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Abstract: Unmanned aerial vehicles (UAVs) are an inexpensive platform for collecting remote sensing
images, but UAV images suffer from a content loss problem caused by noise. In order to solve the
noise problem of UAV images, we propose a new methods to denoise UAV images. This paper
introduces a novel deep neural network method based on generative adversarial learning to trace the
mapping relationship between noisy and clean images. In our approach, perceptual reconstruction
loss is used to establish a loss equation that continuously optimizes a min-max game theoretic model
to obtain better UAV image denoising results. The generated denoised images by the proposed
method enjoy clearer ground objects edges and more detailed textures of ground objects. In addition
to the traditional comparison method, denoised UAV images and corresponding original clean
UAV images were employed to perform image matching based on local features. At the same time,
the classification experiment on the denoised images was also conducted to compare the denoising
results of UAV images with others. The proposed method had achieved better results in these
comparison experiments.

Keywords: UAV images; image denoising; generative adversarial networks; perceptual
reconstruction loss

1. Introduction

As a rapid evolution technology, the increased availability of unmanned aerial vehicles (UAVs)
has drawn attention for their capability to generate ultra-high spatial resolution images. UAV however
is a low-altitude remote sensing platform, which is affected by lightning, ground electromagnetic
waves, illumination change, and mechanical noise from the UAV itself. These factors are sources
of noise in UAV images, therefore, it is especially important to study how to remove noise from
UAV images.

In recent years, there is a growing body of research on noise removal in remote sensing images. Liu
et al. [1] used an auxiliary noise-free image as a prior, proposing a denoising method for remote sensing
images based on partial differential equations. Rajapriyadharshini et al. [2] split the noisy images
into several disjoint local regions and clustered the noisy images into several disjoint local regions to
denoise SAR images. Bhosale et al. [3] designed wavelet filter to restore the remote sensing images and
explored the effects of noise. Wang et al. [4] proposed high-order balanced multi-band multiwavelet
packet transforms to denoise remote sensing images and claimed that an appropriate band number
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can improve the denoising performance. Xu et al. [5] provided a method based on blockwise nonlocal
means algorithm to denoise repetitive image patches in remote sensing images. Penna et al. [6]
utilized non local means with the stochastic distances to denoise SAR images. Kim et al. [7] adopted
background registration processing and robust principle component analysis, proposing a method of
noise filtering of LWIR/MWIR Imaging sensors.

Some researchers studied the denoising of remote sensing images based on sparse expression.
Chang et al. [8] combined unidirectional total variation and sparse representation to learn a dictionary
trained to fit the input data to remove random noises from remote sensing images. Cerra et al. [9]
reduced the weight of sparse unmixing problem proposing a denoising method based on sparse
reconstruction of simulated EnMAP data. Xu et al. [10] used the nonlocal sparse model and the
iterative regularization technique to denoise SAR images.

Nowadays, deep learning is breeding new ideas and convolutional neural networks (CNNs) have
become recognized as an efficient method that automatically learns deep-level feature representations
from images. Denoising algorithms for natural images, based on deep learning are an emerging
trend. Jain et al. [11] synthesized training samples from specific noise models and used convolutional
networks as unsupervised learning procedure and image processing architecture. Xie et al. [12] put
forward a method of image denoising that combined sparse representation and deep neural networks
pre-trained by denoising auto-encoders. Burger et al. [13] introduced a plain multi-layer perceptron of
mapping from a noisy image to a noise-free image. Wu et al. [14] used rectified linear function instead
of sigmoid function as the hidden layer activation function of deep neural networks to achieve image
denoising. Xu et al. [15] provided a method of using deep convolutional neural networks as reliable
a support for robust deconvolution against artifacts for image restoration. Li et al. [16] combined
sparse coding and auto-encoder to achieve image denoising. Mao et al. [17] put forward networks
with multiple layers of convolution and deconvolution operators to learned end-to-end mappings
from a denoised image to a clean image.

Many practical remote sensing applications require clear textures for ground objects in remote
sensing images. Because of the wide range of remote sensing images, remote sensing image denoising
must consider the overall spatial distribution of ground objects, which is different from the natural
images. It is easier to extract deep texture features in remote sensing images from the deeper neural
network structure. Nevertheless, the deeper networks are often more complicated to train because
of the internal covariate shift. Batch normalization can address this problem due to the fact that it
back propagates the gradients through the normalization parameters and preserves the representation
ability of the networks [18–20]. Residual learning framework solves the gradient vanishing of deeper
neural networks because it explicitly lets each few stacked layers fit a residual mapping instead of
expecting these layers directly fit a desired underlying mapping [21–24]. Visual Geometry Group
networks (VGGs) are beneficial for the deep-level representation of images [25–27], which is of great
help for modeling mappings of highly complex ground features. Johnson et al. [27] utilized pre-trained
VGG nets to extract high-level features by optimizing the perceptual loss function. Kiasari et al. [28]
used perceptual loss to alleviate the problem of blurry image generation. Generative Adversarial
Networks (GAN) with constantly improving optimization strategies have been applied widely to
image generation and classification problems [20,22,29,30]. Dosovitskiy et al. [31] combined Euclidean
distances with GAN to calculate the distances between image features extracted.

On the basis of distinctive demand for texture features from UAV images and combining with the
continuous development of deep learning methodology, we propose a method based on generative
adversarial networks to obtain clearer feature textures for denoised UAV images. In this paper,
pretrained VGG networks are employed to extract deep-level complex features of UAV images
and a perceptual reconstruction loss is combined with the pixel-based Euclidean loss for constant
optimizations of the game theoretic min-max model to generate fake clean UAV images using
powerful generation capability of GAN. In order to make the networks structure deeper and sturdier,
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the batch-normalization is used to regularize training data and multiple residual blocks are utilized to
build the networks.

2. Methods

2.1. Deep Architecture

GAN can effectively learn the distributions of clean and noisy UAV images, using clean
UAV images to denoise UAV images. The proposed neural network based on GAN directly
learns the mapping between clean UAV images and noisy UAV images, based on the work of
Goodfellow et al. [29], who generated realistic data by effectively learning the distributions of a
training data set. They adopted a min-max adversarial game theoretic optimization framework to train
a generative model G and discriminative model D simultaneously. GAN continuously train a model
G so that the probability distributions of the images generated by G are indistinguishable from real
images, thus fooling model D. According to this idea, we consider the UAV image image-denoising
problem as a generative adversarial problem, aiming to learn a mapping directly from clean UAV
images to noisy UAV images by constructing a GAN-based deep networks called Denoise UAV image
Generative Adversarial Network (DUGAN). In order to learn a generator that can fool a discriminative
model (D) so it can distinguish clean UAV images from generated denoised UAV images. Thus,
a generative model G and a discriminative model D were designed.

2.1.1. Generative Model

The primary aim of generative model G is to generate clean denoised UAV images from real clean
UAV images. As the original GAN model is unstable, artifacts in the output images are synthesized by
generative model G, which do not meet ground-object texture requirements of UAV image applications.
Therefore, the critical is to design a deeper structure to generate denoised UAV images. We constructed
a generative model G containing 14 residual blocks (Figure 1) to train the deeper networks in the G
model, efficiently.

The gradient can easily vanish in the process of back propagation while training the deeper
networks, which may result in the losses of image details and textures. The residual networks make
a reference to each layer’s input and learn a residual function rather than learn some functions that
do not have references. This residual function is easier to optimize to solve the gradient vanishing
problem structurally, at the level of the deeper networks, but greatly increases the number of network
layers In the G model. Each residual block of generative model G comprises two convolutional
layers and two batch normalization layers, then a skip connection is established in each residual
block. Skip connection back-propagates the gradient to deeper layers and can pass gradients through
multiple residual blocks smoothly, which helps recover the details in UAV images and assists the CNN
to effectively denoise UAV images.

The distributions of data will have influence on the training of deep networks. When the depth of
a network increases, the overall distribution of the activation input gradually approaches the upper
and lower limits of the value interval of the non-linear function of the value interval, resulting in a slow
network convergence. Batch normalization forces the distributions of the input values of any neuron
in each layer of the neural networks back to the standard normal distribution, so that the active input
values fall into the sensitive area of the nonlinear function. Small changes can lead to large changes in
the loss function, which makes the training faster and easier. In our generative model G, the activation
functions of two batch normalization layers in the residual blocks are relu. In our generative model G,
the activation functions of two batch normalization layers in the residual blocks are relu. In addition to
these residual blocks, we add two convolutional layers to generate simulated clean UAV images using
the activation function, tanh. The specific settings of each layer of the generative model are as follows:

C(r,64)→C(64)B(r)C(64)B(r)SC→ . . . 12 . . . →C(64)B(r)C(64)B(r)SC→C(64)→C(t,3)
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Here, C(r,64) denotes a set of convolutional layers with 64 feature maps and activation function
relu; C(64)B(r)C(64)B(r)SC represents a residual block; B(r) is a batch normalizational layer with
activation function relu, and SC denotes a skip connection. There are in total, 14 residual blocks. C(t,3)
represents a convolutional layer with three feature maps and activation function tanh.Sensors 2018, 18, x FOR PEER REVIEW  4 of 23 
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Figure 1. An overview of the proposed DUGAN method. The networks include generative model G
and discriminative model D.

2.1.2. Discriminative Model

GAN continuously trains the generative model G until the generated images cannot be
differentiated by the discriminative model D from these actual, real image samples. Generative model
G continuously generates better images so that the distributions of the images are undifferentiated
from the distributions of real images. The discriminative model D is employed to distinguish simulated
clean UAV images synthesized by the generative model from the corresponding actual clean UAV
images. Model D can also be regarded as a judge and guidance for the generative model G. We
constructed a discriminative model D that alternately updates G and D to solve the min-max adversarial
game-theoretic optimization problem (Equation (1)):

min
G

max
D

EGCI∼pg
[log(1− D(GCI))] + EIC∼pr

[log D(IC)] (1)

Here, IC represents the actual real clean image and GCI denotes the generated clean image, pr is
the sample distribution of the real clean image, pg is the sample distribution of the generated clean
image. The proposed discriminative model is shown at the bottom part of Figure 1. The specific
settings of each layer of the discriminative model are as follows:
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C(lr,64)→C(128)BN(lr)→C(256)BN(lr)→C(512)BN(lr)→C(1024)BN(lr)→C(2048k)BN(lr)
→C(128)BN(lr)→C(128)BN(lr)→C(512)BN(lr)→SC→D

Here, lr denotes the activation function leakyrelu; C(128)BN(lr) denotes a set of convolutional
layers with 128 feature maps followed by batch-normalization with activation function leakyrelu, and
D is the dense layer for outputting generated clean UAV images that are indistinguishable from actual
real clean UAV images. The feature maps were increased from 256 to 2048, and suitable for pre-trained
VGG networks [32].

2.2. Loss Function

The definition of loss function is critical for the performance of the proposed method. Some losses
of image restoration are optimized at pixel-level [31,33,34] so that images are typically, overly smooth
and thus lack high frequency content and have poor perceptual quality. Some researchers argued that
reconstructed results would be better to optimize a perceptual loss function by minimizing perceptual
differences between reconstructed images and the true ground images [27,35,36]. The quality of
the image features can be improved by the perceptual reconstruction loss so that it can meet the
requirements of UAV images for features acquired from ground objects textures. GAN have powerful
ability of image generation by alternatively updating generative networks G and discriminative
networks D. Dosovitskiy et al. [31] combined Euclidean distances with generative adversarial
training to establish a loss function. The solutions of pixel loss optimization problems often result
in perceptually unsatisfying solutions with overly smooth textures. Combining the perceptual
reconstruction loss function with VGG networks the networks will encourage networks to enjoy
feature representations of noisy images similar to those of actual clean images. Therefore, we propose
a new advanced loss equation for better denoising results of UAV images. Perceptual reconstruction
loss, generative adversarial loss and Euclidean loss are combined together to formulate the proposed
loss function, which is as follows:

LDUGAN = xLpe + yLga + Lpi (2)

Here, Lpe is perceptual reconstruction loss, an appropriate measure for features extracted from a
pretrained VGG networs instead of low-level pixel-wise error measures; Lga is adversarial loss; and
Lpi is pixel loss between noisy pixel of the noisy UAV images and pixel of the clean UAV images.
x and y are respectively the weights of Lpe and Lga. The perceptual reconstruction loss based on the
relu activation layers of the pretrained 19 layer VGG networks is defined as in [26,30]. The aim is to
minimize the distances between high-level features, and Lpe defined as Equation (3):

Lpe =
1

CiWi Hi

Ci

∑
c=1

Wi

∑
w=1

Hi

∑
h=1

∣∣∣∣∣∣V(UICI
c,w,h)−V(UIGCI

c,w,h) ||22 (3)

Here, Ci, Wi, Hi represent the channels, width and height of the images respectively, and V
represents a non-linear CNN transformation pretrained by VGG19. UIGCI denotes generated clean
UAV image and UICI denotes the corresponding actual clean UAV image.

The generative adversarial loss encourages our networks to obtain better solutions laying in the
manifold of reconstructed images by trying to fool the discriminative model, which is defined based
on the probability that the discriminant model considers the generated denoised UAV images to be
actual, clean UAV images, as shown in Equation (4):

Lga = −
N

∑
n=1

log D(UIGCI) (4)
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Here, D(UIGCI) is the probability that the generated images are real clean UAV images.
We minimize Lga continuously for better denoising results of UAV images. The per-pixel Euclidean
loss is defined as Equation (5):

Lpi =
1

CWH

C

∑
c=1

W

∑
w=1

H

∑
h=1

∣∣∣∣∣∣UICI
c,w,h −UIGCI

c,w,h ||22 (5)

Here, UIGCI is generated clean UAV image and UICI represents the corresponding real clean
UAV image.

3. Experiments

3.1. Experimental Setting

3.1.1. Experimental Data

Because of the lack of UAV image data sets for denoising training and assessment, a new UAV
image set for training and testing the proposed networks was built for our experiments. The UAV
image training set was obtained by a CW-30 UAV in Guiyang city, Guizhou Province. The camera
was a H5D-50 with the focal length of 50 mm; the size of entire image was 8176 × 6132 pixels and
the flying height was 600–800 m. For the convenience of training, we cut entire images into small
images using Photoshop; 400 images of 360 × 360 pixels were used as the clean training data and
different levels of noise were added to these clean images to make them noisy images. The testing set
includes two parts; one part consists of 40 pieces of UAV images and the other consists of 100 pieces
of smaller UAV images, comprised of images of cars and trucks. The testing set was obtained from
other mapping areas. One part of the testing set was collected with a CW-30 UAV in Yangjiang city,
Guangdong Province. The camera was a SWDC5 with a focal length of 50 mm; the size of entire image
is 8206 × 6078 pixels and the flying height is 600–800 m. The other test dataset was obtained using a
CW-10 UAV in Wuhan city, Hubei Province. The camera was a ILCE-7R with a focal length of 28 mm;
the size of entire image is 7360 × 4916 pixels and the flying height is 400–600 m.

3.1.2. Prameters Setting and Model Details

The entire networks are trained on a Nvidia GRID M60-8Q (8G) GPU using the tensorflow
framework, the number of training iterations is 160 k. Due to the limited memory of the computer, the
batch size of our experiment was 1. We used Aadm as an optimization algorithm and set the learning
rate at 0.9. In the training process, we set x = 0.5 × 10−3, y = 2 × 10−6 (in Equation (2)) by experimental
experiences. All strides were 1 in the generative model G, while all other convolutions were composed
of 3 × 3 sized kernels, except for the last convolution with a 1 × 1 sized kernel. In the discriminative
model D, the first six layers were composed of 4 × 4 sized kernels with a stride of 2; the next layer
was composed of 1 × 1 sized kernels with a stride 1 and the last two layers were composed of 3 × 3
sized kernels with a stride 1. In generative model G and discriminative model D, all padding modes
padding edges of kernels.

3.2. Comparison and Qualitative Evaluation

We added synthesized noise to the testing images with three noise levels: 20, 35 and 55, and
compare the proposed method with several state-of-the-art methods used for denoising of remote
sensing images. These comparative results are presented in the following subsections.

3.2.1. Comparion in the Traditional Way

Figure 2 shows results when the noise level was 35. Images in columns a, b, c, d, and e are five
randomly picked testing images showing different ground objects. The labels a1-e1 denotes the actual
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clean UAV images, the a2-e2 denotes the synthetic noise image, and the a3–e3 denotes the UAV image
denoised by method [8]. The label a4–e4 denotes the denoised UAV image by method [5], the a5–e5

identifies the UAV image denoised by method [17], and the a6–e6 denotes the UAV image denoised by
the proposed method. In each of the images, small rectangles in white and blue identify areas enlarged
for examination in the larger white and blue rectangles in each series of images with different levels
of noise.
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Figure 2. Testing results of several denoising methods for UAV images with several ground objects. In
each group of images, the 1st image (a1,b1,c1,d1,e1) is the ground truth; the 2nd image (a2,b2,c2,d2,e2)
is a noise image with noise level 35; and the 3rd image (a3,b3,c3,d3,e3) presents the denoising results
of method [8]. The 4th image (a4,b4,c4,d4,e4) presents the denoising results of method [5]; the 5th
image (a5,b5,c5,d5,e5) presents the denoising results of method [17]; and the 6th image (a6,b6,c6,d6,e6)
presents the denoising results of the proposed method.

In Figures 2 and 3, the experimental results of five randomly picked testing images of different
ground objects have been provided. In the testing experiments with different noise levels, it can be
observed that the proposed method preserves more distinct ground edges and more clear ground
objects textures. Meanwhile, the denoised UAV images by DUGAN are better in overall visual effect
and closer to the true ground objects in terms of UAV image structures. Due to the fact that we
have relatively deeper networks and the loss function can better preserve the overall styles of the
UAV images, deeper ground feature information can be extracted, which is of great help for the later
application of UAV images.
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In each group of images, the 1st image (a1,b1,c1,d1,e1)is the ground truth; the 2nd image (a2,b2,c2,d2,e2)
is a noisy image with noise level 55; and the 3rd image (a3,b3,c3,d3,e3) presents the denoising results
of method [8]. The 4th image (a4,b4,c4,d4,e4) presents the denoising results of method [5]; the 5th
image (a5,b5,c5,d5,e5) presents the denoising results of method [17]; and the 6th image (a6,b6,c6,d6,e6)
presents the denoising results of the proposed method.
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As can be seen in the images shown in Figure 2, at noise level 35, the proposed method
outperforms the other tested methods. For example, in the e series of images, the full size and
enlarged portion of the image processed using proposed method is clearer, with sharper edges than the
results from the other tested methods. Figure 3 is similar to Figure 2, with the same labeling scheme,
order, and enlarged details, but shows results at noise level 55. It can be seen in Figures 2 and 3,
a qualitative visual comparison of the proposed method and the other tested methods at different
noise levels shows that the proposed method preserves distinct ground edges and clear ground object
textures. The denoised UAV images produced by the proposed method are better in overall visual
effect and closer to the true ground objects in terms of UAV image structures. Because the proposed
model have relatively deeper networks and the loss function thus preserves the structure of terrain
shown in the UAV images, so that deeper ground feature information can be extracted, which is of
great help in later applications using these UAV images.

Tables 1 and 2 quantitatively compare denoised images obtained using the tested denoising
methods using the Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index (SSIM). Table 1
presents comparative image denoising results using PNSR for the tested methods at different noise
levels. The columns indicate the tested method, while rows 3–7 represent the PSNR values of denoised
images obtained using the test denoising methods when the noise level is 20. The rows 10–14 represent
the PSNR values of denoised images obtained with several denoising methods when the noise level
is 35, rows 17–21 represent the PSNR values of denoised images obtained with several denoising
methods when the noise level is 55. Table 2 is similar to Table 1, but shows results using SSIM for the
tested methods at different noise levels.

Table 1. Quantitative measurement results using PSNR (dB) on UAV testing images with different
noise levels.

Images
Method [8] Method [5] Method [17] Ours

Noise Level: 20

a 30.7543 30.9581 31.0174 31.2741
b 30.3965 30.5583 30.6967 30.9458
c 31.6907 31.9678 31.8534 32.1033
d 29.6358 29.8145 29.9543 30.2104
e 30.2235 30.4169 30.5576 30.7562

Average results 1 30.5942 30.7657 30.9856 31.1123

Images Noise Level: 35
a 28.8165 28.6967 28.8871 29.0564
b 28.3084 28.5758 28.4312 28.9687
c 29.4874 29.7321 29.7276 29.9576
d 27.5172 27.6954 27.8958 28.1354
e 28.2913 28.4782 28.6184 28.7858

Average results 28.4358 28.6127 28.7968 28.9854

Images Noise Level: 55
a 26.1869 26.3112 26.4984 26.7156
b 25.9276 26.1164 26.3658 26.5942
c 27.1962 27.3335 27.4795 27.6614
d 25.4956 25.6442 25.7841 25.9612
e 26.0517 26.2654 26.3127 26.5154

Average results 26.0014 26.2424 26.4912 26.6576
1 The average results of 40 UAV test images.
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Table 2. Quantitative measurement results using SSIM on UAV testing images with different noise levels.

Images
Method [8] Method [5] Method [17] Ours

Noise Level: 20

a 0.8799 0.8818 0.8841 0.8857
b 0.8776 0.8797 0.8804 0.8823
c 0.8857 0.8897 0.8895 0.8912
d 0.8704 0.8723 0.8741 0.8765
e 0.8731 0.8763 0.8779 0.8806

Average results 0.8756 0.8781 0.8796 0.8821

Images Noise Level: 35
a 0.8345 0.8362 0.8379 0.8406
b 0.8309 0.8339 0.8352 0.8371
c 0.8398 0.8441 0.8433 0.8468
d 0.8231 0.8249 0.8271 0.8289
e 0.8276 0.8303 0.8319 0.8343

Average results 0.8289 0.8312 0.8333 0.8369

Images Noise Level: 55
a 0.7682 0.7701 0.7719 0.7745
b 0.7639 0.7661 0.7679 0.7701
c 0.7739 0.7792 0.7798 0.7819
d 0.7245 0.7271 0.7289 0.7315
e 0.7589 0.7618 0.7641 0.7658

Average results 0.7601 0.7647 0.7662 0.7689

As can be seen in Tables 1 and 2, the proposed method has the highest PSNR and SSIM [37]
in different noise levels can be observed, this is consistent with the visual effects of the denoised
UAV images.

3.2.2. Compare Denoising Results Using Image Matching

To verify our method further, the denoised UAV images gathered by several methods are matched
with the real clean UAV images so that the results of the matching experiments were employed to
compare the outcomes of denoising. Scale Invariant Feature Transform (SIFT) [38] is a well-known
matching algorithm in image matching based on matching methods of image local features. The quality
of the matching results can often reflect the similarities of the local characteristics of the two images,
and the number of matching point pairs is the standard for judging the quality of matching results. In
terms of the professional characteristics, the textures of ground features are important expressions of
the UAV images of local features. Therefore, the matching results of denoising UAV images by SIFT
can indicate the denoising results.

In order to ensure the objectivity of the experiment, the denoising results of the above five pieces
of UAV images are used to match with the corresponding real clean UAV images by SIFT algorithm.
Figures 4 and 5 shows the matching results by SIFT. In Figure 4, when the noise level is 35, the labels
b1–e1 indicates the SIFT matching result of the original clean image and the denoised image obtained
by method [8], the labels b2–e2 indicates the SIFT matching result of the original clean image and the
denoised image obtained by method [5], the labels b3–e3 indicates the SIFT matching result of the
original clean image and the denoised image obtained by method [17], the labels b4–e4 indicates the
SIFT matching result of the original clean image and the denoised image obtained by the proposed
method. Figure 5 is similar to Figure 4, but shows results at noise level 55.
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matching image, the left image is the original real clean UAV image, and the right image is the denoised
UAV image (noise level 35). The 1st image (b1,c1,e1) presents matching results from SIFT and the
denoised UAV images using method [8] and original real clean UAV images. The 2nd image (b2,c2,e2)
presents matching results from SIFT and the denoised UAV images using method [5] and the original
real clean UAV images. The 3rd image (b3,c3,e3) presents matching results from SIFT and the denoised
UAV images created by method [17] and original real clean UAV images; and the 4th image (b4,c4,e4)
presents matching results from SIFT and the denoised UAV images using proposed method and the
original real clean UAV images.
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Figure 5. In each matching image, the left image is the original real clean UAV image, and the right
image is the denoised UAV image (noise level 55). The 1st image (b1,c1,e1) presents matching results
from SIFT and the denoised UAV images using method [8] and original real clean UAV images. The 2nd
image (b2,c2,e2) presents matching results from SIFT and the denoised UAV images using method [5]
and the original real clean UAV images. The 3rd image (b3,c3,e3) presents matching results from SIFT
and the denoised UAV images created by method [17] and original real clean UAV images; and the 4th
image (b4,c4,e4) presents matching results from SIFT and the denoised UAV images using proposed
method and the original real clean UAV images.

In Table 3, Column 1 denotes five randomly picked testing images, Column 2 denotes correct
matching pairs of the original clean image and the denoised image obtained by method [8], Column
3 denotes correct matching pairs of the original clean image and the denoised image obtained by
method [5], Column 4 denotes correct matching pairs of the original clean image and the denoised
image obtained by method [17], Column 5 denotes correct matching pairs of the original clean image
and the denoised image obtained by proposed method.

Table 3. The comparison of the correct matching pairs between denoised images and the corresponding
clean UAV images obtained by SIFT.

Images
Method [8] Method [5] Method [17] Ours

Noise Level 35/55 Noise Level 35/55 Noise Level 35/55 Noise Level 35/55

a 110/53 114/74 127/78 150/88
b 160/101 205/141 240/145 274/154
c 96/66 104/70 118/76 135/78
d 136/115 138/129 157/144 192/154
e 177/154 192/162 211/179 260/215

As is shown in Figures 3–5, it can be observed that the denoised images generated by proposed
method in two noise levels (noise level: 35, 55) obtain more correct matching pairs than other methods
in number.

3.2.3. Compare Denoising Results Using Image Classification

In this experiment, we used 100 denoised UAV images (60 cars and 40 trucks) to conduct images
classification experiment to compare denoising results of several methods (Figure 6). The classification
networks consist of five layers: one input layer, three hidden convolutional neural networks
(convolution kernel size is 3), and a softmax output layer. We used 1 and 0 to represent clean images of
cars and trucks, respectively. Then, we employed 80 clean UAV images to train classification networks
and 20 clean UAV images to test the trained classification networks. After completing the classification
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networks training, the classification correct rate of the testing images reaches 85%. The definition of
classification correct rate is shown in Equation (6):

Correct rate =
NC
NT

(6)

where, NC is the number of correctly classified UAV images and NT is the number of total UAV images.
We add different noise levels (noise level: 35, 55) to those 100 clean images, and obtain denoised images
by several denoising methods. The trained classification networks are used to classify the denoised
UAV images. From Table 4, it can be seen that the classification results of denoised images obtained by
our method enjoy a higher accuracy rate, which can reflect indirectly that denoised images obatined
by our method are more similar to clean images.
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Figure 6. (a) Represent the noisy images of cars and trucks with different noise levels; (b) Represent
the denoising results of method [8]; (c) Represent the denoising results of method [5]; (d) Represent the
denoising results of method [17]; (e) Represent the denoising results of proposed method.

Table 4. The comparison of the correct rate of denoised images classification.

Noise Level Correct Rate of
Method [8]

Correct Rate of
Method [5]

Correct Rate of
Method [17]

Correct Rate of
Ours Method

35 67% 71% 73% 78%
55 62% 65% 70% 72%

Through these three comparative experiments with different noise levels, it can be observed that
the denoised images obtained by the proposed method can obtain better denoising results. In the
SIFT matching algorithm, the denoised images of our method gets more correct matching pairs,
which shows that our method can better restore the local characteristics of UAV images and preserve
the textures, as observed via classification experiments with denoised images that denoised images
generated by our method are more similar to real clean images.

4. Conclusions

In this paper, we use perceptual reconstruction loss function and pixel-based loss function and
propose a method of denoising UAV images based on generative adverserial networks. According to
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the special requirements of the UAV images for the textures of ground objects, multiple residual blocks
are used to build a deep learning framework, which makes the denoised images obtain more details
of the texture features. The denoising results of this method yield better results in the traditional
evaluation methods. Meanwhile, in the experiments based on local feature matching and image
classification, good results are achieved, which is helpful for subsequent applications of UAV images.
In the deep networks, each layer of the networks can be viewed as a filter. The deeper networks
have more filters of UAV images denoising, which make the entire networks become more nonlinear.
The nonlinearity of the networks is the critical factor of the proposed method, which makes it superior
to other denoising methods. In the future work, we will further explore how to simulate real UAV
noise so as to obtain more ideal denosing effect of UAV images based on adversative learning.
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