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Abstract: Previous studies have shown that in many wireless sensor network applications the
IEEE 802.15.4 carrier sense multiple access with collision avoidance (CSMA/CA) mechanism with
default parameters cannot guarantee the constraints of reliability, time efficiency, or energy efficiency.
Although many adaptive parameter tuning algorithms have been proposed, many of them cannot
correctly identify the changes of the network condition and are unable to effectively perform the
parameter tuning operation. Considering the randomness that CSMA/CA brings about, for most
of the proposed algorithms, it is a challenge to distinguish significant violations that were caused
by actual changes of the network from the general fluctuations that were due to CSMA/CA. In this
paper, we propose a lightweight algorithm called the network equivalent adaptive parameter tuning
(NEAPT) algorithm. It is fully distributed and can work without any predefined information or
acknowledgement. NEAPT not only takes reliability as an evaluation of a network condition, but it
proposes a synthetic value, called the equivalent node number, and takes it as another reference for
a network condition. Simulation results show that by taking both reliability and the equivalent
node number into consideration, NEAPT can effectively identify the network changes and provide
adequate and steady performances for wireless sensor networks (WSNs) in both stationary and
dynamic conditions.
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1. Introduction

Wireless sensor networks (WSNs), as one kind of personal area networks (PANs), have
penetrated various applications, from habitat monitoring to industrial control, for their advantages
of low deployment costs, easy installation, maintenance, and reconfiguration, as well as inherent
intelligent-processing capability over traditional wired devices [1]. The IEEE 802.15.4 standard,
which covers the physical and medium access control (MAC) layers’ specifications targeting the
PANs, has also been thoroughly investigated for more than a decade. In this paper, we focus on the
effect of IEEE 802.15.4 MAC layers’ channel access protocol on the whole network’s performance
during the contention access period (CAP). For general WSNs applications, reliability, time efficiency,
and energy efficiency are always specifically and strictly demanded. In addition, for some specific
applications, other issues like robustness and security are also within their evaluation scopes, as listed
by Salam et al. [2].

According to the IEEE 802.15.4 standard, general WSNs always adopt the slotted carrier sense
multiple access with collision avoidance (CSMA/CA) algorithm as their channel access protocol
during CAP. However, it has been shown by the authors of Anasasti et al. [3] that a slotted CSMA/CA
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algorithm cannot guarantee both energy efficiency and reliability constraints simultaneously with its
parameter values held at the default. To avoid the current standards being modified, and in order to
accommodate various applications, using adaptive parameter tuning algorithms is necessary.

According to the IEEE 802.15.4 standard, general WSNs always adopt the slotted carrier sense
multiple access with collision avoidance (CSMA/CA) algorithm as their channel access protocol
during CAP. However, it has been shown by Anasasti et al. [3] that a slotted CSMA/CA algorithm
cannot guarantee both energy efficiency and reliability constraints simultaneously with its parameter
values held at the default. To avoid the current standards being modified and to accommodate various
applications, many proposals have been proposed. In the work of [4], Khanafer et al. provides
a comprehensive study of the existing proposals for the MAC layer of IEEE 802.15.4 WSNs in
beacon enable mode. And they categorize the main proposed solutions into eight different categories,
namely priority-based, QoS-based, hidden node resolution-based, IEEE 802.11-based, duty cycle-based,
backoff-based, parameter tuning-based, and cross layer-based.

Priority-based solutions consider the different urgency of traffics and prioritize node access
to the medium accordingly [5–7]. QoS-based solutions aim at achieving a better utilization of the
bandwidth. It is achieved by providing enhanced GTS mechanisms with better GTS allocation
efficiency [8,9]. Hidden node resolution-based solutions consider the existence of hidden nodes
and aim to reduce the number of collisions caused by hidden nodes [10,11]. IEEE 802.11-based
approaches try to migrate some solutions that have proven efficient in IEEE 802.11 to 802.15.4
WSNs [12]. However, a lack of considering energy efficiency makes them not suitable for most
of WSNs. Duty-cycle based approaches can provide better energy efficiency without compromising
other important network performances. It is achieved by adjusting the duty-cycle of the sensor nodes
to traffic conditions adaptively. However, it is not suitable for large scale WSNs with simultaneous
transmission [13–15]. Backoff-based approaches try to improve the efficiency of medium access with
adaptive and dynamic backoff algorithms [16,17]. Parameter tuning-based and cross layer-based
solutions all rely on the MAC layer parameters configuration without modifying the current standard.
The difference between the two categories is that the parameter tuning-based solutions perform
parameter configurations according to information of its own layer (i.e., MAC layer) [18–21], while in
cross layer-based solutions [22–26], parameter tunings are also based on other layers (e.g., physical
layer or network layer). The cross layer-based solutions can be further classified as model-based [20–22]
and measurements-based [23–26], according to the methodology for parameter tuning. Model-based
strategies rely on an analytical model of the WSN to derive the optimal parameter setting under the
current operating conditions. Measurement-based approaches do not require any network model,
instead they rely on measurements acquired by sensor nodes. In this paper, the proposed algorithm,
that is, the network equivalent adaptive parameter tuning (NEAPT) algorithm, belongs to this class.

Although many cross layer-based parameter tuning solutions have been proposed, there still
exists several problems that should be discussed and specified regarding the evaluation of the network
condition and the strategy of parameter tuning. According to Park et al. in [20], previous algorithms
have paid more attention to the energy efficiency of sensor nodes, while explicit consideration of
the application requirements like reliability and time efficiency have been relatively less mentioned.
In [20], Park et al. proposed a Markov chain model-based adaptive algorithm for minimizing power
consumption while satisfying the reliability and time efficiency requirements. However, the algorithm
is impractical due to the necessity of a predefined network size and traffic pattern. An experience-based
heuristic adaptive algorithm, ADAPT, was proposed by Francesco et al. [23] to address this. It is a
classic measurements-based cross-layer parameter tuning solution and inspires many schemes [24–26],
including NEAPT. Based on ADAPT, another experience-based heuristic adaptive algorithm, JIT-LEAP,
was also proposed by authors of [24,25] for more stable and accurate parameter tuning performance.
Although algorithms like those from the authors of [23–25] have proved to be accommodated with
real-life scenarios and are able to provide accurate parameter settings, they have poor performance
in terms of time efficiency and energy efficiency. Their reliance on the acknowledgement (ACK)
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mechanism brings extra overhead, waiting time, and energy consumption. In [26], the authors
proposed a blind adaptive algorithm, called BADAPT, to be free from predefined parameters and the
ACK mechanism. With BADAPT, each sensor node only needs to utilize locally measured information
for the network condition’s evaluation and corresponding parameter tuning. Both ADAPT and
BADAPT adopt two thresholds and the exponential moving average method to avoid tardy or excessive
adaptation. According to their results, they are not always capable of distinguishing significant
violations that were caused by actual changes of network condition from general violations, because of
the randomness of the channel access mechanism. In stationary conditions, their senses of parameter
tuning are easily affected by the randomness of CSMA/CA. In the dynamic conditions, the proposed
ADAPT algorithm cannot sustain an acceptable performance under the sudden changes of the network
condition, according to the simulation result of Francesco et al. [23], and neither does BADAPT in
Zhang et al. [26].

This paper proposes a heuristic algorithm, called network equivalent adaptive parameter tuning
(NEAPT), for better coping with both stationary conditions and dynamic conditions, without modifying
the current standard or introducing an extra cost. Contrary to directly comparing the estimated
reliability with the required reliability, this paper provides a different angle on network condition
estimation. First, with the local measured information and current values of the key parameters,
each sensor node can perform a conservative evaluation of the surrounding network’s condition.
The result of the evaluation is presented as a synthetic value, called the equivalent node number. Then,
considering the measured reliability and required reliability, as well as the equivalent node number,
the phase of parameter tuning is considered regarding whether it will be active or not. The proposed
NEAPT is fully distributed and can work without any predefined information and acknowledgement,
as the evaluation phase and parameter tuning phase are individually performed by each sensor node.
As will be shown, NEAPT is able to detect the actual changes in the network condition and distinguish
them from the general violations in both stationary conditions and dynamic conditions.

The remainder of this paper is organized as follows: Section 2 describes the IEEE 802.15.4
slotted CSMA/CA mechanism. A simple analysis of each node’s reliability is given in Section 3.
The proposition of equivalent node number and the specific procedure of NEAPT algorithm are presented
in Section 4. Section 5 presents the simulation results. Concluding remarks are provided in Section 6.

2. IEEE 802.15.4 Slotted CSMA/CA

Sensor devices can operate in either of the two modes according to the IEEE 802.15.4 standard,
(i.e., non-beacon-enabled mode and beacon-enabled mode) [27]. This paper focuses on the latter.
In the beacon-enabled mode, time is divided into discrete time slots called the backoff period (BP)
with a fixed duration of 320 µs. The PAN coordinator periodically sends beacon frames for network
synchronization. The time interval between two consecutive beacon frames is called the beacon
interval (BI), which is decided by the value of the beacon order (BO), where 0 ≤ BO ≤ 14. The period
of the BI is composed of an active period and an inactive period. The active period is structured as a
superframe for data packet transmission. The superframe duration (SD) is determined by the value
of the superframe order (SO), where 0 ≤ SO ≤ BO ≤ 14. Within one superframe, the first time slot is
allocated for the beacon frame and the rest of the time slots are divided into contention access period
(CAP) and contention free period (CFP).

The beacon period, CFP, and inactive period are beyond current consideration, as the slotted
CSMA/CA mechanism is defined for channel access during CAP. According to slotted CSMA/CA,
three parameters are initialized when the data packets need to be transmitted (i.e., the number of
backoff stages (NB), the contention window (CW), and the backoff exponent (BE). A sensor node backs
off for several time slots before each data packet’s transmission, called aUnitBackoffPeriod. The number
of aUnitBackoffPeriod is randomly selected within (0, 2BE − 1). The value of BE starts from macMinBE.
After that, the sensor node performs CW0 times of the clear channel assessments (CCA), consecutively.
If either CCA reveals that the channel is busy, then NB and BE are both increased by 1 and the CW
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is reset to CW0. The current packet transmission is identified as failed if the value of NB reaches its
maximum value macMaxCSMABackoffs. If the value of BE reaches the maximum macMaxBE, then
the sensor node will keep its value until a successful/failed packet transmission occurs or packet
retransmission commences. Table 1 shows the default values of the slotted CSMA/CA parameters
according to IEEE 802.15.4.

Table 1. Carrier sense multiple access with collision avoidance (CSMA/CA) parameters and values [27].

Parameter
Values Description

Default Range

CW0 2 The initial length of contention window
macMaxCSMABackoffs 4 0–5 Maximum number of backoff stages-1

macMaxBE 5 3–8 Maximum backoff window exponent
macMinBE 3 0–7 Minimum backoff window exponent

aUnitBackoffPeriod 320 µs Time duration of unit backoff slot

3. Reliability Analysis

The WSNs’ network traffic can be assumed to be a Poisson process [28], as some research has
previously proved. In this paper, we will maintain this assumption and further exploit the properties of
the Poisson process for a more accurate evaluation. In the following analysis, we consider a single-hop
WSN with star topology, which is always directly applied to group-based monitor applications or
exists inside clusters in larger scale WSNs. In the network we considered, one sink node acts as a PAN
coordinator and multiple sensor nodes are deployed around the PAN coordinator within each other’s
carrier sensing range. Therefore, there are no hidden terminals in the network. To access channels
with slotted CSMA/CA, the sensor nodes are assumed to work in a beacon enabled mode, and to
transmit the data packet without a handshaking mechanism. The CW0 times of CCA are assumed to
be 1 successive CCA. So that all discarded packets are due to either a channel access failure or data
packet collision, we assume perfect channel conditions and infinite queue length.

For each sensor node, we assume the delivery ratio as the index of reliability, which is defined as
the ratio between the number of data packets successfully transmitted by a sensor node and the total
number of packets generated by the sensor node. As mentioned above, to successfully transmit a data
packet in slotted CSMA/CA without ACKs, sensor nodes should achieve successful CCA, and avoid
collision at the same time. Hence, the probability of successful data packet transmission, pS, can be
derived as follows:

pS = pS
CCA·pS

CA, (1)

where pS
CCA is the probability of successful CCA and pS

CA is the probability of no collision occurring
during transmission.

Every time a sensor node has a data packet to be transmitted, its MAC layer begins to perform
the CCA attempt. A new CCA process is performed right after the previous CCA process fails, until
the current CCA is a success or macMaxCSMABackoffs is reached. The expected aggregate arrival rate
of the CCA attempts λCCA can be represented in terms of λ, as follows:

λCCA = λ·∑N(max)
B

k=0 (1− pS
CCA)

k
, (2)

where λ is the aggregate arrival rate of network and N(max)
B is the value of macMaxCSMABackoffs.

The CCA attempt rate λCCA also follows the Poisson distribution with fixed N(max)
B and pS

CCA,
since the packet arrival rate is assumed to follow the Poisson distribution.

According to the content of the slotted CSMA/CA algorithm, before transmission, the sensor
node should perform the CCA process to check whether the channel is idle or not. If the channel is
busy, it will back off for a random number of aUnitBackoffPeriod and before checking again. Nodes
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can avoid the failure of CCA to some extent, with the assistance of backoff. A larger NB offers more
chances for CCA. A larger BE offers nodes more backoff delay options, which enlarges the disparity
in the backoff duration among nodes to decrease the probability of CCA failure. The IEEE 802.15.4
slotted CSMA/CA algorithm bounds the value of the backoff exponent between macMinBE BEmin to
macMaxBE. BEmax. It should be noted that the maximum value allowed for BEmin by the IEEE 802.15.4
standard is equal to 8 [27]. Hence, the probability of successfully passing CCA pS

CCA is affected by

N(max)
B and BEmin. Assuming that all data packets are of the same packet size, they correspond to

occupying the same channel time of nPKT slots. For each sensor node, successful CCAs on its targeted
channel mainly happen in two cases, as shown in Figure 1.
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According to Case 1, if the time interval between the current CCA and the previous CCA on
the targeted channel is larger than nPKT slots, the current CCA will be successful, because the time
interval is enough for the previous transmission. According to the theory of Poisson distribution [29],
we can find the time interval between two consecutive CCAs by following an exponential distribution.
Therefore, the probability of Case 1 can be expressed as follows:

pCI
CCA = p[Tn ≥ nPKT ·Tslot] = e−λCCA ·TPKT , (3)

where Tslot is the time duration of aBaseSlotDuration.
As shown by Case 2 in Figure 1, if the time interval between a sensor node’s current CCA and

its targeted channel’s previous CCA is not larger than nPKT slots, then the sensor node can take its
own previous backoff period as a reference to do a primary evaluation. Supposing that all nodes are
staying at the same backoff stage S, one node’s CCA attempt can be successful only if no CCA attempts
succeed within the previous nPKT slots. Hence, the probability of Case 2 pBE

CCA can be obtained from
the following:

pBE
CCA = 1− [1− (1− 1

2BE − 1
)

NC−1
]·pBE

CCA·
nPKT ·Tslot

Tbkunit
, (4)

where Tbkunit is the time duration of aUnitBackoffPeriod and NC is the number of sensor nodes that are
also targeting to the channel. Hence, the probability of achieving successful CCA can be expressed
as follows:

pS
CCA = 1−

N(max)
B

∏
i=0

(1− (pCI
CCA + (1− pCI

CCA)·pBE
CCA(i))). (5)

Collisions can occur because of either the hidden node problem or when more than one node
performs data packet transmission simultaneously. Since the hidden node problem is excluded by
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assumption, collisions can only result from simultaneous transmissions. According to the slotted
CSMA/CA algorithm, a node will transmit its data packet immediately after the channel is found
to be idle in CCAs. Hence, simultaneous transmission happens right after two or more devices pass
CCAs synchronously. The probability of no collision happening can be approximated as follows:

pS
CA = e−(pS

CCA ·λCCA)TbkUNIT . (6)

Therefore, by substituting Equations (5) and (6) into Equation (1), the probability of successful
data packet transmission pS can be obtained, as follows:

pS =

1−
N(max)

B

∏
i=0

(1− (pCI
CCA + (1− pCI

CCA)·pBE
CCA(i)))

·e−(pS
CCA ·λCCA)TbkUNIT . (7)

A brief presentation of Equation (7) can be presented as follows:

pS = ϕ(NC, λ, nPKT , N(max)
B , BEmin, BEmax). (8)

4. Network Equivalent Adaptive Tuning Algorithm

To our best knowledge, all previously known parameter tuning algorithms take the reliability
index as their basis of parameter tuning. However, we think that only taking either the historical
reliability or the local estimated reliability as the evaluation criterion of the network condition
is actually acting based on the symptom, not the problem. In each IEEE 802.15.4 based WSN,
the changes of the sensor node’s packet delivery ratio not only come from the actual changes of
the network condition, but may also be caused by the randomness of the channel accessing mechanism.
Considering that one WSN stays in a stationary scenario, that is, all senor nodes are fixed, no sensor
nodes are added/removed, and no traffic pattern changes happen. The value of each node’s packet
delivery ratio still cannot be fixed for the randomness of the medium access mechanism. A wise
parameter tuning algorithm should be able to distinguish significant violations that are caused by
actual changes of network condition, from general fluctuations that are due to the randomness of
channel access mechanism, as well as be able to cope with the changes of reliability that come with a
divide-and-conquer strategy.

Based on the reliability analysis in the previous section, each sensor node can perform a
conservative evaluation of the surrounding network’s condition with the local measured packet
delivery ratio and current values of the key parameters. At first, each sensor node assumes that its
surrounding is composed of one kind of sensor nodes with the same traffic patterns and parameter
settings as itself, as shown in Figure 2. We call these sensor nodes equivalent nodes.

Concerning an inverse function of Equation (8) with NC
i as the output, as follows:

NC = ϕ−1(pS, λ, nPKT , N(max)
B , BEmin, BEmax), (9)

For each sensor node, at the end of the ith BI, by substituting locally measured packet delivery
ratio pS

i , the arrival rate of own data packet λ, transmission time of each data packet nPKT and current
values of self-parameters into Equation (9), a corresponding NC

i can be obtained. The value of the
obtained NC

i can be taken as the equivalent node number that the sensor node evaluated at the end of
ith BI, marked as ÑC

i . Similar to ADAPT [6] and BADAPT [8], we also define the required reliability
as pS

req. The value of pS
req is different when subjected to different WSNs applications, and should be

claimed before the execution of the parameter tuning. Accordingly, with specified pS
req, the value

of equivalent node number ÑC
req can also be obtained by applying pS

req, own data packet arrival rate λ,
transmission time of each data packet nPKT , and self-parameters into Equation (9). At the end of each
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BI, each sensor node decides whether and how to perform the parameter tuning process by comparing
pS

i and ÑC
i with pS

req and ÑC
req. The specific processes of NEAPT are presented in Algorithm 1.
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Algorithm 1 NEAPT.

1 if pS
i < pS

req then

2 if
∣∣∣ÑC

i − ÑC
req

∣∣∣ > δN then

3 if macMinBE < macMinBEmax then
4 macMinBE ++
5 else if macMaxCSMABackoffs < macMaxCSMABackoffsmax then
6 macMaxCSMABackoffs ++
7 Update ÑC

req

8 else if
∣∣∣ÑC

i − ÑC
req

∣∣∣ ≤ δN then

9 macMinBE = macMinBE
10 macMaxCSMABackoffs = macMaxCSMABackoffs
11 else if pS

i ≥ pS
req then

12 if
∣∣∣ÑC

i − ÑC
req

∣∣∣ > δN then

13 if macMaxCSMABackoffs > macMaxCSMABackoffsmin then
14 macMaxCSMABackoffs –
15 else if macMinBE > macMinBE min then
16 macMinBE –
17 Update ÑC

req

18 if
∣∣∣ÑC

i − ÑC
req

∣∣∣ ≤ δN then

19 macMinBE = macMinBE
20 macMaxCSMABackoffs = macMaxCSMABackoffs

At the end of every BI (take the ith BI as an example), each node compares its local measured packet
delivery ratio pS

i with pS
req. If pS

i is smaller than pS
req, then the sensor node will calculate and compare ÑC

i
with ÑC

req. If the difference between ÑC
i and ÑC

req is greater than the threshold of the network change δN ,
then the macMinBE is increased until macMinBEmax is reached. Then, macMaxCSMABackoffs is increased
until macMaxCSMABackoffsmax is reached. After that, the value of ÑC

req is recalculated and updated.
If the difference between ÑC

i and ÑC
req is within the threshold, the sensor node holds the current ÑC

req

value and current parameter settings. If pS
i is not less than pS

req and the difference between ÑC
i and
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ÑC
req is greater than δN , then macMaxCSMABackoffs is first decreased, until macMaxCSMABackoffsmin

is reached, and then macMinBE is decreased until macMinBEmin is reached. Next, the value of ÑC
req

is recalculated and updated. If the difference between ÑC
i and ÑC

req is within the threshold, then the
sensor node holds the current ÑC

req value and current parameter settings. As shown from the above
description, NEAPT is not as flexible as ADAPT or BADAPT with the addition of the equivalent node
number threshold.

5. Simulations

For the simulation, we used the OMNET++ simulator [30] to evaluate the performance of NEAPT
in both stationary and dynamic scenarios. According to the authors of [6–8], we made the simulation
with a setup, as listed in Table 2. In all the experiments, we assumed that all sensor nodes were
operating on top of the 2.4 GHz Industrial, Scientific, and Medical (ISM) radio band, with a maximum
bit rate of 250 Kbps. All the sensor nodes’ default parameter settings, operation latency, and power
consumptions were according to the IEEE 802.15.4 standard [27] and MICAz mote specification [31],
to generally be as close to the actual as possible. Similar to the authors of [8], we also put the sensor
nodes to sleep when they had no packets ready for transmission, and to idle when they were in
backoff. We consider that sensor nodes were randomly placed 10 m away from the PAN coordinator.
The transmission range was set to 15 m, while the carrier sensing range was set to 30 m, according
to the authors of [8]. The BI was 125.8 s (i.e., BO = 13), and the active period was set to SD = 15.72 s
(i.e., SO = 10). Each sensor node was assumed to generate data packets with different but fixed time
intervals, which ranged from 1 s to 5 s. For one channel that is shared by several assumed sensor
nodes, it is not hard to prove that the aggregated packet arrival rate of the shared channel follows the
Poisson distribution. The proof, in detail is appended in Appendix A.

Table 2. Parameters for simulation. BO—beacon order; SO—superframe order; RX—Receiving;
TX—Transmitting.

Parameter Value

Bit rate 250 kbps
Packet size 120 bytes

BO, SO 13, 10
Target reliability (pS

req) 80%
The threshold of network change (δN) 2

macMinBEmin, macMinBEmax 1, 7
macMaxBEmax 10

macMaxCSMABackoffsmin, macMaxCSMABackoffsmax 1,10
Power consumption in RX, TX, idle, sleep 56.4, 52.2, 1.28, 0.06 mW

In addition to the packet delivery ratio, two other distinct observables were also included for
the performance evaluation, namely: (1) Average latency, which is defined as the time duration from
the instant that one packet was at the head of the MAC queue, to when the packet was successfully
transmitted. This is the index of time efficiency. The latency mainly comes from the backoff operations
on the MAC layer; and (2) Average energy consumption, which is defined as the average power of
successfully transmitting one data packet. It is the index of energy efficiency. The energy consumption
is mainly composed of the performing CCA, backoff, and data packet transmission.

Besides NEAPT, another three parameter tuning algorithms were taken into consideration for the
following evaluation, namley: the default parameters set (DPS) (i.e., the default values specified by the
IEEE 802.15.4 standard), ADAPT from the authors of [6], and BADAPT from the authors of [8], as the
newest measurements-based cross-layer parameter tuning parameter tuning algorithm. Notice that
in [6], the ACK mechanism was adopted in ADAPT for reliability estimation. Although employing
ACKs can save some data packets from collision, it comes at the cost of additional latency and
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increased power consumption. In the following analysis, DPS is compared as the baseline algorithm
and is presented as a blue curve; ADAPT is compared as the classic measurements-based cross-layer
parameter tuning algorithm and presented as a blue curve with blue bubbles; BADAPT is compared as
the newest measurements-based cross-layer parameter tuning algorithm and presented as a black curve
with black bubbles. The proposed NEAPT algorithm is presented as a red curve with red asterisks.

5.1. Analysis in Stationary Conditions

This section focuses on the stationary scenarios with a fixed number of active sensor nodes. In this
part, different network scales were evaluated from 5 sensor nodes to 50 sensor nodes. From Figure 3a,
we can observe that NEAPT was able to meet the reliability requirements under different network
scales, while a network with DPS suffered a sharp deterioration in reliability, as the network scale
increased. As is shown in Figure 3b, NEAPT had a larger latency than DPS, since it inevitably brings
more backoff chances and a longer waiting time. Specifically, a larger network scale brings a larger
latency with NEAPT. As a result of autonomous adaptive parameter tuning, it can be seen that NEAPT
offers a nearly constant average delivery ratio, which also brings a significant reduction in energy
consumption compared with the DPS, as shown in Figure 3c.
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The average packet delivery ratio of NEAPT is always higher than ADAPT and BADAPT,
according to the results presented in Figure 3a. Although the style of parameter tuning that NEAPT
provides is conservative and inflexible, Figure 3b shows that NEAPT had almost the same performance
as BADAPT, in terms of latency—especially in networks with no more than 25 nodes. The average
latency of taking NEAPT was always lower than taking ADAPT. Moreover, considering energy
consumption, adopting NEAPT could save 9.72% of the energy consumption than if adopting
BADAPT. Compared with ADAPT, adopting NEAPT could save 16.53% of the energy consumption.
This additional improvement is mainly benefited from not using ACKs.

An experiment with 25 active sensor nodes was performed to gain a more concrete understanding
of NEAPT. This experiment was also in a stationary condition and its execution time was 100 BIs.
We focused on 1 of 25 sensor nodes and recorded its observable performance as well as its value
of macMaxCSMABackoffs. As shown in Figure 4a, the value of macMaxCSMABackoffs with NEAPT
always equaled to 3. Whereas with ADAPT and BADAPT, the value of macMaxCSMABackoffs changed
very frequently. More specifically, within the considered 100 BIs, the total number of fluctuations
for NEAPT was 7. While for ADAPT and BADAPT, the total number of fluctuations were 70 and
81, respectively, which is 10 times and 11.57 times, respectively, that of NEAPT. However, Figure 4b
indicates that NEAPT could provide higher and steadier reliability performances than the other two
algorithms. By combining Figure 4a and Figure 4b, we can find that NEAPT was able to avoid more
unnecessary tuning than ADAPT and BADAPT. This is due to the conservative evaluation of the
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local network condition analysis and network node equalization that NEAPT provides. Similarly,
Figure 4c,d also shows that NEAPT had a more adequate and steadier performance, in terms of energy
consumption and time efficiency, than the other two algorithms. The mean value and variation of
transmission latency that ADAPT and BADAPT provided were (131.406 ms, 0.557 ms) and (116.552
ms, 0.483 ms), separately. By adopting NEAPT, the mean value and variation of transmission latency
were 107.72 ms and 0.403 ms, which was lower than ADAPT by 22.04% and 38% (and for BADAPT,
8.20% and 19.85%). Considering the randomness of CSMA/CA and the time varying characteristics
of the wireless channel, this conservative and inflexible parameter tuning algorithm can protect the
sensor nodes from being disturbed by tiny fluctuations of the packet delivery ratio.
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5.2. Analysis in Dynamic Conditions

In this part, we examine the robustness of the NEAPT algorithm in dynamic scenarios. The total
execution time was 500 BIs. We assumed that 10 sensor nodes were always active during the 500 BIs.
Fifteen more sensor nodes became active at the 101st BI, and returned to being inactive at the 401st BI.
Another 20 sensor nodes became active at the 201st BI, and returned to being inactive 100 BIs later.
Hence, there were 45 sensor nodes in total. Since all the considered parameter tuning strategies were
based on previous communication outcomes, either inaccurate reliability estimation or suddenly
changed network conditions would cause opposite or overdue parameter tuning, which would lead to
the fluctuation of the packet delivery ratio.

The results presented in Figure 5 refer to one of ten sensor nodes that were always active. Figure 5a
shows that the reliability of the DPS was always below 40%, whereas the delivery ratios of ADAPT,
BADAPT, and NEAPT were above 80% most of the time. Throughout the entire 500 BI simulation,
the ratio of failing to meet the reliability requirement with NEAPT was 5.6%. For ADAPT and BADAPT,
their ratios were 21.2% and 17.4%, respectively. It should be noted that the packet delivery ratio of
ADAPT and BADAPT decreased sharply at the 101st and the 201st BI due to the sudden change of
network condition. In detail, for ADAPT, we observe that the packet delivery ratios at two sudden
changes were 42% and 53%. And the recovery time after each sudden change was around 7 BIs.
As for BADAPT, we find the packet delivery ratios of two sudden changes were 36% and 58% and
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the recovery time was also around 7 BIs. While for NEAPT, no such serious packet delivery ratio
decrease occurred throughout the entire simulation. The recovery time after each sudden change was
around 5 BIs, which is lower than the recovery time of ADAPT and BADAPT. This is mainly due
to the conservative parameter tuning method of NEAPT. These results show that NEAPT has better
robustness than ADAPT and BADAPT under dynamic conditions. From Figure 5b,c, it is shown that
ADAPT and BADAPT experienced almost the same energy consumption and latency performance
under dynamic conditions. What’s more, it is also shown that NEAPT was able to provide a steadier
performance under dynamic conditions, in terms of transmission latency and energy consumption,
than ADAPT and BADAPT. This result not only proves the ability of NEAPT in providing qualified and
steady performance in dynamic conditions, but also presents its advantage of conservative parameter
tuning in buffering sudden changes of network condition.
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5.3. Applicable Network Scales of NEAPT

A series of experiments were performed to specify the application range of the proposed NEAPT
on a network scale. Within these experiments, the required packet delivery ratio Rreq was fixed at 80%.
The time interval of each sensor node’s successive data packet ranged from 3 s to 7 s. The scale of the
network ranged from 5 nodes to 95 nodes. Simulations with different network scales were separately
executed over 100 BIs. In these simulation experiments, the sensor nodes first adopted ADAPT as their
parameter tuning algorithm. After each experiment, values of macMaxCSMABackoffs that satisfied
the reliability requirement were collected. The average value of each experiment’s collected values
were calculated and recorded. Then, under the different network scales, the suggested values of
macMaxCSMABackoffs by NEAPT were analytically obtained and recorded.

Figure 6 indicates that the NEAPT recommended value behaved as an upper bound of the ADAPT
simulated result when the network scale was less than 70 sensor nodes. As the number of sensor
nodes exceed 70, the NEAPT recommended value could no longer be taken as the upper bound of
the simulated value. This could be explained by the feasibility of the proposed reliability analysis.
As the number of sensor nodes grows, the arrival of data packets cannot be approximated as a Poisson
process any more. Hence, the proposed Poisson based reliability analysis is not appropriate for WSNs
with more than 70 sensor nodes. Based on these experiments, we found that NEAPT is feasible for
small and medium WSNs.
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6. Conclusions

To provide adequate and steady performances for WSNs in both stationary conditions and
dynamic conditions, this paper proposes a heuristic algorithm called NEAPT. It is a fully distributed
algorithm and can work without any predefined information or acknowledgement. Unlike directly
taking reliability as the index of the network condition, NEAPT proposes another evaluation index
of the network condition for sensor nodes, that is, the equivalent node number. NEAPT can reliably
recognize significant violations from general tiny fluctuations of reliability, by taking both reliability
and the equivalent node number into consideration. With NEAPT, the sensor nodes can evaluate the
surrounding network’s condition and perform the parameter tuning process independently. Simulation
results demonstrated that NEAPT could provide an adequate and steady performance in terms of
reliability, time efficiency, and energy efficiency, as well as improve the robustness of network for
dynamic conditions. Finally, NEAPT is proven to be suitable for the small and medium scale WSNs.

For future work, we should gain deep insights into several problems, such as: (a) the existence
of hidden nodes should be considered and coping mechanisms for it should be added, and (b) the
reliability analysis of large scale WSNs and dense WSNs should be considered to expand the feasibility
of proposed parameter tuning algorithm. Also, we intend to implement the proposed parameter tuning
algorithm using a real hardware testbed and to add new mechanisms for mobile WSNs scenarios.

Author Contributions: Y.W. and W.Y. proposed the idea of the NEAPT algorithm, and determined the structure
of the research work and this paper. Y.W. conducted the simulation work and wrote the paper. R.H. and K.Y.
conducted the examination and verification work for simulations and the paper.
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Appendix A

In this appendix we prove that the aggregate packet arrival rate of one channel can be
approximated as the Poisson distribution, which is introduced in Section 5.

We assume that each sensor device has a fixed but different data packet arriving interval. The data
packet arriving interval of the sensor node i is Ti seconds, which consist of ni

T sequential time slots.

For sensor node i, the probability that there comes a data packet at every time slot is
(
ni

T
)−1. For one

channel shared by NC devices, let’s define the LCM (lowest common multiple) of all of the devices’
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data packet arriving interval as the period of this channel nC
T . At each time slot, the probability that

there comes a data packet needed to be transmitted on this channel is as follows:

pC = 1−
NC

∏
i=1

(1− (nC
T/ni

T)/nC
T). (A1)

For each sensor node, its successive data packets usually have a very strong correlation, since
each of the nodes usually report to the PAN coordinator periodically. However, for one channel shared
by several sensor nodes, the correlation between its two successive data packets is much weaker. Since
successive data packets that are arriving at one channel always come from different sensor nodes,
they may be completely irrelevant regardless of the terms of external the surroundings or application
objects. Hence, it is more adequate to approximate the case that the k data packets arrive at one channel
within the nC

T time slots as a binomial process. The corresponding probability is as follows:

pC
k,nC

T
=

(
k

nC
T

)
(pC)

k
(1− pC)

nC
T−k

. (A2)

According to (A1), for a given channel period, as the duration of each time slot decreases, the value
of nC

T increases, while the value of pC decreases. Hence, we can get the limit of pC
k,nC

T
,

lim
nC

T→∞,pC→0
pC

k,nC
T
= lim

nC
T→∞,pC→0

(nC
T pC)

k

k!

(
1− pC

)− (nC
T pC)

pC 1

(1− pC)
k . (A3)

As nC
T increases and pC approximates to 0,

(
1− pC)− 1

pC approximates to e and
(
1− pC)−k

approximates to 0. The limit of pC
k,nC

T
can be furtherly expressed as follows:

lim
nC

T→∞,pC→0
pC

k,nC
T
= lim

nC
T→∞,pC→0

(nC
T pC)

k

k!
e−(n

C
T pC). (A4)

Let the product of nC
T and pC be λ, as follows:

λ = nC
T ·(1−

NC

∏
i=1

(1− (nC
T/ni

T)/nC
T)), (A5)

according to (A4), we can get the distribution of λ, which approximates to the Poisson distribution,
as follows:

lim
nT→∞,pc→0

pk,nT
C = lim

nT→∞,pc→0

(λ)k

k!
e−(λ). (A6)

In the slotted CSMA/CA algorithm, the duration of the unit time slot is 320 µs. For each of
the considered sensor nodes, the time interval between its two successive data packets is counted in
seconds. The value of the channel period nC

T is at the level of hundreds to thousands, accordingly.
Hence, the aggregate packet arrival rate of one channel is reasonable to be approximated as a
Poisson process.
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