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Abstract: This paper presents a new Strap-down Inertial Navigation System/Spectrum Red-Shift/Star
Sensor (SINS/SRS/SS) system integration methodology to improve the autonomy and reliability of
spacecraft navigation using the spectrum red-shift information from natural celestial bodies such
as the Sun, Jupiter and the Earth. The system models for SINS/SRS/SS integration are established.
The information fusion of SINS/SRS/SS integration is designed as the structure of the federated
Kalman filter to fuse the local estimations of SINS/SRS and SINS/SS integrated subsystems to
generate the global state estimation for spacecraft navigation. A new robust adaptive unscented
particle filter is also developed to obtain the local state estimations of SINS/SRS and SINS/SS
integrated subsystems in a parallel manner. The simulation results demonstrate that the proposed
methodology for SINS/SRS/SS integration can effectively calculate navigation solutions, leading to
strong autonomy and high reliability for spacecraft navigation.

Keywords: spacecraft navigation; spectral red-shift; SINS/SRS/SS integrated navigation system;
robust adaptive unscented particle filter

1. Introduction

Considerable research efforts have been dedicated to spacecraft navigation, resulting in various
navigation techniques such as ground radio navigation, satellite navigation system, inertial navigation
system (INS) and celestial navigation system [1,2]. Radio navigation is a non-autonomous navigation
technique [3,4]. It is sensitive to external disturbances, since its navigation accuracy depends on
the coverage area of ground stations and the propagation conditions of radio waves. The satellite
navigation is an extension of the space-based radio navigation [5,6]. It is simple in implementation
and highly accurate in positioning. However, its performance is vulnerable to human-induced
disturbance. Consequently, the satellite navigation cannot achieve full autonomy. The Strap-down
Inertial Navigation System (SINS) has a simple structure and strong autonomy, and is commonly
used in vehicle navigation. Nevertheless, the SINS error accumulates over time, leading to biased or
even divergent navigation solutions [7–9]. The celestial navigation, which uses the star sensor (SS)
to derive spacecraft position and attitude, is also an autonomous navigation system. It can provide
high-precision orientation information and inhibit electromagnetic interference [6,10]. However,
it cannot directly measure spacecraft velocity and has a low data update rate. It also suffers from the
limitation of SS, and thus cannot be used alone for positioning and navigation.
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The spectrum red-shift (SRS) is a relatively new technology for autonomous navigation. Different
from SS, SRS calculates the relative velocity between the spacecraft and the high-precision celestial
bodies such as the Sun, Jupiter and the Earth. The velocity of the spacecraft can be obtained from the
spectral information (celestial ephemeris) of the solar system, without requiring any information on
ground radio and relying on spacecraft orbital dynamics equations. This method has the merits of simple
implementation, high precision, strong autonomy and excellent real-time performance [11–13], leading
to a promising solution to improve the autonomy of spacecraft navigation. However, spectrum signals
can be temporarily interrupted by the occlusion of celestial bodies, and thus the navigation solution of
SRS may be deteriorated or even divergent due to insufficient measurement information [14–17].

Given the complementary nature of SINS, SRS and SS, it is absolutely necessary to develop an
integrated navigation system by integrating these sensors together to overcome their respective
shortages, leading to an improved performance for spacecraft navigation. However, there has
been very limited research on SINS/SRS/SS integrated navigation systems. Just recently, Wei et al.
studied a Strapdown Inertial Navigation System/Spectral Red-Shift/Geomagnetic Navigation System
(SINS/SRS/GNS) integrated navigation system [18]. However, the attitude accuracy of GNS is limited,
being much lower than that of SS. This limited attitude accuracy of GNS also causes the attitude
accuracy of SINS/SRS/GNS integration to be limited. GNS also involves an expensive computational
process to search and match local geomagnetic maps and calculate local coordinates.

The essential concept of the SINS/SRS/SS integrated navigation system is multi-sensor data
fusion. The federated Kalman filter (FKF) is a popular multi-sensor data fusion strategy in integrated
navigation systems [1,19,20]. It conducts local and global filtering based on the principle of information
sharing and also discards the dependence of local estimations via upper bounds [1,19,20].

However, the performance of FKF is heavily dependent on that of local filtering. At present,
the extended Kalman filter (EKF), unscented Kalman filter (UKF) and particle filter (PF) are the typical
filtering algorithms used for nonlinear systems. EKF is a suboptimal algorithm for nonlinear state
estimation, where the system model is linearized by a Taylor expansion [21]. As the linearization
process causes a significant error, the EKF solution may be biased or divergent [22]. EKF also requires
the calculation of Jacobian matrix, which is difficult to achieve when measurement is strong nonlinear
and systems noise is non-Gaussian. UKF is also a nonlinear filtering algorithm by approximating the
probability density of state distribution based on unscented transform [21]. It reduces the linearization
error of EKF and does not involve the cumbersome calculation of Jacobian matrix. However, it causes
an extra computational load and is not stable in case of high-dimensional non-Gaussian systems.
PF provides optimal Bayesian approximations of posterior distributions by Monte-Carlo simulation.
It is suitable for strong nonlinear and non-Gaussian systems. However, it requires appropriate
importance sampling, which is difficult to determine and thus may lead to degraded or divergent
solutions. The central difference particle filter (CDPF) adopts the central difference Kalman filter to
improve the importance sampling, leading to second-order accuracy for the mean and variance [18].
The Unscented Particle Filter (UPF) improves CDPF by implementing sampling points using unscented
transformation to approximate the posterior density function for nonlinear systems. It can achieve
the mean and variance in third-order accuracy. However, like PF, UPF still suffers from particle
degradation [23].

This paper presents a new methodology for a SINS/SRS/SS autonomous integrated navigation
system to improve the autonomy, reliability and accuracy of spacecraft navigation. The system models
for SINS/SRS/SS integration are established based on the position and velocity of SRS and the attitude
of SS. The information fusion for SINS/SRS/SS integration is designed as the structure of FKF, where
the local state estimations of SIN/SRS and SINS/SS integrated subsystems are obtained independently
by a robust adaptive unscented particle filter (RAUPF) and are further fused to generate the globally
optimal state estimation for spacecraft navigation. This RAUPF adopts the concept of robust adaptive
filtering in UPF to prevent particles from degeneracy. It uses the equivalent weight function and
adaptive factor to improve the importance sampling resulted from unscented transformation based
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on the information of system state and measurement models. Simulation trails were performed to
examine the efficacy of the presented methodology for SINS/SRS/SS integrated navigation system.

This paper is different from Wei’s work on SINS/SRS/GNS integration [18]. It focuses on
SINS/SRS/SS integration, which is advantageous to SINS/SRS/GNS integration. Accordingly,
the system models for integrated navigation in this paper are different from those in Wei’s work.
Further, the filtering algorithm in this paper is also different from that in Wei’s work. This paper
develops a RAUPF, while Wei’s work a robust adaptive CDPF (RACDPF), for local fusion. The RACDPF
in Wei’s work reduces the computational load, which is caused by GNS for matching local geomagnetic
maps and calculating local coordinates. However, since UPF has higher accuracy than CDPF, the RAUPF
developed in this paper also has higher accuracy than RACDPF.

2. SRS Navigation

The spacecraft spectrum red-shift autonomous navigation is based on the characteristics of the
deep space environment. It treats the optical signals of celestial bodies in the solar system as navigation
information sources. According to the Doppler effect, the frequency of the spectrum emitted from a
celestial body is not equal to that received by the spacecraft, which varies with the spacecraft motion
with reference to the celestial body. Assume there are three celestial bodies, i.e., three light sources,
in the solar system. As shown in Figure 1, the velocity of the spacecraft in the inertial coordinate
system can be obtained according to the measurement of the spectrum red-shift frequency based on
the vector space theory. Accordingly, the position of the spacecraft in inertial coordinate system can be
obtained by integrating the velocity over time.
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Figure 1. The principle of spectrum red-shift navigation. 
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Figure 1. The principle of spectrum red-shift navigation.

When the spacecraft is moving relative to a celestial body, the relationship between the light wave
frequencies fm and f0 from the celestial body to the spacecraft and ground station can be expressed as:

fm = f0

√
1− |v|2/c2

1 + |v| cos θ/c
(1)

where fm and f0 are the light wave frequencies from the celestial body to the spacecraft and ground
station, respectively, v is the two-dimensional velocity vector of the spacecraft relative to the celestial
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body, θ is the angle between velocity vector v and the light wave vector from the celestial body to the
spacecraft; |v| cos θ is the radial velocity, and c is the velocity of the celestial body in a vacuum.

According to Equation (1), the following relationship may be written:

1 + |v| cos θ/c =
f0

fm

√
1− |v|2/c2 (2)

Equation (2) may be further written as:

|v| cos θ =
f0

fm

√
c2 − |v|2 − c (3)

Equation (3) is actually the expression of the radial velocity:

vr = |v| cos θ

= f0
fm

√
c2 − |v|2 − c

(4)

Thus, for the case of three celestial bodies as shown in Figure 1, the light wave frequencies fm1,
fm2 and fm3 received by the spacecraft can be obtained from the light wave frequencies f01, f02 and f03

received and measured by the ground station.
According to Equation (4), the radial velocity of the spacecraft relative to the three celestial bodies

can be expressed as: 
vr1 = f01

fm1

√
c2 −

∣∣vp
∣∣2 − c

vr2 = f02
fm2

√
c2 −

∣∣vp
∣∣2 − c

vr3 = f03
fm3

√
c2 −

∣∣vp
∣∣2 − c

(5)

where vp is the velocity vector of the spacecraft in the inertial coordinate system. By spatial geometry
reasoning in relation to the three celestial bodies, the relationship between vp and vr1, vr2, vr3 can be
expressed as: 

vr1 = (vP − v1) · u1

vr2 = (vP − v2) · u2

vr3 = (vP − v3) · u3

(6)

where v1, v2 and v3 are three celestial bodies’ velocities in the inertial frame. u1, u2 and u3 are the unit
vectors in the inertial frame, pointing to the spacecraft from each of the three celestial bodies.

The state equations in terms of the velocity vector and position vector can be described as:{
vP = f (v1, v2, v3, u1, u2, u3, vr1, vr2, vr3)

pP =
∫

vPdt
(7)

where f (·) describes the nonlinear function. Given the initial value, the velocity vector vp of the
spacecraft in the inertial frame may be acquired via Equation (7). Then, the position vector pP can be
obtained by integration.

3. System Models for SINS/SRS/SS Autonomous Integrated Navigation

The SINS/SRS/SS autonomous integrated navigation system consists of integrated SINS/SRS and
SINS/SS subsystems. Its navigation coordinate system is chosen as East-North-Up (E-N-U) geographic
coordinate system.

3.1. System State Equation

The system state vector is defined as:
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X(t) =
[

δvE δvN δvU δϕ δλ δh ψE ψN ψU θx θy θz ζx ζy ζz

]T
(8)

where (δvE, δvN , δvU), (δϕ, δλ, δh) and (ψE, ψN , ψU) are the errors in velocity, position and attitude;(
θx, θy, θz

)
is the constant bias of the gyros; and

(
ζx, ζy, ζz

)
the zero bias of the accelerometers.

The system state equation of SINS/SRS/SS integration is described by:

.
X(t) = f (X(t)) + G(t)W(t) (9)

where f (·) is a nonlinear function given by Equation (10) [19], X(t) is the system state vector, and W(t)
is the system noise.

f (X(t)) =

C−1
ω

[
(I− Cc

n)ω̂
n
in + Cc

nδωn
in − Cc

bδωb
ib

][
I− (Cc

n)
T
]
Cc

b f̂b
s f + (Cc

n)
TCc

bδfb
s f

−
(
2δωn

ie + δωn
en
)
× V−

(
2ω̂n

ie + ω̂n
en
)
× δV

+
(
2ωn

ie + ωn
en
)
× δV + δg

vN
RM+h −

(vN−δvN)
(RM−δRM)+(h−δh)

vE sec ϕ
RN+h −

(vE−δvE) sec(ϕ−δϕ)
(RN−δRN)+(h−δh)

δvU
01×7



(10)

where Cω is the Euler platform error angel matrix; Cc
n is the transformation matrix from the navigation

(n) to computer (c) frames in terms of attitude; Cc
b is the transformation matrix from the body (b) to

computer (c) frames in terms of attitude; ω̂n
ie and ωn

ie are the projections of the actual and ideal values
of angular velocity into (n) from the Earth coordinate system (e) to the inertial coordinate system (i);
δωn

in and δωb
ib are the calculation errors of ωn

in and ωb
ib; f̂b

s f and δfb
s f are the real accelerometer’s force

and its associated error; V and δV are the real velocity and its associated error; δg is the error of gravity
acceleration; ϕ and h are the latitude and altitude values; and RM and RN are the radii of curvatures of
local meridian and prime vertical.

The noise coefficient matrix is defined as:
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3.2. Measurement Equation of SINS/SRS Integrated Subsystem

The architecture of SINS/SRS integrated subsystem is shown in Figure 2. In order to overcome
the drawback that the velocity error of SINS is accumulated in time series, the velocity information
from SRS is used to correct the velocity error of SINS. Further, a radar altimeter is used to provide the
altitude information to correct the altitude channel of SINS.

The measurement of SINS/SRS integrated subsystem can be chosen as the difference between the
velocities of SINS and SRS as well as the difference of altitude between the radar altimeter and SINS.

Suppose the spacecraft velocities obtained by SRS and SINS are VSRS = (vSE, vSN , vSU) and
VSINS = (vE, vN , vU). The difference of spacecraft velocity between SRS and SINS is defined as:

∆Zv =

 ∆ZS1

∆ZS2
∆ZS3

 =

 vE − vSE
vN − vSN
vU − vSU

 = HvX(t) + Vv(t) (12)



Sensors 2018, 18, 2039 6 of 16

where Vv is the velocity measurement noise matrix, and Hv =
[

I3×3 03×12

]T
is the

measurement matrix.
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Further, the difference of spacecraft altitude between the radar altimeter and SINS can be
described as:

∆Zh = [hSINS − hH ] = HhX(t) + Vh(t) (13)

where hSINS and hH are the spacecraft altitudes obtained by SINS and the radar altimeter; Vh(t)

is the measurement noise matrix of spacecraft altitude; and Hh =
[

01×5 1 01×9

]T
is the

measurement matrix.
Combining Equation (12) with Equation (13), the measurement equation of SINS/SRS integrated

subsystem is established as:

∆Z1(t) =

[
Hv

Hh

]
X(t) +

[
Vv(t)
Vh(t)

]
= H1(t)X(t) + V1(t) (14)

3.3. Measurement Equation of SINS/SS Integrated Subsystem

Figure 3 shows the framework of SINS/SS integrated subsystem, where the spacecraft attitude
obtained from SS is applied to correct the attitude error of SINS. The difference of spacecraft attitude
between SS and SINS is taken as the measurement of SINS/SS integrated subsystem. The measurement
equation is given by:

∆Z2(t) = H2X(t) + V2(t) (15)

where H2 =
[

03×6 I3×3 03×6

]
, and V2(t) is the measurement noise corresponding to the

measurement error of SS.
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4. Information Fusion for SINS/SRS/SS Integrated Navigation

In this section, a fusion framework is designed as the structure of FKF for INS/SRS/SS integration,
where the local state estimations of SINS/SRS and SINS/SS integrated subsystems are obtained by a
local filter in a parallel manner and further fused to generate the global state estimation for spacecraft
navigation. The local filter is implemented by the proposed RAUPF to obtain the local state estimations
of SINS/SRS and SINS/SS integrated subsystems.

4.1. Fusion Framework

As a multi-sensor system, information fusion is a key element in SINS/SRS/SS integration to
achieve optimal state estimation. In this paper, the fusion framework of SINS/SRS/SS integration
is designed as the structure of FKF. As shown in Figure 4, the two local filters are implemented by
the proposed RAUPF to calculate the locally optimal estimations X̂i and the corresponding error
covariance matrices ΣX̂,i(i = 1, 2) of SINS/SRS and SINS/SS integrated subsystems in a parallel
manner. Subsequently, the two local optimal estimations are fused by using the federated filtering
technology [6,24–26] to obtain the globally optimal state estimation X̂g and the associated error
covariance matrix ΣX̂,g, i.e.,  ΣX̂,g = (Σ−1

X̂,1
+ Σ−1

X̂,2
)
−1

X̂g = ΣX̂,g(Σ
−1
X̂,1

X̂1 + Σ−1
X̂,2

X̂2)
(16)

where the local state estimations of SINS/SRS and SINS/SS integrated subsystems are generated
by the two local filters in a parallel manner and are subsequently fused to generate the global state
estimation for INS/SRS/SS integrated navigation.
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Finally, the SINS error is rectified by X̂g in real time. As mentioned previously, since the altitude
channel of SINS is divergent and neither SRS nor SS can output the spacecraft altitude, the radar
altimeter is used to correct the SINS altitude channel to suppress the divergence in the altitude of SINS.

4.2. Robust Adaptive Unscented Particle Filter

Consider the following nonlinear system [27,28]:{
xk = f (xk−1, wk−1)

zk = h(Xk, Vk)
(17)
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where xk ∈ Rn is the state vector of the system at time k, zk ∈ Rn is the measurement vector, wk ∈ Rn is
the system noise with variance Rk, Vk ∈ Rn is the measurement noise with variance Qk, both f (·) and
h(·) are a nonlinear function, and the sampling time is k = 0, 1, · · · , N. The procedure of the proposed
RAUPF includes the following steps:

(i) Initialization. Draw N particles according to the initial state and corresponding error covariance.
For time k = 0, let xi

0
∼ p(xo), i = 1, 2, · · · , N, and set the initial weight as wi

0
= 1/N.

(ii) For time k = 1, 2, · · · , N, conduct the following steps:

(a) Calculate the equivalent weight matrix P and the adaptive factor α. In order to enhance the
robustness of measurement, the IGG algorithm [29,30] is adopted to construct equivalent
weight matrix P as the following decreasing function:

P = diag(P1, P2, · · · , Pk)

Pk =

 pk |εk| ≤ k0

pk
k0
|εk |

k0 < |εk| ≤ k1

0 |εk| > k1

(18)

In some cases, the equivalent weight matrix can be also defined as [31]:

Pk =


pk |εk| ≤ k0

pk
k0
|εk |

(k1−|εk |)2

(k1−k0)
2 k0 ≤ |εk| < k1

0 k1 ≤ |εk|
(19)

where k0 ∈ (1, 1.5), k1 ∈ (3, 8), εk is the residual vector of measurement zk, and x̂k is the
current state estimate. The adaptive factor is selected as:

α =


1 |∆x̃k| ≤ c0

c0
|∆x̃k |

(c1−|∆x̃k |)2

(c1−c0)
2 c0 ≤ |∆x̃k| < c1

0 c1 ≤ |∆x̃k|
(20)

where c0 ∈ (1, 1.5), c1 ∈ (3, 8), ∆x̃k = ‖x̂k−xk‖√
tr(∑ xk)

, tr(·) is the trace of the matrix, xk is the

state prediction, and x̂k = (AT
k Pk Ak + αPxk )

−1
(AT

k Pklk + αPxk xk).

(b) Calculate the Sigma points. Update the particles
{

xi
k−1, pi

k−1

}
using UKF to obtain{

xi
k, pi

k

}
, where xi

k satisfies q(xi
k

∣∣∣xi
k−1, zk) = N(xi

k, pi
k) . Taking xi

k as a new sample, 2N + 1
Sigma points are selected as [27,28]:

χi
k−1 = [xi

k−1, xi
k−1 +

√
(N + λ)Pi

k−1, xi
k−1 −

√
(N + λ)Pi

k−1] (21)

where λ = ε2(n + ρ) represents the second order scale factor, n is the dimension of the
system state, ρ is the adjustment coefficient, N denotes the quantity of particle samples,
and ε is the factor to measure the sample distribution in regard to the mean of the predicted
state. Subsequently, UKF is used to update the particles.

(iii) Calculate the weights wi
k = wi

k−1
p(yk

∣∣∣xi∗
k )p(xi∗

k

∣∣∣xi∗
k−1)

q(xi∗
k |xi∗

k−1,zk)
, and normalize them as w̃i

k = wi
k/

n
∑

i=1
wi

k. In the

above formula, xi
k
∗ = xi

k|k−1,+K∗k (zk − zi
k|k−1), K∗k = Pxk lk P−1

lk lk , and zi
k|k−1 =

2N
∑

j=0
Wm

j zi
j,k|k−1.
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(iv) Calculate the normalized estimate N̂e f f = 1/
N
∑

i=1
(w̃i

k
)

2. The particle degradation can be measured

with the value of N̂e f f . If N̂e f f is smaller, the particle degradation will be worse. In case particles
are severely degraded, once can resample the posterior density and further allocate the same
factor 1

M to every newly sampled particle.

(v) Calculate the state estimation x̂∗k =
N
∑

i=1
w̃i

kxi
k
∗. Then, repeat the above steps (ii)–(iv) for the next

time point.

In the above steps, in order to achieve a more effective distribution function for the process of
importance sampling, the particles resulted from unscented transformation are governed by equivalent
weight matrix P, N and α.

5. Simulations and Analysis

The presented methodology was assessed by conducting simulations for SINS/SRS/SS integration
in terms of the flight of a spacecraft. Comparison analysis with SINS as well as SINS/SRS and SINS/SS
integrated subsystems were also conducted to demonstrate the efficiency of the proposed methodology
for SINS/SRS/SS integration. Further, simulations and comparison analysis with EKF, UKF, PF and
UPF were also conducted to evaluate the RAUPF effectiveness for SINS/SRS/SS integration.

The navigation coordinate system is the East-North-Up geocentric coordinate system. Assume
the spacecraft orbits the Earth, and the orbit parameters are described in Table 1. A flight period of
1000 s was selected for the simulation test, where the initial position was (2,207,542 m, 3,393,318 m,
−2,194,259 m), and the end position was (1,229,267 m, 3,515,079 m, −1,194,458 m). The flight trajectory
is shown in Figure 5.
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Figure 5. Flight trajectory of the spacecraft. Figure 5. Flight trajectory of the spacecraft.

In the process of simulation, the SINS measurements, namely, the angular velocity increments of
the gyros and the specific force of the accelerometers, are generated according to the flight trajectory of
the spacecraft and the parameters of Earth rotation. The SRS measurements are generated by ASTM
G173-03 Reference Spectra derived from SM-ARTS [32]. The SS measurements are obtained from the
astronomical ephemeris information and the flight trajectory of the spacecraft.
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Table 1. The parameters of the spacecraft.

Orbit Parameters Value

Semi-major axis 7128.042335 km
Eccentricity 0.001169

Orbit inclination 29.268◦

Right ascension of ascending node 341.24◦

Argument of perigee 347.128◦

True anomaly 232.57◦

Orbit cycle 49755 s

The initial alignment error of SINS is zero. The initial position error, initial velocity error and
initial attitude error of the spacecraft are (10 m, 10 m, 10 m), (1 m/s, 1 m/s, 1 m/s) and (1′, 1′, 1′).
The unscented transformation parameters are α = 0.5 and β = 2. The adaptive factor calculation
parameters are c0 = 1 and c1 = 3.5. The equivalent weight matrix calculation parameters are k0 = 1
and k1 = 4.2. The number of particles is M = 200. The sensor parameters used in the simulation test
are shown in Table 2.

Table 2. The sensor parameters in the simulation test.

Sensor Parameters Values

Gyro constant bias 0.02◦/h
Gyro random drift 0.005◦/

√
h

Accelerometer constant bias 0.05 mg
Accelerometer random drift 0.005 mg/

√
h

Radar Altimeter measurement accuracy 5 m
SS measurement accuracy 20′′

Spectral redshift estimation accuracy Standard deviation ≤ 1.8× 10−9

5.1. Performances of SINS/SRS and SINS/SS Integrated Subsystems

Simulation trials were conducted to evaluate the navigation performances of the SINS/SRS and
SINS/SS integrated subsystems. The solutions of the SINS/SRS and SINS/SS integrated subsystems
were achieved under the same conditions using RAUPF, and were further compared with the flight
trajectory as reference to calculate their individual navigation errors. For comparison analysis, the SINS
navigation error was also calculated in the simulation trials. Figures 6–8 show the course angle
errors, East velocity errors and latitude errors of SINS, and SINS/SRS and SINS/SS integrated
subsystems. Table 3 summaries the root mean square errors (RMSEs) of SINS/SRS and SINS/SS
integrated subsystems.Sensors 2018, 18, x FOR PEER REVIEW  12 of 17 
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Figure 8. Latitude errors of SINS as well as SINS/SS and SINS/SRS integrated subsystems. 

Table 3. Errors of SINS/SRS and SINS/SS integrated subsystems. 

Error Type 
Integrated Subsystem 
SINS/SS SINS/SRS 

Attitude RMSE (′) 
Pitch angle 0.886 2.7325 
Roll angle 0.86768 2.1698 

Course angle 1.0858 5.102 

Velocity RMSE (m/s) 
East 0.4945 0.1832 

North 0.5147 0.1987 
Up 0.5124 0.1963 

Position RMSE (m) Longitude 23.1405 2.7173 

Figure 6. Course angle errors of SINS as well as SINS/SRS and SINS/SS integrated subsystems.
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Table 3. Errors of SINS/SRS and SINS/SS integrated subsystems. 

Error Type 
Integrated Subsystem 
SINS/SS SINS/SRS 

Attitude RMSE (′) 
Pitch angle 0.886 2.7325 
Roll angle 0.86768 2.1698 

Course angle 1.0858 5.102 

Velocity RMSE (m/s) 
East 0.4945 0.1832 

North 0.5147 0.1987 
Up 0.5124 0.1963 

Position RMSE (m) Longitude 23.1405 2.7173 

Figure 7. East velocity errors of SINS as well as SINS/SS and SINS/SRS integrated subsystems.
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Table 3. Errors of SINS/SRS and SINS/SS integrated subsystems.

Error Type Integrated Subsystem

SINS/SS SINS/SRS

Attitude RMSE (′)
Pitch angle 0.886 2.7325
Roll angle 0.86768 2.1698

Course angle 1.0858 5.102

Velocity RMSE (m/s)
East 0.4945 0.1832

North 0.5147 0.1987
Up 0.5124 0.1963

Position RMSE (m)
Longitude 23.1405 2.7173
Latitude 33.7497 2.6735
Altitude 2.3447 2.3895

From the above simulation results, it is obvious that the standalone SINS cannot provide a
high-precision navigation solution. Its attitude error, velocity error and position error are accumulated
and divergent with time. Further, for SINS/SS integrated subsystem, SS can effectively correct
the attitude error of SINS with its highly accurate attitude. However, it cannot effectively correct
the position error of SINS. SINS/SRS integrated subsystem is the opposite of SINS/SS integrated
subsystem, where SRS can effectively correct the velocity error of SINS with its high-accurate velocity,
but it cannot effectively correct the attitude error of SINS. Thus, neither SINS/SS nor SINS/SRS
integrated system can provide reliable solutions for spacecraft navigation.
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5.2. Performance of SINS/SRS/SS integrated navigation system

Simulation trials were further conducted under the same conditions as those in Section 5.1
to evaluate the performance of SINS/SRS/SS integration. The simulation results are shown in
Figures 9–11. Table 4 shows the SINS/SRS/SS integration errors.

It can be seen from Figures 9–11 that the attitude, velocity and position errors of SINS/SRS/SS
integration is within 1′, 0.6m/s and 5m. This demonstrates that SINS/SRS/SS integration overcomes
the disadvantages of single navigation systems by combining the advantages of SINS, SRS and SS,
leading to the improved navigation accuracy and reliability.
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Figure 9. Attitude error of SINS/SRS/SS integrated navigation system. Figure 9. Attitude error of SINS/SRS/SS integrated navigation system.
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Table 4. Positioning errors of SINS/SRS/SS integrated navigation system.

Parameter RMSE

Attitude (′)
Pitch 0.8399
Roll 0.8431

Course 0.8470

Position (m)
Longitude 2.6401
Latitude 2.4153
Altitude 2.5762

Velocity (m/s)
East 0.1911

North 0.1962
Up 0.1951

5.3. Performance of RAUPF

Simulation trials were also conducted under the same conditions to evaluate the performance of
the proposed RAUPF in comparison with EKF, UKF, PF and UPF for SINS/SRS/SS integration. For PF,
UPF and RAUPF, three different particle numbers (M = 100, M = 200 and M = 400) were used in the
simulation trials.

Figure 12 shows the latitude errors of EKF and UKF. It can be seen that the estimation accuracy of
EKF is lower than that of UKF. This is because the linearization of the nonlinear model in EKF causes a
large error to the state estimation. Although UKF improves the filtering accuracy of EKF, the improved
accuracy is still limited. The reason is that UKF approximates the posterior probability distribution
of the system state using the Gaussian distribution. When the posterior probability distribution of
the system state is non-Gaussian, which is the case of the simulation test, the UKF performance will
be significantly degraded. Therefore, both EKF and UKF have limited navigation accuracy for the
spacecraft navigation.
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Figure 13 shows the latitude errors of PF, UPF and RAUPF, where the particle number is M = 200.
Comparing Figure 13 with Figure 12, it is evident that all three particle filters (PF, UPF and RAUPF)
have higher accuracy than both EKF and UKF. This is mainly because these three particle filters use
samples to describe the a priori and a posteriori information, thus discarding the constraint that
random samples must satisfy a Gaussian distribution. Further, it can also be seen that RAUPF has
much higher accuracy than PF and UPF. This is because RAUPF uses the equivalent weight function
and adaptive factor to control particle samples based on system state and measurement models to
improve the importance sampling, leading to the enhanced accuracy.
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Table 5 summaries the RMSEs of the above filters, where the RMSEs of PF, UPF and RAUPF are
subject to three different particle numbers, i.e., M = 100, M = 200 and M = 400. It can be seen that
even with the small number of particles (M = 100), all three particle filters (PF, UPF and RAUPF) still
have higher accuracy than both EKF and UKF.
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Table 5. The simulation results of the filtering algorithms.

Filtering Algorithms
Position RMSEs/m

M = 100 M = 200 M = 400

EKF - 14.7298 -
UKF - 9.0291 -
PF 7.3213 6.4402 5.7090

UPF 5.9115 5.0808 4.3818
RAUPF 3.1862 2.4610 2.0954

6. Conclusions

This paper presents a new methodology of SINS/SRS/SS integration for spacecraft navigation.
It establishes the system models based on the position and velocity of SRS and the attitude of SS
for SINS/SRS/SS integration. It also develops an information fusion framework for SINS/SRS/SS
integration, where the local state estimations of SINS/SRS and SINS/SS subsystems are obtained
by RAUPF and are further fused to generate the globally optimal state estimation for spacecraft
navigation. This RAUPF uses the equivalent weight function and adaptive factor to improve the
importance sampling, thus leading to the enhanced accuracy of state estimation. The simulation
results demonstrate that the proposed methodology for SINS/SRS/SS integration realizes the globally
optimal fusion of SINS/SRS and SINS/SS subsystems based on the locally optimal fusion results of each
subsystem, thus effectively improving the autonomy, reliability and accuracy for spacecraft navigation.

Future work will focus on improvement of the proposed methodology. By adopting advanced
artificial intelligence such as deep learning neural networks, genetic algorithms and pattern
recognitions, the proposed methodology will be improved to intelligently characterize errors
and uncertainties and further automatically inhibit their disturbances on state estimation in the
fusion process.
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