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I. Anisotropy of moncrystal silicon 

The stiffness and compliance coefficient depend on crystal axis orientation in terms of the 
anisotropic Young’s modulus, the shear modulus and Poisson’s ratio. Because silicon has cubic 
diamond crystal structure, the lattice system is composed of three axes which can be described 
by three lattice vectors orthogonal and of equal length. The crystal axis coordinate system for 
crystal plane (100), which is commonly the device orientation of the device layer, is defined by 
the normal vector e1 = [100] and two orthogonal vectors e2 = [010] and e3 = [001], as illustrated 
in Figure S1(a). The stiffness coefficient matrix has the following structure with three 
independent elastic coefficients, 

11 12 12

12 11 12

12 12 11
100

44

44

44

,

c c c
c c c
c c c

C
c

c
c

 
 
 
 

=  
 
 
  
                   (S1) 

where c11, c12, c44 are 165.7, 63.9 and 79.6 GPa, respectively [1]. Actually, some other literatures 
proposed slightly different values, but the difference is not significant and can be neglected [2]. 
Herein, we use the values proposed by Mason (1958) to make the computation. In ANSYS 
software, ones can input this anisotropic elastic matrix of stiffness form to get the final output 
with consideration of the anisotropy.  

 



Figure S1. (a) Crystal-axis coordinate system for crystal plane (100); (b) new coordinate system 
for crystal plane (100) with a rotation of α. (c) crystal orientation of the SOI wafer. 

For the analytical calculation, we should get the expressions of Young’s modulus, shear 
modulus and Poisson’s ratio first. We thus obtain the compliance matrix which is the inverse of 
the stiffness matrix: 

11 12 12

12 11 12

12 12 11
100

44

44

44

,

s s s
s s s
s s s

S
s

s
s

 
 
 
 

=  
 
 
  
                   (S2) 

In which s11 = (c11 + c12)/[(c11 - c12)(c11 + 2c12)] = 7.68, s12 = -c12/[(c11 - c12)(c11 + 2c12)] = -2.14, s44 = 1/c44 
= 12.56 × 10-12 Pa-1. According to Nye, Wortman and Brantley’s work [2-3], we can finally get the 
expressions of Young’s modulus, shear modulus and Poisson’s ratio in any crystallographic 
direction: 
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Where [h k l] is the normal vector of surface (h k l), m, n, p are the direction cosines for the 
calculated direction, which can be described as: 
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i and j denote the crystal axes, as per Figure S1, Gij represents the ratio of shear stress to the 
shear strain involving axis e’i and e’j, vij is the Poisson’s ratio which represents the strain 
variation in the direction e’j when there is a strain variation applied in the direction e’i, (mi, ni, 
pi) and (mj, nj, pj) are the direction cosines for e’i and e’j directions. According to Equation S3 and 
Equation S4, we can obtain the anisotropic mechanical properties for (100) plane. We plot the 
Young’s modulus (E//, E⊥), shear modulus (G//, G⊥) as well as Poisson’s ratio (v//, v⊥) both normal 
and parallel to the crystal surface (100) versus the angle α shown in Figure S1(b). 



 

(a)                           (b)                            (c) 

Figure S2. (a) Young’s modulus in the direction e1’ and e2’; (b) shear modulus and (c) Poisson’s 
ratio in the direction zx and xy for (100) silicon. The coordinate system is defined in Figure S1(b). 

When it comes to our design proposed in the manuscript, the x-axis and y-axis are parallel to 
the <110> direction; z-axis is parallel to the <100> direction, as shown in Figure S1(c). Hence, 
the anisotropic mechanical properties can be given as below: Ex = Ey = 169 GPa, Ez = 130 GPa; 
Gzx = Gzy = 79.6 GPa, Gxy = Gyx = 50.9 GPa; vzx = vzy = 0.28, vzx = vzy =0.06. Based on the spring 
constant derivation, we can easily find that the spring constant expression only involves the 
Young’s modulus along the x-axis (or y-axis). Hence, Ex = 169 GPa is used in the calculation of 
the spring constant in the manuscript. For the torsion constant, it is related to Gzx, which is used 
in the manuscript.  

II. Spring constant derivation 

The energy method indicates that if a deformable structure in equilibrium under the action of 
a system of loads is given a small virtual deformation, then the virtual work done by the 
external loads equals the virtual work done by the internal forces [4]. The spring constant is 
defined as kij = Fj/Δi or kθiθj = Mj/θi and can be arranged in a 6 × 6 matrix. Under the assumption 
that there are no variations along the z-axis, no coupling between in-plane and out-of-plane 
direction for the thin beam [5], the number of nonzero terms reduces to 12 since kij = kji. In the 
matrix on the right-hand side, the second subscript is dropped when it is identical to the first 
one. 
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For the spring constant of a rotated serpentine spring with a guided end, what we concern most 
is the spring constant along the x-axis for the rotated serpentine spring, kxr = Fx/dx. From the 
constraints that the sum of the rotation around the z-axis caused by the Fx load and an unknown 
reaction Mrz (here is moment) is zero, we can write: 
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Hence, the moment of the reaction Mrz can be expressed as 
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The displacement dx due to the load Fy and moment Mrz applied to the free end of the spring 
can be calculated by substituting Mrz 
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Therefore, the spring constant of the rotated serpentine spring with a guided end along the x-
axis can be written as  
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The expressions for the spring constant elements including kx, kθz and kxθz can be obtained by 
the unit-load method, as per Figure S3. 



 

Figure S3. Free-body diagram of a rotated serpentine spring with a guided-end.  
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In which Iz is the moment of inertia along the z-axis, which is w3t/12. Thus, we can derive the 
kθz  
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For kx, we can write the moment of each segment 
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The total energy in the rotated serpentine spring is  
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By applying the displacement (along the y-axis) and rotation boundary conditions we can 
obtain 
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Bring the partial derivation inside the integrals of Equation S13, we can obtain kx combined 
with the moment relations  
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Similarly, using boundary conditions of 0, 0y xΔ = Δ = , we can obtain  
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Substituting Equation S11, S15, and S16 into Equation S9, we can finally get the analytical 
expression of the spring constant along the x-axis for the rotated serpentine spring. The method 
we used is energy method and the unit-load method, which can be easily applied in analysis 



of micromechanical flexures with different geometries. The flow-chart for spring constant 
analysis using energy methods is provided below. 

 

Figure S4. Flow-chart for spring constant calculation using energy method. 

 

III. Torsion constant of two types of serpentine springs 

For the classical serpentine spring, we can draw the free-body diagram, as shown in Figure S5. 
By using the unit-load method, we have 
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where Ix = wt3/12, J ≈ 2.25(w/2)4 because w = t. Simplifying Equation S17, the following equation 
is obtained 
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Hence, we can finally obtain the torsion constant of the classical serpentine spring 
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Because l1c is far larger than l2c and l3c, the second term of Equation S19 can be dropped, so it is 
simplified to 
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Similarly, we can get the torsion constant of the rotated serpentine spring from Figure S3 
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Under the premise that l1 is much larger than l2 - l1, l3 and l4, the first term in Equation S21 can be 
dropped; thus, we get 
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Figure S5. Free-body diagram of a classical serpentine spring with a guided-end. 

IV.          Feasible process flow 

a) is the starting mirror polished SOI wafer; b) spin coat the electron beam resist; c) make the 
pattern of grating lines by electron beam lithography (EBL) and etch the device layer to the 
buried oxide layer; d) release the grating area by buffered oxide etch (BOE); e) deposit Ag and 
then use lift-off to pattern the upper metal film; f) also use EBL and ICP to pattern and etch the 
springs; g) release the suspended springs by BOE; h) release the proof mass to make the whole 
device suspended. 

Notably, the release of proof mass should be placed after the release of the springs so that the 
release-related anti-stiction condition can hold. In order to release the bulky proof mass, some 
through-silicon vias can be introduced in advance. 



 

Figure S6. Process flow for fabrication the micromachined structure. 
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