults of different intensities.

To overcome the nonlinearity and nonstationarity constraints in rubbing fault feature extraction
and diagnosis, many techniques based on time-frequency domain analysis (TFA) have been introduced
over the last decade [4–14]. Yanjun et al. [4] proposed wavelet packet eigenvalue calculation as a
feature extraction technique for rubbing fault diagnosis. In this method, wavelet packet analysis
is used to improve the time-frequency resolution of the vibration signal. In addition, the maximal
singular values (SVs) of the coefficient matrix obtained from wavelet packet decomposition are used
as feature vectors for a support vector machine (SVM) classifier. Though the features proposed
by these authors demonstrated good accuracy, the method may not be appropriate for early-stage
rubbing fault diagnosis because the normal system conditions and different rubbing intensities
were not considered in their experiments. Zhihao et al. [5] suggested the use of discrete wavelet
transformation (DWT) and time-domain signal extraction at level 3 of decomposition as a feature
extraction approach for identifying rubbing faults. To classify signal samples, this extracted datum
of the third level was used as the input to the SVM model. Although the authors claim that the rate
of correct rubbing fault identification was more than 92%, this study did not consider rub-impact
faults of different intensities and did not suggest any techniques for adaptive level or sub-band
selection to ensure that the presence of a rubbing fault in the selected datum is significant. Moreover,
the use of time-domain data as a feature vector for SVM may not be suitable for situations when the
acquired signals include a large number of time points, even when these signals are supplemented by
down-sampling properties of wavelet transformation. Roy et al. conducted a study on the efficacy of
various wavelet mother functions and signal-filtering techniques for rub-impact fault detection [6].
This study emphasized the importance of finding the proper combination of wavelet mother functions
and filtering techniques, both of which strongly affect the accuracy of rub-impact fault detection.
Similar limitations of the wavelet transform were reported by other researchers [7]. It is usually
not easy to choose the optimal wavelet function for a complex and nonlinear signal, and since the
process of determining a proper wavelet function requires a series of experiments, one can conclude
that some subjectivity is present in this process [8,9]. Deng et al. [10] introduced a combination of
local mean decomposition (LMD) and Teager energy kurtosis (TEK) as a feature extraction technique
for rub-impact fault diagnosis. This approach allowed for the extraction of numerical features from
faulty signals and was capable of distinguishing rub-impact faults. However, it did not consider
various rubbing intensities. In addition, the TEK values for the sixth and seventh product functions
(PFs), which corresponded to the 1/3× fractional frequencies in their study, were not distinguishable
between normal and fault conditions even though these fractional frequencies are usually recognized
as critical indicators of the rubbing process [11,12]. Yang et al. [13] proposed an ensemble LMD (ELMD)
that improves the ability of LMD to decompose rub-impact signals by calculating the ensemble mean
of extracted PFs. This study mostly contributed to the field of signal processing in the areas of rubbing
fault detection and the observation of a rubbing phenomenon over the frequency spectrum of the
extracted PFs; no numerical features that could be used to differentiate between types and intensities
of rubbing faults were considered in the experimental part. Another study [14] proposed the nonlinear
squeezing time-frequency transform (NSTFT) as a TFA approach for rub-impact detection. This study
simulated various rub-impact models and analyzed them using the proposed method, providing
detailed information about frequency harmonics and the behavior of instantaneous frequencies when
a rubbing fault occurs in a system. However, the focus of the study was the detection of rubbing faults,
and no experiments were performed on rubbing faults with varying intensities.

Recently, a state-of-the-art TFA approach called empirical mode decomposition (EMD), introduced
by Huang et al. [15], has become widely used for fault diagnosis in rotating machinery, such as rotors,
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bearings, and gears [16]. Moreover, EMD appeared to be an efficient decomposition technique that
can be used in other applications [17–19]. EMD itself is a very powerful and convenient algorithm
that allows for the analysis of complex and nonlinear multicomponent signals by decomposing them
into a finite number of intrinsic mode functions (IMFs). One of the most important advantages of
EMD over its counterparts is that it is an entirely data-driven and self-adaptive signal decomposition
technique in which each IMF corresponds to a natural oscillatory component of the original signal and
can be treated as a specific frequency sub-band. Due to these advantages, EMD has been successfully
used to extract and observe discriminative information from rub-impact fault signals in several
studies [20–23]. These studies provide a good insight into the capability of EMD and its IMFs
to extract rub-impact information from the vibration signal of rotor systems. However, they did
not perform any feature extraction, instead focusing on the visual observation of rubbing faults.
Yibo et al. [24] proposed calculating the maximum SVs from each of the extracted IMFs to create feature
vectors for classifying rub-impact fault models using SVM. This feature extraction approach allows
for differentiation between different rub-impact faults types; however, the efficacy of the proposed
features in differentiating normal system conditions when there is no rubbing and various rubbing
intensities was not investigated. This approach also ignores the process of selecting meaningful IMFs.

Despite its advantages over its main counterpart, wavelet family decomposition, the traditional
EMD algorithm has shortcomings that may cause problems when it is used for feature extraction to
differentiate machinery faults. Specifically, the conventional EMD technique can result in abnormalities,
such as the presence of either disparate oscillations in one IMF or very similar oscillations in different
IMFs. This is called the mode-mixing problem and makes it difficult to obtain a clear physical
interpretation of each IMF, which is essential for fault feature extraction and diagnosis. Several variants
of EMD have therefore been introduced to resolve the mode-mixing problem and improve the
traditional approach. The breakthrough in EMD improvement was a method called ensemble empirical
mode decomposition (EEMD) [16,25]. This method is reported to successfully resolve the problem of
mode-mixing by performing EMD over an ensemble of the signal with the addition of white Gaussian
noise. EEMD decomposition has already been successfully used for rolling-element bearing [26,27]
and rub-impact fault diagnosis [28]. Regarding rub-impact faults, Lei et al. [28] utilized EEMD to
diagnose rubbing faults in a power generator and early rub-impact faults in a heavy oil catalytic
cracking machine set. These experimental results demonstrated the advantages of EEMD in extracting
fault characteristics, even for incipient faults in rotating machinery.

Although EEMD successfully resolved the problem of mode-mixing, one issue that makes it
difficult to utilize this approach for fault diagnosis is the adaptive determination of meaningful IMFs
that contain specific and valuable information about the mechanical fault. As an EMD-based method,
EEMD yields a finite set of IMFs after completing the decomposition process, and the cardinality of the
extracted components is very large [29,30]. In practice, however, the extracted IMFs are not all equally
important for fault feature extraction, and they can be either noise-dominant or signal-dominant.
Therefore, it is necessary to select a set of discriminative IMFs in which each IMF is highly useful
for fault feature extraction and carries essential information about the mechanical fault. Yi et al. [31]
proposed the use of steady-state indexes for condition monitoring of railway axle bearings, where they
also addressed the problem of selecting the meaningful IMF components obtained by EEMD by picking
the single mode with the largest energy. This study demonstrates that the introduced steady-state
indices extracted from the single selected IMF are robust features for axle bearing condition monitoring.
However, the absence of the adaptive thresholding approach while selecting IMFs based on the
energy might be an issue when applying this method for a rubbing fault problem where the relation
“energy-content” for the extracted modes might not be that well-observable as in the investigated
bearing faults.

In this literature review, we observed that the main directions of current studies are the detection of
rubbing faults using different TFA methods, the representation of rubbing faults using various forms of
frequency spectra, and the investigation of rubbing itself as a physical phenomenon. Almost no studies
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have focused on diagnosing rubbing faults of various intensities, and very few actual feature extraction
models with numerical values that can be directly applied to classification techniques for rub-impact
fault diagnosis have been proposed. Therefore, this paper proposes a reliable rub-impact fault feature
extraction approach that combines EEMD with a new IMF selection procedure and uses the selected
components to reconstruct the signal and perform hybrid feature extraction. The signal reconstructed
using these selected informative IMFs contains less noise and clear rubbing fault frequency components,
which makes the rubbing process easily observable. The proposed hybrid feature model for fault
feature extraction allows for the examination of rubbing phenomena in both time and frequency
domains and produces well-separable features that can be used for fault diagnosis. It is important
to mention that there exist other metrics that can be used to quantify various repetitive transients
and select informative portions (or sub-bands) of a signal, such as a kurtosis and its modification:
a spectral kurtosis. These metrics were used in combination with other TFA decomposition techniques;
however, these metrics appeared to be not exactly proportional to the degree of defectiveness of the
system and the result highly depends on the frequency resolution assigned prior to the decomposition
process [32,33].

The main contributions of this manuscript are as follows:

1. This paper presents a new informative IMF selection procedure that can be used to select the
modes obtained by EEMD in rubbing fault analysis. The proposed method includes a new quality
criterion for mode evaluation that combines the degree-of-presence ratio (DPR) of rub impact and
the Kullback–Leibler divergence (KLD), a statistical similarity metric [34]. An adaptive selection
technique then utilizes a thresholding approach and the aforementioned criterion to adaptively
select the most valuable IMFs. The selected informative signal-dominant IMFs carry intrinsic
information about the important harmonics of rub-impact faults.

2. Since the selected IMFs are highly effective at detecting rub-impact phenomena, this paper then
extracts features for rub-impact fault diagnosis from the signal reconstructed using the selected
components. Thus, a hybrid feature model that well-represents rub-impact fault conditions is
presented in this study. Our hybrid feature model consists of four features directly extracted
from the reconstructed signal in the time domain and three features extracted from the envelope
power spectrum of this signal. This hybrid set of features is highly effective for representing
each rub-impact fault condition, so these features are further used in a classifier for diagnosing
rubbing faults with various intensities.

The remaining sections of this paper are structured as follows. Section 2 presents the proposed
rub-impact fault feature extraction methodology, including the adaptive IMF selection procedure
and hybrid feature model for diagnosing rubbing faults of various intensities. Section 3 provides
experimental validation of the proposed methods. Finally, Section 4 contains the concluding remarks.

2. Proposed Rub-Impact Fault Feature Extraction Technique

The block diagram of the proposed rub-impact fault diagnosis framework is presented in Figure 1.
The proposed approach consists of four essential steps: data acquisition, signal processing, feature
extraction, and fault classification. As shown in Figure 1, after data acquisition, an unknown vibration
signal is first decomposed into a finite number of oscillating components by EEMD. Then, the subset
of IMFs that are signal-dominant and carry essential information about the rubbing faults is selected
using the proposed adaptive selection procedure with our novel IMF evaluation metric. Next, time-
and frequency-domain features are extracted from the signal reconstructed using the selected IMFs,
which represents a clear rub-impact fault signal. This set of hybrid features can provide sufficient
insight into the rubbing process to classify rubbing faults of various intensities. The fault diagnosis
procedure is completed by means of a one-against-all multi-class support vector machine (OAA MC
SVM) classifier [35,36].
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Figure 1. A block diagram of the proposed fault diagnosis framework including informative IMF
selection, fault feature extraction, and one-against-all multi-class support vector machine (OAA MC
SVM)-based fault classification. EEMD, ensemble empirical mode decomposition; IMF, intrinsic
mode function.

2.1. Data Acquisition

Figure 2 shows the self-designed experimental testbed used to collect rubbing fault data by
simulating rub-impact faults of different intensities. Two sensors were installed at the drive end (DE)
and non-drive end (NDE) of the shaft to continuously measure vibrations of the rotor. Each sensor
records the displacements of the 16-blade rotor in both the vertical and horizontal directions using a
different channel for each. Therefore, a total of four channels were used by two vibration sensors to
record displacements in the vertical and horizontal directions at both ends of the shaft. A Pulse 3560 C
device was used to digitize the acquired signal. Details of the data collection system are provided in
Table 1. The experiment was performed at a constant rotational speed of 2580 revolutions per minute
(RPM), and the signal was sampled at a rate of 65.5 kHz.

Table 1. Data acquisition (DAQ) system specifications.

Displacement Sensors (3300 XL NSv) Frequency range: 0 to 10 kHz
Sensitivity: 7.87 V/mm (200 mV/mil) +12.5%/−20%

DAQ System (Pulse 3560 C)
Generator: Input/Output 4/2 ch. module
Input/Output 5/1-ch. controller module
Frequency range: 0 to 25.6 kHz

A rub-impact fault was simulated by adding extra weight on the NDE to create a shaft imbalance.
This imbalance in the shaft caused local interactions between the rotor blades and the stationary part.
The appearance and intensity of the rubbing process were validated using a thermal camera mounted
on the NDE of the shaft. Adjusting the extra mass at the end of the shaft resulted in various rubbing
intensities as shown in Figure 3. The total duration of the recorded signal for each case was 59 s.
However, each signal was divided into slices of 1 s each for signal processing and feature extraction.
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2.2. Empirical Mode Decomposition and Its Variant

In this subsection, we provide the necessary background on the original EMD and EEMD algorithms.

2.2.1. Empirical Mode Decomposition

EMD [15] decomposes the original signal x(t) into a finite number of oscillatory components
using a sifting process. In order to be defined as an IMF, the function should meet the following two
conditions [16,37]: (i) the number of extrema and zero-intersect points are either equal to each other or
differ by at most one; and (ii) at any point, the mean of the envelopes defined by local maxima and
minima is equal to zero. Each IMF can be considered as a specific frequency band of the original signal,
where the first IMFs represent high-frequency bands and the last IMFs correspond to lower frequency
bands [15].

After the decomposition process, the input signal x(t) can be defined as shown below:

x(t) =
n

∑
i=1

IMFi(t) + rn(t), (1)

where n is the total number of extracted IMFs and rn(t) is the residue of the signal decomposition.
The quality of the decomposition can be evaluated by computing the amplitude error between the
original signal and the reconstructed one.

EMD is a powerful tool that is capable of extracting nonlinear and nonstationary parts of the
original signal. However, its crucial disadvantage is the mode-mixing problem, which leads to multiple
oscillating components being presented in a single IMF or similar oscillating components being split in
different modes with smaller amplitudes. This drawback causes difficulties in interpreting the physical
meaning of each mode for feature extraction and fault diagnosis.

2.2.2. Ensemble Empirical Mode Decomposition

EEMD [16,25] was introduced to overcome the problems of mode-mixing observed in conventional
EMD. The concept of EEMD is to obtain precise IMF components by taking the mean of several EMD
trials performed on the original signal, with the addition of various realizations of white noise in each
trial. The main advantage of EEMD over conventional EMD is that it significantly reduces the chance
of mode-mixing and is capable of decomposing the original signal more precisely into a set of “true”
IMFs. The implementation steps of EEMD are summarized as Algorithm 1.

Algorithm 1: EEMD Algorithm

1. Generate an artificial observation x j [n] = x [n] + ω j [n], where ω j [n](j = 1, . . . , J) are various
realizations of Gaussian noise.

2. Using traditional EMD, completely decompose the ensemble x j [n] with added white Gaussian noise

into IMFs, IMF j
k [n]. Here, k = 1, . . . , K indicates the modes.

3. Repeat steps 1 and 2 with different white noise realizations each time.
4. Obtain the result of decomposition as an ensemble means of the corresponding IMFs from all

decomposition trials.

5. Reconstruct the original signal as x [n] =
K
∑

k=1
IMFk[n] + rK [n]

Figure 4 shows the IMFs obtained by conventional EMD and EEMD for a signal corresponding to
an intensive rubbing condition. Figure 4a shows that IMF 8, which corresponds to the fundamental
frequency, contained an additional oscillatory component that affects the quality of information carried
by this mode, an example of mode-mixing. In this figure, IMF 9 and IMF 10 correspond to the 1/2× and
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1/3× fractional harmonics; however, the behavior of these oscillations looks very similar. Figure 4b
demonstrates that EEMD better separated the extracted modes, and the IMF of the fundamental
frequency (IMF 10) is not affected by other oscillations or noise. Also, EEMD was able to decompose
the original vibration signal more accurately into a larger number of modes. IMF 9, the 3/2× fractional
frequency harmonic, became visible after decomposition, while in conventional EMD decomposition
the component with this frequency harmonic was absent. Moreover, better separation of the IMFs
was observed in the range of low fractional harmonics, such as 1/2× and 1/3×. These results are
reasonable because due to its specific features as an improvement to the traditional EMD approach,
EEMD is able to better separate oscillating components and deliver more clear IMFs.
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2.3. IMF Selection Procedure for Rubbing Fault Diagnosis

As discussed in Section 1, the extracted IMFs can be either signal-dominant or noise-dominant,
so it is crucial to select informative IMFs that contain intrinsic information about rub-impact faults.
This paper presents a novel adaptive selection method for informative signal-dominant IMFs that can
be applied to the domain of rubbing signals. The following two procedures must be applied in IMF
selection: evaluating the extracted components using certain criteria to determine which candidate
IMFs contain the most valuable information and creating a subset that contains those chosen IMFs.
To define the evaluation criterion, we carefully analyze the rubbing phenomenon using the DPR of
rub-impact and the KLD (a statistical similarity metric) of each extracted IMF. Based on this new
criterion, all of the components can be sorted by their relevance to the rubbing process. Once the
IMFs are sorted and their quality determined, the best adaptively selected candidates are used to
reconstruct a signal with reduced noise that contains clear rub-impact fault components and can be
used for rubbing fault feature extraction.

Since it is known that the appearance and behavior of fractional harmonics are essential features
for rub-impact fault diagnosis [11,12,38], the better extraction and separation of the modes containing
these harmonics make EEMD preferable to EMD.

Whenever rub-impact faults occur in a system, they affect the harmonics of the fundamental
frequency and some fractional frequencies, which can be clearly observed in the envelope power
spectrum of the signal. DPR aims to detect the presence and power of these expected frequencies
and their harmonics in the envelope power spectra of the IMFs and quantifies each IMF with respect
to the ratio of the presence using the procedure presented in Figure 5. To ensure that the DPR can



Sensors 2018, 18, 2040 9 of 23

determine informative and meaningful IMF components, the important frequencies of interest and
their harmonics were determined based on various studies of rubbing processes [11,12,38] to be the
following: 1/3×, 1/2×, 2/3×, 1×, 4/3×, 3/2×, and 5/3×. The detailed DPR calculation procedure is
as follows.
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Step 1: To compute an envelope power spectrum, the analytical signal of the IMF in the time
domain is first calculated. For example, if x(t) is the original IMF signal, the analytical signal can
be represented as a combination of the original IMF signal and the virtue of the Hilbert transform.
The analytical signal can thus be formulated as follows:

xh(t) = x(t) + i x̃(t), (2)

where x̃(t) is the Hilbert transform. Convolution of the original IMF signal with the signal 1/πt yields
the following:

x̃(t) = x(t) ∗ 1
2π

=
1
π

∞w

−∞

h(t)
dt

t− τ
. (3)

The power spectrum of the analytical signal is then obtained by taking the square of the absolute

value of the Fourier transform,
∣∣∣F{xh(t)

}∣∣∣2, as shown in Step 1 of Figure 5.
Step 2: Since the envelope power spectrum reveals the transient impact of rubbing, a Gaussian

mixture model (GMM) window (Gwindow(k, δ)) is constructed around the peaks of the frequencies
of interest and their integer multiples to attain residual components in the frequency domain of the
envelope power spectrum. The coefficients of Gwindow(k, δ) are computed as follows:

Gwindow(k, δ) =
n
∑

i=1
exp

(
− 1

2

(
δ
(k−FOIn)

2

(Nr f req/2)

))
s.t. FOIn − frange ≤ k ≤ FOIn + frange.

, (4)
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where FOIn defines the nth harmonic of the frequency of interest; n = 3 was used to calculate the DPR.
Nr f req is the number of frequency bins in the range FOIn − frange ≤ k ≤ FOIn + frange, as shown below:

Nr f req = 2. frange/ fresolution . (5)

The value of Nw f req can be computed (see Step 2 in Figure 5) for a GMM-DPR as follows:

Nw f req = ((2× 2/100)× FOI)/ fresolution,
s.t. spanFOI = (2/100)× FOI.

. (6)

Similarly, δ is a Gaussian random variable that is inversely proportional to the standard deviation
and can be defined as follows:

δ =
(

Nr f req/Nw f req

)√
2 ln m. (7)

Here, Nw f req is the frequency bin size around the frequency-of-interest components, and the
value of m is constant in the range 0 < m < 1, (m = 0.1). A narrow band frequency range
(i.e., frange = 1/3FOI) is used for all the frequencies of interest in this paper.

Step 3: The components of the frequencies of interest are then calculated by multiplying the
defined Gaussian window Gwindow(k, δ) around the frequencies of interest and their harmonics in the
attained envelope power spectrum.

Step 4: The residual frequency components are computed by subtracting the frequency-of-interest
component (from Step 3) from the envelope power spectrum. Once we have the frequency of interest
and residual components, the DPR is calculated as the ratio of the frequency-of-interest components
and the residual frequency components as shown below:

DPR = 10 · log

 3

∑
n=1


Nw f req

∑
j=1

C2
n,j/

Nr f req

∑
j=1

R2
n,j

+ 10

(dB). (8)

Here, Cn,j and Rn,j are the magnitudes of the jth frequency bin for the frequency-of-interest
components and residual frequency components, respectively, around the nth harmonic of the
frequency of interest.

Note that a large DPR of an IMF means that the component contains valuable information about
the behavior of the fundamental frequency, its fractional harmonics, and other frequencies that can
be observed during the rubbing process. A small DPR value indicates the opposite: the current IMF
could be noise-dominant and does not provide valuable information that can be used for rubbing
fault diagnosis.

Next, the distances between the probability density functions (PDFs) of the extracted IMFs and
the original signal are calculated to discover similarities between the hidden structures and determine
how much of the original signal’s information is preserved in the selected component.

The distance function utilized in this paper, KLD, is one of the most frequently used
information-based distance measures and is a member of the Shannon’s entropy family [39].
The function is defined as follows:

KLDk = ∑
x∈X

PDF(x(t)) ln
PDF(x(t))

PDF(IMF k(t))
, (9)

where PDF(x(t)) is the PDF of the original signal x(t) and PDF(IMFk(t)) is the PDF of the kth

extracted IMF.
Once the DPR and KLD have been calculated, we define an IMF quality measure by Equation

(10), which will be used to determine the relevance of the extracted components, and then select
informative modes:

IMFvalk = DPRk/KLDk. (10)
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Here, DPRk represents the sum of all degrees of presence calculated for each Nw f req and their
three harmonics for the kth IMF, and KLDk is the measure of how close the PDF of the kth IMF is to the
PDF of the original signal.

Finally, the IMF selection procedure is completed using a thresholding technique that compares
the ratio IMFvalk with a threshold value that is set to 1. The threshold value is assigned to 1 because
the relationship between the DPR and KLD for each IMF can be considered as a signal-to-noise ratio
(SNR). It is known that when the SNR is greater than 1, the amount of signal in the data is greater
than the amount of noise. That is, a small KLD distance value in the IMFvalk ratio indicates that
the PDF of the mode under evaluation is similar or close to that of the original signal. Therefore,
IMFvalk grows when the DPR (the metric that reflects the presence of important information) is large
compared to KLD. This means that the IMF contains a significant amount of valuable information
about the rubbing fault and its PDF is very close to that of the original signal, which indicates that
the IMF is signal-dominant. In the opposite direction, IMFvalk decreases when the IMF contains a
small amount of valuable information (low values of DPR) and a large KLD (the component appears
to be noise-dominant). Therefore, if IMFvalk is greater than or equal to 1, the IMF will be included
in the optimal subset for signal reconstruction; otherwise, it will not be used. Using this proposed
IMF quality measure and threshold-based selection approach, all of the extracted components can be
evaluated and the most valuable modes are adaptively selected based on their relevance to rubbing
processes and the amount of information presumed from the original signal.

2.4. Feature Extraction and Configuration of Feature Set

The proposed IMF selection process provides a set of the most meaningful IMFs that carry
important information about the rubbing processes present in the original signal. We then utilize
these selected IMFs for signal reconstruction (i.e., obtaining a noiseless rubbing signal) and feature
extraction. The reconstructed signal can be obtained using the following equation:

xrec(t) =
N

∑
l=1

IMF. (11)

Here, N is the total number of selected IMFs and l corresponds to the order number of each
selected mode.

After signal reconstruction, time-domain statistical features in the reconstructed signal and
frequency-domain features in its complex envelope power spectrum are extracted. These features
are considered to be discriminative because significant changes in the amplitude of the fundamental
frequency and its fractional harmonics are usually observed in envelope power spectrum when a
rub-impact fault occurs. The amplitude of the vibration signal in the time-domain also changes
due to the increased fluctuations of the signal wave depending on the rubbing fault intensity.
Thus, the changes in signal behavior and its energy with variations in rubbing intensity levels can be
well-characterized by extracting dimensional time-domain statistical feature parameters, such as the
root mean square (RMS), kurtosis, skewness, and square root of the amplitude (SRA) from the signal
reconstructed using the sets of selected IMFs. These features are widely used as health indicators of
various systems in fault diagnosis problems and can provide a good insight into rubbing processes in
the time domain because they are known to be features sensitive to impulse faults [40]. Here, skewness
and kurtosis are the third and fourth central moments of standard deviation. These two features are
known as statistical indicators sensitive to the degree of peakedness of the signal that can be used
well to characterize the variability of the vibration signal in the time domain when a rubbing fault
occurs in a system. Also, the RMS and SRA are used in this study to describe the changes in intensity
levels of the vibration signal affected by a rub-impact fault. Note that the RMS and SRA are usually
both thought of as statistical parameters that reflect the behavior of the signal’s amplitude in different
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scales, so these two features may not provide drastically different information, but they complement
each other when used simultaneously.

Additionally, frequency domain analysis can help to discover some information that cannot be
observed in the time domain [41]. Features that involve statistical properties of frequency are extracted
from the envelope power spectra of the reconstructed signals. As we know, the frequency spectra
of the rub-impact signals obtained by conventional frequency-domain signal analysis techniques,
such as FFT, fail to present relevant information about rubbing processes. Various studies [20,23] have
shown that the frequency spectra of the original rub-impact signals obtained by FFT usually cannot
represent the frequency harmonics relevant to rub-impact faults, although the fundamental frequency
and some high-order harmonics still may be present. The frequency-domain features extracted
in this way cannot be considered as good features for diagnosing rub-impact faults because the
behavior of the fundamental frequency and its higher harmonics can be affected by various mechanical
faults in rotational machinery as well as properties of the environment in which the machine is
installed. It is therefore difficult to verify whether these extracted features are actually related to
rubbing faults or not. On the other hand, the frequency-domain features extracted in this study after
time-frequency EEMD decomposition of the original vibration signal followed by informative IMF
selection are definitely capable of reflecting rub-impact faults because the fault information is highly
detectable and well-presented by the envelope spectra of the signals reconstructed using sets of selected
IMFs. Moreover, it was observed that the valuable rubbing fault-related harmonics are detectable and
well-localized in the envelope power spectrum of the reconstructed signal. Thus, the frequency-domain
features extracted in this study are as follows: mean frequency, frequency RMS, and frequency standard
deviation (St. Dev). Here, the mean frequency value corresponds to the mean of the frequency of
the envelope power spectrum computed for a reconstructed signal, frequency RMS characterizes the
intensity of the signal in the frequency domain, and frequency St. Dev describes the deviation of the
signal from its main frequency components in the frequency domain.

Due to the extraction of the feature parameters from both time and frequency domains,
the proposed feature model can be considered as a hybrid one. The basic idea beyond this model is that
each feature extracted from both domains aims to characterize and quantify the specific physical and
statistical properties of the denoised vibration signal affected by rub-impact. Furthermore, the features
used in this study are well-recognized and frequently used health indicators in other problems
of vibration-based condition monitoring, such as rolling-element bearing fault diagnosis [42] and
prognosis [43]. Concretely, frequency-domain features, such as mean frequency, frequency RMS,
and frequency standard deviation, are frequently applied for rolling element bearings (REB) fault
diagnosis, whereas the time-domain RMS, kurtosis, and skewness are popular health indicators used
for fault prognosis and remaining useful lifetime estimation. All the extracted features are shown in
Table 2.

Table 2. Time- and frequency-domain statistical feature parameters. Where xrec is the reconstructed
signal in the time domain, f is the spectral component of the reconstructed signal xrec, and σ is the
standard deviation of the reconstructed signal xrec. RMS, root mean square.

Parameters Equations Parameters Equations

Root mean square ( f1)

√(
1
N

) N
∑

i=1
xrec2(i)

Square root of the
amplitude ( f2)

((
1
N

) N
∑

i=1

√
|xrec|

)2

Skewness ( f3)
(

1
N

) N
∑

i=1

(
(xrec(i)−xrec)

σ

)3
Kurtosis ( f4)

(
1
N

) N
∑

i=1

(
(xrec(i)−xrec)

σ

)4

Mean frequency ( f5)
(

1
N

) N
∑

i=1
f (i) RMS frequency ( f6)

√(
1
N

) N
∑

i=1
f 2(i)

Frequency standard
deviation ( f7)

√(
1
N

) N
∑

i=1
( f(i)− f5)

2
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3. Experimental Results and Discussion

The effectiveness of the proposed rub-impact fault feature extraction technique with its novel IMF
selection procedure is presented along with its possible application to fault diagnosis.

3.1. Training and Testing Data Configuration

An appropriate training and testing dataset configuration is important in order to determine the
generalized quality of the proposed fault diagnosis approach. In this paper, a rub-impact fault was
simulated using a shaft imbalance produced by adding extra weights to the NDE. In total, 10 different
weights (i.e., rubbing intensities) were added to the shaft, namely 0, 0.5, 1.0, 1.5, 1.6, 1.7, 1.8, 2.0, 2.4,
and 2.8 g. A 59-s-long signal was acquired for each intensity level. Therefore, the created dataset
contained 590 signal instances in total. In this paper, the set of features extracted for the experimental
part consisted of a total of Nc × Ns × N f features. Here, Nc is the number of bladed rotor intensity
classes (conditions) simulated in this study, Ns is the number of instances for each condition, and N f is
the number of extracted features.

In this paper, the k-fold cross-validation (k = 3) procedure was applied for validating the
introduced methodology during each experimental trial. In the k-fold cross-validation method,
the entire dataset is randomly split into k-folds, where each fold should be used once as a testing
subset applied to a classifier trained on the remaining k − 1 subsets. Specifically, in this paper, 39
randomly chosen data samples from each class were selected as the training subset and the remaining
20 data instances from each class were used to construct the testing subset. Thus, each training subset
contained 390 instances and each testing subset consisted of the 200 remaining data samples.

3.2. Validation of the Selected IMFs Using the Proposed Approach

The proposed IMF selection method allows for derivation of the specific objective function values
that can be used to evaluate the quality of the components extracted by EEMD; these values are
presented in Table 3. As the result of the introduced procedure, the sets containing the most valuable
components were obtained for each signal class as shown in Table 4. In this study, rubbing faults were
caused by imbalance in the testbed shafts, where the imbalance was created by attaching extra weight
to the NDE. As shown in Figure 3 in Section 2.1, the increase in weight results in an increased degree
of shaft imbalance, which causes the various rubbing conditions observed during the experiment.
It was also observed that some rubbing conditions, which were validated using a thermal camera, had
different degrees of imbalance due to the additional weight. This observation explains why our IMF
selection method adaptively delivered subsets with various components for each class; however, each
subset was also shown to contain IMFs that were common for all classes.
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Table 3. The objective values of the proposed IMF selection metric calculated for all the extracted
components for each signal class. The values highlighted with bold font correspond to the selected
valuable IMFs.

IMFvalk

k
Class 0.0 0.5 1.0 1.5 1.6 1.7 1.8 2.0 2.4 2.8

1 0.12 0.23 0.92 1.2 0.75 1.44 1.47 2.24 0.78 1.64
2 1.66 0.77 2.47 1.8 1.12 3.57 3.9 2.85 2.2 2.98
3 2.3 3.86 20.6 19.2 2.52 21.9 7.24 28.3 2.44 20.4
4 0.17 0.09 0.24 0.17 0.55 0.31 0.29 0.34 0.22 0.12
5 0.38 0.23 0.21 0.17 0.9 0.12 0.32 0.25 0.21 0.32
6 0.44 0.67 0.62 0.21 031 0.71 0.35 0.19 0.21 0.26
7 1.71 7.48 5.75 3.39 1.34 3.79 6.41 4.46 1.45 12.2
8 2.93 7.37 25.2 18.7 2.45 30.5 8.2 27.1 2.53 18.9
9 0.96 12.2 17.5 34.0 6.37 25.8 12.6 51.1 8.12 29.0

10 1.21 5.1 43.1 40.1 8.45 45.8 10.3 88.1 8.01 70.7
11 0.61 0.3 0.16 0.32 0.12 0.28 0.17 0.15 0.95 0.43
12 0.38 0.2 0.18 0.16 0.14 0.19 0.23 0.19 0.34 0.18
13 0.23 0.26 0.22 0.24 0.25 0.23 0.28 0.17 0.22 0.25
14 0.23 0.26 0.24 0.3 0.31 0.22 0.23 0.25 0.27 0.24
15 0.23 0.26 0.27 0.25 0.42 0.30 0.24 0.24 0.31 0.27
16 0.29 0.24 0.27 0.24 0.23 0.33 0.33 0.24 0.33 0.30
17 0.23 0.3 0.23 0.24 0.41 0.23 0.28 0.24 0.27 0.29
18 - - - - - - 0.23 - - -

Table 4. The subsets of selected IMFs obtained using the proposed IMF selection procedure.

Classes

0 0.5 1.0 1.5 1.6 1.7 1.8 2.0 2.4 2.8

Selected
IMFs

2,3,7
8,10

3,7,8
9,10

2,3,7
8,9,10

1,2,3,7,
8,9,10

2,3,7,
8,9,10

1,2,3,7
8,9,10

1,2,3,7
8,9,10

1,2,3,7
8,9,10

2,3,7
8,9,10

1,2,3,7
8,9,10

Since the modes obtained by the decomposition are amplitude-modulated, the envelope power
spectrum of the reconstructed signal must be computed to verify the quality of the subsets provided
by IMF selection. Figure 6 demonstrates the envelope power spectra of the original and reconstructed
signals using the subsets of selected IMF components corresponding to the intensity classes produced
by 0 g and 2.8 g of extra weight. As shown in Figure 6a, it was observed that the envelope power
spectrum of the original signal when no rubbing occurred mostly consisted of the fundamental
frequency and its high-order harmonics. No fractional harmonics were clearly observed in the power
spectrum. Also, the peak amplitude of the fundamental frequency harmonic was drastically higher
than the peak amplitudes of other harmonics present in the power spectrum. Figure 6b shows
the envelope power spectrum of the reconstructed signal when no rubbing occurred in the system.
This power spectrum includes the fundamental frequency 1× and its high-order harmonics, while
the majority of fractional harmonics are not present or their amplitudes are very small, which is
reasonable for a system in this state. The peak amplitudes of the harmonics present were also relatively
small. Figure 6c presents the envelope power spectrum of the original signal acquired during a severe
rub-impact fault. From this figure it is seen that the main frequency 1× and its multiple harmonics
were clearly present in the envelope power spectrum. Moreover, some of the fractional harmonics
that are considered evidence of the rubbing process, 1/3× and 4/3×, were barely seen in this figure.
Even though these fractional harmonics were present, the problem with extracting features for rubbing
fault diagnosis from this kind of power spectrum is that the amplitude of the fundamental frequency
is noticeably higher than the amplitudes of all other harmonics. Therefore, the numerical values of
features extracted from this original signal mostly reflect the behavior of the main frequency, while the
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influence of the fractional frequencies will be negligible. It is known that many various mechanical
faults in rotating machinery affect the behavior of the fundamental frequency. Therefore, when the only
signs of a fault are amplitude changes of the fundamental frequency and its high-order harmonics, it is
not easy to determine whether the extracted features actually reflect the rubbing process or whether
they are related to other mechanical faults or the environmental features. In contrast, Figure 6d shows
that the frequencies which appeared in the envelope power spectrum of the reconstructed signal
of the severe rub-impact fault contained important information corresponding to the various signal
harmonics, such as the fundamental frequency 1×, its high-order harmonics 2×, 3×, 4×, and 5×,
and the fractional harmonics 1/3×, 2/3×, 4/3×, 5/3×, 10/3×, and 9/2×, which are considered
valuable features for rub-impact faults [11,12,38]. Furthermore, the amplitudes of the fundamental
frequency component and its high-order harmonics during the severe rubbing process were higher
than those shown in Figure 6b. These observations reveal that the selected IMF subsets contain
meaningful information and that the features extracted from the reconstructed signals well-represent
rubbing faults of various intensities.
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Figure 6. Envelope power spectra of (a) class ‘0 g’ original signal; (b) reconstructed signal using
selected IMFs for class ‘0 g’; (c) class ‘2.8 g’ original signal; and (d) reconstructed signal using selected
IMFs for class ‘2.8 g’.

To validate the efficacy of EEMD decomposition followed by informative IMF selection in
representing rub-impact faults, we compared the envelope power spectra of the signals reconstructed
using the selected IMFs with wavelet maps obtained by applying a continuous wavelet transform
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(CWT) to the original signals as described in [44]. Figure 7 shows the envelope power spectra obtained
after signal reconstruction for rubbing intensities corresponding to classes ‘0 g’, ’1.6 g’, ’2.0 g’, and ‘2.8 g’.
The wavelet maps corresponding to the same signals obtained using CWT are shown in Figure 8.
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IMF selection technique for classes (a) ‘0.0 g’; (b) ‘1.6 g’; (c) ‘2.0 g’; and (d) ‘2.8 g’.

Comparing Figures 7 and 8, it is clear that the envelope power spectra of signals reconstructed
using the selected IMFs after EEMD decomposition provide better information about rubbing faults
than the wavelet maps obtained by CWT. Specifically, from Figure 7 it can be seen that the appearance of
fractional harmonics and their amplitude behavior, combined with information about the fundamental
frequency and its high-order harmonics, allows for the differentiation of rub-impact faults of various
intensities as well as differentiation of the normal state of the system with no rubbing faults. Figure 8
shows that it while might be possible to discriminate between the state of the system when a rubbing
fault is and is not present in a signal, it might be difficult to differentiate between rubbing faults of
various intensities. It is clear that the most significant difference between the wavelet map patterns
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and the wavelet coefficient scales for the various states is observed between the case where there is
no rub-impact fault in a system (Figure 8a) and that in which severe rubbing is present (Figure 8d).
The wavelet map patterns and the scales of the wavelet coefficients for classes corresponding to slight
rubbing and intensive rubbing were very similar. Moreover, from the wavelet maps it is difficult to
verify whether the frequency harmonics inherent to rub-impact faults are present in the FFT spectrum
due to significant overlap of the harmonics around the fundamental frequency. Therefore, it can be
concluded that the method proposed in this paper is capable of representing and delivering valuable
information about rub-impact faults of various intensities better than conventional CWT.
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3.3. Performance Evaluation of the Proposed Rubbing Fault Feature Extraction Scheme with the New IMF
Selection Procedure

To evaluate the quality of the features extracted from the reconstructed signal and their ability to
provide sufficient information about rub-impact faults with different intensity levels in rotor blades,
we compared our feature extraction approach with three TFA feature extraction methods that use
numerical-valued features for rub-impact fault diagnosis. The first TFA method utilizes wavelet
packet transform and maximum SV computation to extract features from signals containing rubbing
faults (referred to as WPT + MSV) [4]. The second TFA combines conventional EMD decomposition
and maximum SV extraction to create a set of features for differentiating rubbing faults (referred
to as EMD + MSV) [24]. The third TFA approach applies digital wavelet transform (DWT) to the
rubbing fault signal and then uses decomposed sample data in the time domain of the third level of
transformation as feature vectors for diagnosing rub-impact faults (referred to as DWT + TDSIG) [5].
Also, for comparison purposes, we applied our proposed hybrid feature model to signals reconstructed
using sensitive IMFs selected by the method presented in [30] (referred to as SensIMF + HFM). In this
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paper, the one-against-all multiclass SVM (OAA-MCSVM) classifier [35,36] was employed to perform
the comparison of the above approaches. To ensure the repeatability of the results and exclude the
effect of randomness, our experiments were performed 20 times with different combinations of training
and testing data.

The classification accuracy for each group of samples was computed using the true positive rate
evaluation index (TPR), which is given below:

TPRl = (1/k)
k

∑
i=1

(
Ni,l

TP/
(

Ni,l
TP + Ni,l

FN

))
× 100 (%), (12)

where k is the total number of cross-validation folds (k = 3), Ni,l
TP is the total number of samples in

class l that are correctly classified as class l, Ni,l
FN is the number of samples within class l that are not

recognized as class l, and i indicates the i-th iteration of the k-fold cross-validation procedure. The final
TPR for each class presented here is computed as an average of the TPRs achieved over 20 experiments.
The standard deviation (St.Dev) of the TPR was also calculated and shown in the results.

The classification accuracy (CA) for each experiment was determined using the relation
given below:

CA = (1/k)
k

∑
i=1

((
∑M

l=1 Ni,l
TP

)
/Nsamples

)
× 100 (%), (13)

where M is the total number of groups and Nsamples is the total number of samples represented in
a particular testing subset. The final classification accuracy presented in the results is the average
classification accuracy (ACA) achieved over 20 experiments. The standard deviations (St.Dev) of the
CA metric were also calculated and presented in the results.

The experimental results are shown in Table 5. These results demonstrate that rub-impact fault
feature extraction using EEMD with adaptive IMF selection based on the novel presented mode
evaluation metric for rubbing faults and the proposed hybrid feature model outperforms the reference
methods in terms of average classification accuracy, with an accuracy of 99.8% over 20 experiments.
Table 5 shows that the average TPR values of the proposed method over 20 experiments were over
99.5% and the standard deviations of the TPR did not exceed 1.5%.

Confusion matrices for the proposed framework and the reference methods are presented in
Figure 9. The confusion matrix is a robust technique that provides a visualization of the performance
of a classifier algorithm in terms of the deviation between actual and predicted results [35]. According
to the results in Figure 9a, the proposed method perfectly identified rubbing faults of all intensities
with a very low misclassification rate compared to its counterparts: SensIMF + HFM [30] in Figure 9b,
WPT + MSV [4] in Figure 9c, EMD + MSV [24] in Figure 9d, and WT + TDSIG [5] in Figure 9e.

Table 5. Experimental results. TPR, true positive rate; ACA, average classification accuracy.

Method
Average TPR (St.Dev) (%) ACA

(St.Dev) (%)0 0.5 1.0 1.5 1.6 1.7 1.8 2.0 2.4 2.8

Proposed 100
(0)

100
(0)

100
(0)

100
(0)

100
(0)

99.5
(1.5)

99.75
(1.1)

100
(0)

100
(0)

100
(0)

99.8
(0.14)

SensIMF
+ HFM

95.9
(3.8)

95.25
(1.1)

98.25
(2.4)

100
(0)

93.0
(2.9)

97.5
(2.5)

96.6
(2.9)

100
(0)

97.5
(2.9)

100
(0)

96.6
(0.33)

WPT +
MSV

100
(0)

100
(0)

100
(0)

78.6
(5.6)

99.5
(1.5)

88.2
(3.5)

100
(0)

88.6
(4.37)

99.75
(1.1)

99.75
(1.1)

95.0
(0.7)

EMD +
MSV

99.7
(3.3)

76.1
(7.7)

89.1
(3.5)

60.1
(9.8)

78.4
(4.9)

11.3
(4.9)

8.8
(4.0)

41.2
(10.6)

42.7
(13.0)

100
(0)

60.0
(2.13)

DWT +
TDSIG

10.7
(14.3)

44.8
(17.0)

12.3
(15.1)

9.44
(15.4)

19.3
(19.1)

10.6
(14.5)

67.2
(12.8)

17.4
(19.5)

19.7
(21.2)

12.5
(15.2)

22.6
(3.06)
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These results can be explained as follows. EEMD decomposition is capable of extracting clear
‘true’ IMFs, which can be easily associated with frequency bands of the original signal. Importantly,
the proposed adaptive IMF selection method for rubbing signals, in conjunction with the novel
IMF evaluation technique, enables meaningful intrinsic components to be precisely determined.
These components include valuable information about the frequency bandwidths containing specific
frequency peaks and their harmonics, which are considered to be evidence of rubbing processes in a
signal [11,12,38].

The reference feature extraction approaches for rub-impact fault diagnosis resulted in average
classification accuracies of 96.6%, 95.0%, 60.0%, and 22.6%, respectively.

Regarding SensIMF + HFM, Table 5 shows that the average classification accuracy achieved by
this method for classifying rubbing faults of various intensities was slightly less than one, made by the
proposed methodology. Note that SensIMF + HFM is a synthetic method that combines a sensitive IMF
selection method for rub-impact fault diagnosis [30] and our proposed hybrid feature model extracted
from signals reconstructed using the selected sensitive IMFs. The results presented in Table 5 and
Figure 9b demonstrate that this combined approach performs well at differentiating various rubbing
conditions, but is still slightly worse than the method proposed in this paper. The difference between
the results of the two methods can be explained as follows. Although both IMF selection methods were
introduced for rub-impact fault diagnosis, the main concepts behind them are different. The method
proposed in this paper aims to select the IMFs that are directly related to rubbing faults in the system
by both searching for the specific rub-impact fault harmonics in the envelope power spectra of IMF
candidates and computing the KLD similarity between the extracted components and the original
non-decomposed signal. On the other hand, the referenced method relies on computing ‘sensitivity
factors’ of IMFs using only the correlation between the extracted components and the original signal
as well as the signal acquired under the normal operating conditions of rotating machinery [30].
Considering that both methods utilize the same feature model, it can be concluded that the approach
proposed in this paper is able to better highlight the important frequency harmonics of rubbing faults
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than a method that relies only on correlation properties of signals and IMFs without considering the
exact information content carried by those modes.

Regarding WPT + MSV, the average accuracy was smaller than that of the proposed feature
extraction approach. Table 5 and Figure 9c show that in general, the WPT + MSV approach deals
with differentiating rubbing faults of various intensities well; however, for the rubbing intensities
corresponding to extra weights of 1.5 g, 1.7 g, and 2.0 g attached to the NDE, the TPR values were
relatively low with increased standard deviation. These results can be explained because as mentioned
above, rubbing faults in this study were simulated by adding extra weight to the NDE. This means
that with increasing rotor imbalance, the rubbing becomes more severe and the characteristics of the
vibration signal change significantly. The quality of the wavelet packet transform strongly depends
on the choice of mother wavelet function. Moreover, since this approach is not entirely adaptive and
data-driven, the same mother wavelet function simply cannot perfectly match all of the changing
types of vibration signals which contain both rotor imbalance and a complex nonlinear fault, such as a
rub-impact fault.

Regarding EMD + MSV, Table 5 and Figure 9d show that the average accuracy and TPR achieved
by this method over 20 experiments were low compared to the proposed method, SensIMF + HFM,
and WPT + MSV. There might be two main reasons for this. The first is the problem of mode-mixing
which is inherent to the conventional EMD approach. A rub-impact fault is known to be a complex
fault that induces various nonlinear processes in the signal, and due to the mode-mixing problem,
the quality of the extracted modes may not be good enough to extract discriminative features. In the
ideal case, each extracted component should represent a specific frequency band so that the extracted
features can describe the processes in the system well. However, mode-mixing causes the mixing of
harmonics in the frequency spectra of the obtained IMFs. This makes it difficult to clearly understand
the physical meaning of each mode, and the quality of the extracted features becomes poor. The second
reason for the obtained results is that the EMD + MSV feature extraction approach does not consider
the selection of valuable IMFs. The cardinality of extracted IMFs is usually large, and they can be either
signal- or noise-dominant. In the case of diagnosing rub-impact faults, it is important to determine
which of the extracted components can provide useful and clear information because the features
extracted from noise-dominant components can expand the feature models and degrade the overall
classification performance by delivering poor-quality or redundant features that are not related to the
fault being investigated.

In addition, in both WPT + MSV and EMD + MSV it might be difficult to verify whether the
extracted SVs as features actually reflect rub-impact faults or whether their values are more closely
related to the properties and setup of the system because these environment properties are also
reflected in the acquired signal.

Regarding DWT + TDSIG, its performance for differentiating rub-impact faults of various
intensities was not satisfactory in this study. Table 5 shows that this method achieved an average
classification accuracy of 22.6% over 20 experiments. Also, the TPR values were noticeably lower
and the standard deviations were significantly higher than those demonstrated by the other methods
presented. The confusion matrix in Figure 9e shows a similar result. Such a poor performance can
be explained as follows. First of all, choosing a wavelet function is not an easy task but is important
because the quality of wavelet-based decomposition is directly affected by the chosen mother wavelet.
Furthermore, the dataset used in this study contains two mechanical faults: a rub-impact fault and
its cause, an imbalance of the shaft. The wavelet function chosen in the referenced method may not
match all the signal groups present in the dataset. This method also does not propose any technique
for adaptive selection of a proper wavelet level band that contains the most essential information
about the mechanical fault after decomposition. Finally, the poor performance seems to be caused by
the use of time-domain decomposed sample data as a feature vector to the OAA-MCSVM classifier.
Although SVM is known to be a robust classifier that is insensitive to the dimensionality of the feature
vector [45], the use of a time-domain signal instead of statistical feature parameters creates a feature
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vector of huge dimensions. This leads the classifier to attempt to create a very complex hyperplane to
try to separate the signal samples, causing the final classification accuracy to be poor. Of course, DWT
incorporates some downsampling while decomposing the original signal, but this has benefits only
when the original signal is relatively short (e.g., 2048 sampling points [5]). If the original signal is long
like those used in this study, even after the downsampling performed by DWT, the remaining signal at
the third level of decomposition is still long.

Overall, the proposed feature extraction methodology is highly useful for the diagnosis of
rub-impact faults of various intensities because of its main concept: informative IMF selection with a
novel IMF quality metric and a hybrid feature extraction procedure based on a signal reconstructed
using the selected IMFs in which fault symptoms are highly observable.

4. Conclusions

This paper presented a new feature extraction method for rub-impact fault diagnosis based on
EEMD with an informative IMF selection procedure and hybrid feature model. The proposed method
addresses the problems of both efficient feature extraction and the selection of meaningful and proper
IMFs suitable for rub-impact fault diagnosis. First, EEMD provided well-separated and well-behaved
oscillating components of the original vibration signal and reduced the influence of the mode-mixing
that is inherent to the conventional EMD approach. Second, subsets of meaningful signal-dominant
modes were selected by the proposed IMF selection method using a novel quality measure based
on the DPR and the Kullback–Leibler divergence distance metric. Finally, the adaptively selected
IMFs were used to reconstruct a noiseless and clear rubbing fault signal for hybrid feature extraction
and construct the feature set. In the experimental part of this study, the proposed set of features
was used to differentiate rub-impact faults with various intensities using the OAA-MCSVM classifier.
The experimental results demonstrated that the proposed combination of signal decomposition and our
IMF selection technique is capable of extracting relevant information about rubbing faults of various
intensities. The proposed feature extraction approach outperformed reference methods in terms of
classification accuracy and TPR. Fault classification using the features extracted by the proposed
method achieved an average accuracy of 99.8% over 20 experiments with various combinations of
training and testing data. In our future research work, we would like to elaborate more on the
thresholding technique used in the proposed IMF selection approach. Specifically, the use of adaptive
thresholding may reduce the number of selected IMF components for various classes, and hence,
possibly lead to more ‘clean’ reconstructed signal. Also, the evaluation of the proposed methodology
in other fault detection and diagnosis fields is the scope of future work.
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