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Abstract: Recent advances in unmanned aerial system (UAS) sensed imagery, sensor quality/size,
and geospatial image processing can enable UASs to rapidly and continually monitor coral reefs,
to determine the type of coral and signs of coral bleaching. This paper describes an unmanned
aerial vehicle (UAV) remote sensing methodology to increase the efficiency and accuracy of existing
surveillance practices. The methodology uses a UAV integrated with advanced digital hyperspectral,
ultra HD colour (RGB) sensors, and machine learning algorithms. This paper describes the
combination of airborne RGB and hyperspectral imagery with in-water survey data of several
types in-water survey of coral under diverse levels of bleaching. The paper also describes the
technology used, the sensors, the UAS, the flight operations, the processing workflow of the datasets,
the methods for combining multiple airborne and in-water datasets, and finally presents relevant
results of material classification. The development of the methodology for the collection and analysis
of airborne hyperspectral and RGB imagery would provide coral reef researchers, other scientists,
and UAV practitioners with reliable data collection protocols and faster processing techniques to
achieve remote sensing objectives.

Keywords: in-water survey; UAS; hyperspectral camera; machine learning; image segmentation;
support vector machines (SVM); drones

1. Introduction

Coral reefs are under pressure, and as of 2016, 34.8% of the Great Barrier Reef has been affected
by coral bleaching, and other reefs worldwide are also experiencing degradation due to industrial
and environmental events (e.g., cyclones) [1]. Large scale monitoring of coral reefs is an expensive,
time-consuming, and challenging task, which utilises various mediums (satellite, airplane, boat and
both manned and unmanned in-water surveys). Current surveillance practice for reef monitoring is
to use satellites, ship-based multibeam sonar (MBES), plane based airborne surveying, or visually
inspecting for signs of bleaching damage [2,3]. Over the last decades, the commercial satellite-based
remote sensing capability has been significantly improved [4]. Now, with the best ground sampling
distance (GSD) of 30 cm for panchromatic, and 1.2 m for multispectral data, satellite imagery remains
the best-suited option for large-scale monitoring of entire reef. The satellite surveys, however,

Sensors 2018, 18, 2026; doi:10.3390/s18072026 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-1655-9338
http://www.mdpi.com/1424-8220/18/7/2026?type=check_update&version=1
http://dx.doi.org/10.3390/s18072026
http://www.mdpi.com/journal/sensors


Sensors 2018, 18, 2026 2 of 20

have some significant limitations, due to cloud cover and to camera resolution hindering the ability
to distinguish finer details of reef ecosystems. Indeed, the approach struggles to provide marine
researchers and biosecurity managers with often required benthic conditions on the sub-centimetre
level GSD.

Recent advances in remote sensed imagery and geospatial image processing using unmanned
aerial systems (UASs) can enable rapid and ongoing monitoring tools for coral bleaching detection
and surveillance. This paper describes a UAS-based remote sensing methodology to increase the
efficiency of existing surveillance practices, to detect coral type and coral bleaching, by combining
in-water spectral observations and automated classification techniques to determine levels of benthic
cover and coral growth in shallow water reef regions. The methodology is evaluated on its ability to
identify differences between coral genera, bleaching level, and water depth, with an in-depth accuracy
assessment to give insights for further refinements. This shows that UAS-based hyperspectral remote
sensing techniques can offer an efficient and cost-effective approach to mapping and monitoring reef
habitats over large, remote, and inaccessible areas.

The technology used, the sensors, the UAV, and the flight operations are presented in Section 2
of the paper. Later, in Section 3, we discuss the processing workflow for each imagery dataset,
and methods for combining multiple airborne with ground-based datasets. Section 4 presents results
of correlation between the different processed datasets.

2. Materials and Methods

Our approach to generate a predictive reef monitoring system employs multiple stages (Figure 1).
The first is data collection. This includes collection of airborne RGB and hyperspectral imagery, as well
as in-water expert visual assessment of each coral specimen.
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In the second stage, images are processed (using data in Table 1) to obtain the coral type,
bleaching assessment, and reef orthomosaics. Hyperspectral scans are then orthorectified using
multiple datacubes to produce a georeferenced hyperspectral snapshot of the reef. These orthorectified
datacubes are processed to obtain radiance and reflectance, that are used in combination with expert
visual coral type and bleaching assessment for signature extraction and calculation of indices of coral
types and bleaching levels.

Table 1. Coral bleaching indices used in the analysis of reef type and bleaching.

Coral Index Equation

Genus Classification (R540 − R575/(R450 + R586)
Bleaching Classification

Acropora

Bleaching Level 1 (Alv1)
Alv1.1 = (R395 − R404)/(R395 + R404)
Alv1.2 = (R575 − R604)/(R575 + R604)
Alv1.3 = (R711 − R732)/(R711 + R732)

Bleaching Level 2 (Alv2) Alv2.1 = (R404 − R489)/(R404 + R489)
Alv2.2 = (R595 − R662)/(R595 + R662)

Bleaching Level 3 (Alv3)
Alv3.1 = (R446 − R473)/(R446 + R473)
Alv3.2 = (R531 − R555)/(R531 + R555)
Alv3.3 = (R586 − R622)/(R586 + R622)

Bleaching Level 4 (Alv4)
Alv4.1 = (R446 − R489)/(R446 + R489)
Alv4.2 = (R569 − R600)/(R569 + R600)
Alv4.3 = (R611 − R671)/(R611 + R671)

Bleaching Level 5 (Alv5) Alv5.1 = (R484 − R522)/(R484 + R522)
Alv5.2 = (R695 − R720)/(R695 + R720)

Bleaching Level 6 (Alv6)
Alv6.1 = (R400 − R418)/(R400 + R418)
Alv6.2 = (R460 − R484)/(R460 + R484)
Alv6.3 = (R724 − R768)/(R724 + R768)

Porites Massive

Bleaching Level 1 (PLv1) PLv1.1 = (R437 − R473)/(R437 + R473)
PLv1.2 = (R680 − R737)/(R680 + R737)

Bleaching Level 2 (PLv2) PLv2.1 = (R411 − R473)/(R411 + R473)
PLv2.2 = (R640 − R671)/(R640 + R671)

Bleaching Level 3 (PLv3) PLv3.1 = (R429 − R473)/(R429 + R473)
PLv3.2 = (R576 − R640)/(R576 + R640)

Bleaching Level 4 (PLv4) PLv4.1 = (R406 − R418)/(R406 + R418)
PLv4.2 = (R533 − R582)/(R533 + R582)

Gonipora

Bleaching Level 3 (GLv3) GLv3.1 = (R409 − R477)/(R409 + R477)
GLv3.2 = (R640 − R722)/(R640 + R722)

Turbinaria

Bleaching Level 5 (TLv5)

TLv5.1 = (R415 − R442)/(R415 + R442)
TLv5.2 = (R471 − R486)/(R471 + R486)
TLv5.3 = (R500 − R544)/(R500 + R544)
TLv5.4 = (R675 − R717)/(R675 + R717)

Soft Coral

Bleaching Level 5 (SLv5)

SLv5.1 = (R429 − R444)/(R429 + R444)
SLv5.2 = (R506 − R544)/(R506 + R544)
SLv5.3 = (R577 − R604)/(R577 + R604)
SLv5.4 = (R662 − R708)/(R662 + R708)



Sensors 2018, 18, 2026 4 of 20

The third stage combines all the multiple sources of data into a single information system.
To do this, individual coral genera are segmented, with the aim of creating a table (Table 2) that
contains different attributes for each coral specimen within the reef.

1. Coral genus
2. Expert bleaching assessment (1 to 6 where 1 relates to severely bleached coral, 6—unbleached)
3. Depth
4. Notes about surroundings (e.g., coral size, proximity to other coral)
5. Latitude
6. Longitude

Table 2. Fragment of the attribute table at Pandora Reef (14 of 64 in-water data collected shown).

Photo ID Coral Type Lv Bleached Bleached Depth Notes Latitude Longitude Pixel x Pixel y

76 Porites massive 1 Yes 1.5> 18.8129 146.4267 1489 1412
77 Porites massive 1 Yes 18.8129 146.4267 1507 1421
78 Porites massive 4 No 2.3 18.8130 146.4268 1544 1567
79 Porites massive 4 No 2.3 18.8130 146.4268 1529 1548
80 Porites massive 4 No 2.3 18.8130 146.4268 1541 1551
81 Goniopora sp. 3 No 1.7 18.8132 146.4268 1598 1733
82 Goniopora sp. 3 No 1.7 18.8132 146.4268 1604 1729
83 Goniopora sp. 3 No 1.7 18.8132 146.4268 1607 1727
84 Acropora sp. 2 Yes Acropora plate. 18.8131 146.4268 1604 1669
85 Acropora sp. 2 Yes Acropora plate. 18.8131 146.4268 1604 1666
86 Acropora sp. 3 No 1.4 Acropora plate. 18.8131 146.4269 1659 1684
87 Acropora sp. 3 No 1.4 18.8131 146.4269 1658 1675
88 Porites massive 3 No 1.5> 18.8131 146.4268 1610 1666
89 Porites massive 3 No 18.8131 146.4268 1615 1675
90 Porites massive 3 No 1.5> 18.8131 146.4269 1633 1636

Once the table is populated with georeferenced data, the spectral signatures are then extracted
to generate a correlation between coral genus and each bleaching level. Results obtained in the
correlation analysis are the foundation for the development of a preliminary coral bleaching detection
model, which is followed by an evaluation and accuracy assessment to obtain final reef belching
detection model.

2.1. In-Water Surveys

Coral is categorised by the Australian Institute of Marine Science (AIMS) into one of six levels of
bleaching through visual inspection, where level one is severely bleached and level six an unbleached
healthy coral specimen. Due to water’s optical properties and algal growth associated with reef
ecosystems, the spectral properties of a coral sample can vary drastically based on the current
conditions, genus, and depth of the area.

Our approach was to use survey test sites where experts identified various genera of coral at
varying levels of bleaching across a segment of reef, as a reference for approximation of optical
variances due to water and algae. Figures 2 and 3 show examples of coral bleaching data obtained at
different in-water survey locations, and after each point is identified, they are then classified based on
genus, location (longitude and latitude), depth, and bleaching level.
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Figure 2. Example of in-water reference data with relevant bleaching level: 1 (severely bleached)
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bleached) to 6 (unbleached). Top left—6, bottom right—1. Courtesy of Sam Noonan (AIMS).

2.2. Airborne Methods, UAV, and Sensors

The UAV used was an S800 EVO Hexacopter (DJI-Innovations, Shenzhen, China) that weighs
6.0 kg with motors, propellers, electronic speed controllers (ESCs), control and navigation avionics,
and 16,000 mAh battery. The frame is fitted with a retractable undercarriage, providing a sensor field of
view clear of obstacles. The UAV has a recommended maximum take-off weight of 8 kg, thus allowing
2 kg for sensor payload. A WooKong-M flight controller provides the navigation and control systems
of the UAV, and comes with a stabilization controller and GPS unit with inbuilt compass and inertial
management unit (IMU). The flight controller has multiple autopilot modes to enable both remote
control by operator and autonomous with position and altitude hold, and auto go home/landing with
enhanced fail-safe.

In this work and methodology, we propose the use of high resolution RGB and hyperspectral
UAV-based imagery, as they provide the required level of detail in capturing finer differences in coral
bleaching signatures. A Canon EOS 5DS R (Canon, Tokyo, Japen) digital camera was used to capture
high-resolution RGB images from the mission route, and assist in identification and monitoring of
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coral in the studied area using the imagery augmented by the camera’s GPS coordinates. The camera
specifications include full frame (36 × 24 mm) CMOS 50.6-megapixel sensor, 28-mm Canon lens,
and a single-frequency GPS receiver.

Hyperspectral imagery was acquired using a Headwall Nano-Hyperspec (Headwall Photonics
Inc., Bolton, MA, USA) hyperspectral sensor. This sensor records datacubes of 274 spectral bands in
the VNIR (Visible and Near-Infrared) range (400–1000 nm) with ~2.2 nm spectral interval and 5 nm
spectral resolution (fwhm with 20 µm slit). This sensor is equipped with a calibrated f/1.8 4.8 mm
Schneider lens, which results in 50.7 deg field of view over 640 pixels. The collected hyperspectral
data cubes are synchronized with GPS/INS (Inertial Navigation System) positioning and orientation
information to perform datacube orthorectification.

Image stabilization is also an important step, therefore, the hyperspectral sensor was integrated
into a S800 UAV by a custom designed gimbal made by Queensland University of Technology (QUT)
Research Engineering Facility (REF). This gimbal has 2-axis stabilization, that ensures seamless
operation of the push-broom hyperspectral scanner in windy conditions. The gimbal design
features carbon reinforcement over 3D printed structure, advanced dampening, brushless motors,
and a BaseCam SimpleBGS 32 bit gimbal controller (BaseCam electronics, Riga, Latvia), with the
total weight below 1 kg. Mounting the push-broom scanner on the gimbal proved to enhance camera
performance in wind gust conditions by ensuring the minimal and consistent required overlaps
between consecutive datacubes over the large study area. This leads to an increased overall flight
efficiency in real life open environments. Figure 4a shows the S800 UAV with the hyperspectral sensor
on the gimbal during one of the missions. The gimbal CAD design model is presented in Figure 4b.
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2.3. Orthorectification of Hyperspectral Images

Data orthorectification (step 3) was conducted using Headwall SpectralView software, where the
individual hyperspectral data cubes are geolocalised and stitched, with verification by the overlay of
underwater contours of the reef. Figure 5 shows stitched images overlaid in Google Earth.

The hyperspectral data are then processed with spectral analysis tasks, such as MATLAB Scyllarus
open source toolbox, Headwall SpectralView, and Scyven, to obtain radiance values which are then
processed with a white reference image to generate the reflectance dataset (step 4). Once obtained,
the reflectance dataset is corrected for water depth by running through a noise reduction algorithm
(step 5), processed through Scyven using support vector machine automated material discovery,
to cluster similar spectral signatures which are geo-referenced (step 6), before being extracted (step 7)
for reef indices (step 8) and material classification (step 9).
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2.4. Image Processing, Radiance, Reflectance, White Reference

Step 4 orthorectified images were processed with Headwall SpectralView to identify the
corresponding per pixel illumination value. Once completed, the image then goes through
a semi-automated process in which the image is imported into Scyven, matched with a corresponding
white reference illumination pattern (generated from white reference file), then lastly processed to
generate the reflectance value corresponding to the white reference.

2.5. Depth Correction

Estimating and correcting hyperspectral imagery for water depth (step 5) is a complex process.
ENVI offers unique tools for processing characteristics of waterbody features, and this enables quick
and easy depth approximation utilizing a bottom albedo-independent bathymetry algorithm that
utilizes a log ratio transformer. The log ratio transformer calculates depth independent of the bottom
material and brightness (bright sand or dark seabed vegetation). The use of the algorithm means that
typical errors caused by varying floor composition [5] (Figure 6) will not affect the overall accuracy of
the approximation.
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The use of additional information from in-water surveys is required for refining and generating
accurate depth results with a reasonable degree of error. Agisoft Photoscan gives an alternative
approach to the water depth estimation by using the reconstruction of a DEM from multiple overlaying
images, which allows depth approximation of larger areas with ease, but comes with a more limited
result set where smaller depth changes can be missed.

To apply depth correction, the effects of the water column must be ascertained, and to do this,
the coral samples at varying water levels are compared; Figure 7 shows the variances in spectral
signatures between two samples of massive Porites with a bleaching level of four, with one at a depth
of 1 m and the other at 2.3 m.
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To derive the effect of the water column on the data, the log-transformed ratio between the green
and blue wavelengths is used, otherwise, the effects of varying benthic cover are also taken into
account [6]. Once the data are derived, it can be seen that this is tightly packed (Figure 8).
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Figure 8. Spectral signature comparison between reflectance in blue and green bands of coral in
different locations. Dots represent the ratio values between the green and blue spectral values,
the orange line represents the trendline between all the data points.

This data is log transformed, and used as input into the equation identified by Mishra, D. [7]
(below), which outputs the percentage variance due to water column effects.

y = −18.353x2 + 10.805x + 0.238 (1)
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This identified that 6.4% max variation in the spectral signature was due to water column effects,
which could be corrected using a noise reduction algorithm, and follows the trend which was identified
by Zoffoli, M [8].

2.6. Coral Georeferencing

In-water survey data contain GPS coordinates that are then matched to imagery. This can be
completed by using the orthorectified data to overlay GPS coordinates across the image, and then
extrapolating the corresponding pixel coordinates; Figure 9 shows an example of extrapolated coral
locations and signature extraction. This data is then stored in an attribute table (step 6), along with the
depth data and other characteristics (see Table 2 for table extract).
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Figure 9. Examples of spectral responses “fingerprints” of bleaching levels 1 to 6 for Acropora coral.

2.7. Spectral Signature Extraction

Expert visual assessment and georeferencing (step 6) are used with the depth-corrected reflectance
values (step 5) to extract the mean spectral signature for different corals with different levels of
bleaching. Headwall SpectralView is used to identify pixels that contain corals of varying bleaching
levels, for which the spectral values are then extracted with Scyven. Figure 9 demonstrates the survey
points for spectral signature extraction once the images have been converted into reflectance (step 4),
then preprocessed with an automated material discovery (part of the material classification phase,
step 9) which groups objects of similar spectral signatures.

After each genus of coral has been identified using material discovery, they then need to be
compared based on their spectral signatures to identify potential issues with material classification
(e.g., spectral signatures of each bleaching level not discernible for other genus samples).

Figure 10 shows an example of the processed results where different regions are identified and
grouped based on their spectral signatures. Brighter colours indicate regions with spectral patterns
similar to that of the coral, sand, or other material identified in the region.
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2.8. Reef Indices

The next step (step 8) is to calculate coral bleaching indices using the spectral signature extraction
(step 7), as well as visual assessment (step 1), and georeferencing (step 6). The indices were selected
to evaluate symptoms of bleaching such as higher spectral concentrations in the 400 nm and 750 nm
regions. A list of the indices used, as well as their equations, is found in Table 1, where each genus of
coral has been identified and then classified, based on differences in spectral samples comparing to the
next closest spectral sample. Figure 11 shows an example of the spectral signature comparison used
for coral bleaching index generation.
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Figure 11. Spectral signature comparison for reef index generation Alv1.

2.9. Classification

Classification is the next step, where the in-water survey data along with the spectral signature
extraction are combined using ENVI to develop pixel-by-pixel analysis algorithms, and also, subpixel
(spectral mixture analysis) approaches using support vector machine (SVM). SVM was chosen due
to the high classification accuracy, ability to handle multiple predictor variables, in-built handling of
cases where spectral samples cannot be completely separated, and its ability to handle large datasets.
It has also been found that the accuracy of SVM could be further increased if the gamma of images is
increased up to a maximum of 75% (variations between captured data brightness and ideal gamma
level are expected). This change causes SVMs to be equivalent to naive Bayes classifiers; Zanaty [9]
proposed the SVM kernel of Gaussian radial basis polynomials function, which was found to be nearly
10% more accurate than the standard radial bias SVM classification method. Even without this, SVM is
equivalent to the multilayer perception neural network in terms of accuracy of result. SVM using radial
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bias algorithm (shown below in Equation (2)) is therefore the method used in this paper, within the
ENVI system, for material classifications.

Radial Basis Function : K
(
xi, xj

)
= exp

(
−γ

∣∣∣∣xi − xj
∣∣∣∣2), γ > 0 (2)

Scyven is also used to apply various noise reduction algorithms and data refinement through
targeted unsupervised classification, to identify regions requiring additional accuracy refinements.

3. Field Experiments

3.1. Site and In-Water Surveys

The site surveyed on 15 March 2017 is at Pandora Reef located in Queensland, Australia (Figure 12).
The Australian Institute of Marine Science (AIMS) monitors this site regularly, and advised its selection
due to the diverse range of coral genera, bleaching levels, and varying water depths. This paper
demonstrates the method for an area of Pandora Reef in which 64 in-water survey points were
collected to act as ground truths for spectral signature extraction (step 7) and training for the material
classification (Table 2).Sensors 2018, 18, x FOR PEER REVIEW 11 of 20 11 of 20 
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Figure 12. Pandora Reef site, Great Barrier Reef, QLD, Australia.

3.2. In-Water Data Collection Survey

Table 2 summarizes the data which were collected from the in-water surveys on the 15 March 2017
at Pandora Reef. The following attributes were collected: date, reference image id, coral genus,
bleaching level, depth, and additional notes about surroundings. These points were then mapped onto
the orthorectified data, where its respective location is stored as a set of pixel coordinates. Figure 13
shows all the in-water survey locations mapped in Google Earth.
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4. Results

4.1. Water Depth and Water Depth Extraction Results

Figure 6 shows the result from ENVI’s relative water depth tool. Application of the bathymetry
method is able to determine relative water depth by utilizing a log ratio transform. Visual assessment
shows that the results in Figure 6 are consistent with the researcher’s knowledge of the study area and
the in-water surveys (Figure 3).

4.1.1. Orthomosaics

The orthomosaic of the entire Pandora Reef (Figure 14) assisted in water depth extraction and
generic reef structure. The orthomosaic was generated from Phantom 3 Pro images and is a geospatial
RGB aerial view of the reef, with 5.71 cm/px resolution in a format of 234 megapixel image over 62.3 Ha
area. The area was covered within a 20 min flight. Approximate areas covered by the underwater
surveys are highlighted by red (3 m depth, 0.1 Ha) and white (6 m depth, 0.1 Ha) polygons.
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Figure 14. Photogrammetry orthomosaic of Pandora Reef (63 Ha) shows areas of day long in-water
surveys performed by AIMS at the depth of 3 m (orange area) and 6 m (white area) 400% zoomed
fragment on the bottom right (tide height 2.6 m).
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Processing Canon 5DS R images gives significantly better 9.91 mm/px resolution of the
orthomosaic/3D mode/DEMl, also bringing larger dynamic range to imagery (Figure 15b), and fully
customised lenses and shooting options.

Figure 15a shows an orthomosaic generated out of 395 50,6-megapixel Canon 5DS R images
processed on medium quality settings, which resulted in a 1.33 gigapixel image (47,904 × 29,080)
over an 8 hectare area of primary AIMS interest. These orthomosaics give researchers a method
of monitoring benthic cover and geomorphological variances in benthic algae (Murfitt et al. [10]).
Orthomosaics assist in identifying regions that are at greatest risk of degradation, and ascertain what
the cause of this degradation is and what systems need to be employed to try and reduce/prevent
further degradation in that region. The orthomosaics also give researchers a method for identifying
in-water survey data points, and giving approximations of what coral is typically found in this region.
For example, Palma et al. [11] found that small rocky outcrops with a regular shape were typically
indicative of soft corals whereas large colonies in rocky regions typically indicated Acropora coral.

Airborne ultra-HD DSLR cameras provide researchers with a complex and fully adjustable
tool resulting in very detailed snapshots of the marine environment. Larger dynamic range, higher
resolution, more accurate focusing and white-balancing comes at the cost of a heavier and larger UAV to
carry the sensor. We note also that other factors, such as correct camera settings and camera orientation
relative to the sun and the object of interest, position of the sun, tide heights, sea state, and water
torpidity, define the success, and sometimes are the most important factors for reef monitoring by
remote sensing.
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presence of the moving border between two different mediums (sea and air), we observed adequate 
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Figure 16. Digital elevation model (DEM) of Pandora Reef generated from Phantom 3 Pro and Canon 
5DS R (purple area) and in-water survey depths (black dots). 

4.2. Spectral Signature Extraction Results 

Figures 10, 17 and 18 show an example of spectral signature extraction for one coral type. Figure 
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Figure 15. (a) Photogrammetry orthomosaic of western part of Pandora Reef (8 Ha) shows 400%
zoomed fragments of bleaching events and the AIMS’s Antares research boat on the bottom right
(tide height 1.6 m). (b) Fragments of the orthomosaics from Canon 5DS R (left) and DJI Phantom 3 Pro
imagery (right).

4.1.2. Photogrammetry Ocean Floor Digital Elevation Models

Figure 16 shows the overlaid example of the DEM generated of the ocean floor surface of
a fragment of Pandora Reef reconstructed out of Phantom 3 Pro (22 cm/px resolution) and Canon 5DS
R (3.96 cm/px resolution) imagery. Despite the presence of minor artefacts and anomalies due to the
presence of the moving border between two different mediums (sea and air), we observed adequate
level of detail and accuracy of reconstruction for shallow waters (up to 5–8 m deep).
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Figure 16. Digital elevation model (DEM) of Pandora Reef generated from Phantom 3 Pro and Canon
5DS R (purple area) and in-water survey depths (black dots).

4.2. Spectral Signature Extraction Results

Figures 10, 17 and 18 show an example of spectral signature extraction for one coral type. Figure 18
shows the results with Porites massive bleaching level one and six, Figure 18 with soft corals level 5,
Porites massive level 4, Goniopora level 3, and Acropora level 2. These spectral similarities will be one of
the greatest potential causes of error in the classification step (step 9) and require processing of each
identified point to confirm that the classification is correct. This will be done by solely comparing the
classifications in the bands where differences are discernible.
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4.3. Classification Results

Material classification through Scyven, although very similar to ENVI, is done by taking the
spectral fingerprint data (Figures 9, 17 and 18) and then running it through an automated process,
which matches and groups sets of specific spectral data based on their similarity. Figure 19 shows the
results of material classification applied to Porites massive coral with the other object classification
omitted for clarity.
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Figure 20. Unsupervised material classification for Pandora Reef.

Once the data has been refined, it can then be classified using the extracted spectral signatures
(step 7 Figure 1) and the reef indices generated (step 8 Figure 1), whilst also being careful and taking
note of the regions that were highlighted by the unsupervised classifications. For example, in the case
of Figure 20, the benthos is shown as light green, spume as light yellow, and the numerous additional
misclassifications caused by the ill-classified sandbar. Figure 21 shows the results of this classification
after refining the extracted spectral signatures using additional noise reduction algorithms in the
form of spectral and spatial filtering, additional ground truth discrimination from unsupervised
classification results, and removal of false positives highlighted by coral bleaching indices (Table 1)
developed from Figure 20 and Table 2.
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processing phase. Classifications which have been greatly affected have been marked with EA 
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Figure 21. Support vector machine (SVM) material classification for Pandora Reef.

Table 3 Results of the accuracy assessment with labelled data material classification has
been completed.

Table 3. Material classification accuracy assessment for Figure 21 (EA = excessive area).

Coral Type Bleaching
Level

Signature
Accuracy (%) Points Found Accuracy (%) Found Pixels Area (%) Overall

Accuracy (%)

Porites massive 1 79.17 2/3 66.667 91,157 2.932 66.67
Porites massive 2 94.44 1/2 50.00 30,007 0.965 50.00
Porites massive 3 68.75 2/7 28.571 55,529 1.786 28.57
Porites massive 4 100.00 4/5 80.00 339,305 10.915 0 (EA)

Acropora sp. 1 100.00 7/13 53.846 173,810 5.591 53.85
Acropora sp. 2 46.67 2/4 50.00 1248 0.040 46.67
Acropora sp. 3 100.00 2/2 100.00 38,729 1.246 100.00
Acropora sp. 4 100.00 2/2 100.00 41,618 1.339 100.00
Acropora sp. 5 100.00 3/14 21.428 32,119 1.033 21.43
Acropora sp. 6 100.00 2/2 100.00 115,879 3.728 0 (EA)

Soft coral 5 44.00 2/2 100.00 392,569 12.628 0 (EA)
Turbinaria sp. 5 73.91 2/2 100.00 2763 0.089 73.91

The classification uses all the information in the image for classifying the different coral types.
The accuracy results in Table 3 show the effect of including images with spume during the image
processing phase. Classifications which have been greatly affected have been marked with EA
(excessive area) in the table. Figure 22 shows the improved results of refining the data by excluding
those regions of spume (marked in Figure 6), and this is reflected in Table 4.
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Table 4. Material classification accuracy assessment for Figure 22 at Pandora Reef where regions with
spume region marker in Figure 5 are excluded.

Coral Type Bleaching
Level

Signature
Accuracy (%) Points Found Accuracy (%) Found Pixels Area (%) Overall

Accuracy (%)

Porites massive 1 88.79 2/2 100.00 238,998 6.636 88.79
Porites massive 2 89.32 2/2 100.00 57,323 1.592 89.32
Porites massive 3 96.32 1/1 100.00 221,203 6.142 96.32
Porites massive 4 88.13 3/3 100.00 45,386 1.260 88.13

Acropora sp. 1 96.54 4/4 100.00 1,130,663 31.396 0 (EA)
Acropora sp. 4 93.54 2/2 100.00 55,085 1.530 93.54
Acropora sp. 5 90.75 3/3 100.00 477,663 13.264 0 (EA)
Acropora sp. 6 90.27 2/2 100.00 214,046 5.944 90.27

4.4. Index Results

Different indices were computed in Section 2.8 in order to highlight the symptoms of bleaching
across various genera of coral. Figure 23 shows examples of two NDVI images in the green and yellow
wavelengths (identified by indices as bands with greatest variances over multiple bleaching levels),
as well as two coral bleaching indices calculated from the hyperspectral data for the Acropora and
Turbinaria genera of coral. This comparison shows the overall difference between the index output and
the NDVI, where the NDVI images gives a clear representation, primarily focusing on the healthiest
coral. The indices are capable of showing the overall health of the reef by not only showing the
healthiest parts, but also all the various genera of coral at different levels of bleaching, and give health
approximations based on benthic cover.
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The results of the mean spectral signature extraction show a trend between spectral reflectance
and severity of bleaching, which is consistent across various genera of coral. Coral bleaching indices
developed from Figure 12 allow for analysis of stress caused by bleaching, however, these indices are
not always able to distinguish coral genus from bleaching level, and may only be useful in monitoring
temporal changes. NDVI images give a more easily interpreted representation, but cannot distinguish
between variances of different genera and only show limited reef health data.

4.5. Limitations

The methodology shown in this manuscript has limitations, and requires careful and detailed
planning of in-water and airborne surveys that can affect the overall feasibility and accuracy of
the classification. The ability to classify objects can be greatly distorted or made near impossible,
depending on water depth and the methodology used. Lesser and Mobley [12] found that it is possible
to conduct coral classification with hyperspectral imagery to depths of around 10–12 m; this, however,
requires the use of the Lambert–Beer law, which requires additional data of measured photoabsorption
from testing areas. In this work, we use a band ratio equation which drops the maximum classification
depth to around 6–8 m, which is satisfactory for large-scale remote sensing in either inaccessible or
near-inaccessible areas, and offers options for health monitoring, however, this is a limitation for
remote sensing of reef sections that do not fit these constraints.

Water turbidity, tidal conditions, and weather conditions all play a part in affecting the overall
quality of the captured data. Water turbidity can affect the ability to identify coral in regions and,
depending on its level, can prevent the ability to identify any coral. Nonetheless, data with moderate
levels of turbidity still have some value in showing the current level of benthos/symbiotic algae in
the region. Tidal conditions can cause significant amounts of spume to be created, methods can be
employed to remove sections affected, but their effectiveness is limited by the spumes’ location and,
where classification is required, can cause serious issues with the overall accuracy of results.

5. Conclusions

The results show that airborne UAV-based hyperspectral imagery has the potential to detect coral
bleaching over large areas across multiple coral genera, where accurate visual inspection may not
be possible. The methods and workflow developed during this study enabled material classification
using both supervised and unsupervised methods to gain results with an acceptable percentage of
error. The results presented and coral indices generated will contribute to the generation of valuable
information for reef protection by offering methods that highlight possible symptoms of bleaching in
a timely manner. It could also be extrapolated to other areas of research in remote sensing, such as
mineral exploration, biodiversity, and ecological assessment.
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