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Abstract: Recently, image-filtering based hyperspectral image (HSI) feature extraction has been
widely studied. However, due to limited spatial resolution and feature distribution complexity,
the problems of cross-region mixing after filtering and spectral discriminative reduction still remain.
To address these issues, this paper proposes a spectral-spatial propagation filter (PF) based HSI feature
extraction method that can effectively address the above problems. The dimensionality/band of an
HSI is typically high; therefore, principal component analysis (PCA) is first used to reduce the HSI
dimensionality. Then, the principal components of the HSI are filtered with the PF. When cross-region
mixture occurs in the image, the filter template reduces the weight assignments of the cross-region
mixed pixels to handle the issue of cross-region mixed pixels simply and effectively. To validate
the effectiveness of the proposed method, experiments are carried out on three common HSIs using
support vector machine (SVM) classifiers with features learned by the PF. The experimental results
demonstrate that the proposed method effectively extracts the spectral-spatial features of HSIs and
significantly improves the accuracy of HSI classification.
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1. Introduction

Hyperspectral images (HSIs) have many spectral bands and complex spatial structures that contain
abundant information [1,2]. Therefore, HSIs are widely applied in areas such as ocean monitoring [3,4],
precision agriculture [5,6], forest degradation statistics [7] and military reconnaissance [8]. However,
the high-dimensional spectral features of HSIs may cause the Hughes phenomenon [9,10], leading to a
decrease in HSI classification accuracy [11–13]. Thus, before performing HSI classification, dimensionality
reduction (DR) and feature extraction techniques [14,15] are typically used to obtain low-dimensional and
discriminative features for classification [16,17].

Many DR models have been utilized to pre-process high-dimensional HSIs, including supervised,
unsupervised, and semi-supervised DR methods [18]. Examples of supervised DR methods include
linear discriminant analysis (LDA) [19] and nonparametric weighted feature extraction (NWFE) [20];
the unsupervised methods include PCA [21], independent component analysis (ICA) [22], superpixelwise
PCA [23]; and the semi-supervised DR methods include semi-supervised discriminant analysis (SDA) [24].
Among these methods, the new optimized feature extracted by the best discriminant vector satisfies the
class separability after the samples in high-dimensional feature space are projected to the low-dimensional
feature space through the supervised DR model LDA. However, when the data samples between classes
are nonlinearly separated in the input space, LDA is expected to fail. The semi-supervised DR technique
SDA adds a regularization term to the LDA algorithm to ensure that the local structure between the
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samples is preserved during feature extraction. The unsupervised DR approach ICA represents HSIs
with a relatively small number of independent features; however, ICA is more complicated than PCA,
which is a simple, rapid and effective method for unsupervised DR that has been widely used in HSI
feature extraction because it can extract the most informative features of HSIs using only a few principal
components. However, the drawback of PCA is that it considers each pixel separately, regardless of the
pixels’ spatial context information, which has proven to be very effective prior knowledge [25–27].

To make better use of the spatial context information, the most commonly adopted strategy is to
leverage the filter to extract HSI features. For example, Li et al. [28] developed the PCA-Gabor-SVM
algorithm, which improved HSI classification accuracy by combining spatial and spectral information
to filter dimensionality-reduced features from PCA. The edge-preserving filtering algorithm (EPF)
proposed in [29] utilized PCA to decompose greyscale or colour-guided images, taking advantage
of the edge-preserving properties of bilateral filtering and guided filtering. Methods that combine
spatial and spectral information obviously enhance the classification performance by preserving the
spatial structure. Pan et al. [30] constructed a hierarchical guidance filtering and a matrix of spectral
angle distance and iteratively trained classifiers using the integrated learning spatial and spectral
information from different scales to achieve good generalization performance. The deep learning
method proposed by Zhou et al. [31] achieved very good results by using convolutional filters that
learned directly from images by extracting their spectral-spatial features. Wei et al. [32] proposed a
hierarchical deep framework called spectral-spatial response that uses a template acquired through
Marginal Fisher Analysis and PCA to learn the combination of spectral-spatial features simply.

The aforementioned filters have demonstrated the ability to represent the latent spatial structures
embedded in HSIs. However, HSI cross-regional mixing typically exists due to the limited spatial
resolution and the complexity of the feature distribution. That is, the filter template, which consists of
adjacent pixels centered on the target pixel, not only includes the characteristics of the target features
but also a mixture of other features. The cross-regional mixture affects the implementation of smooth
filtering or other filtering tasks, leading to fuzzy areas and inefficient features for HSI classification.
Shen et al. [33] proposed a multiscale spectral-spatial context-aware propagation filter that extracts
the features of hyperspectral images from multiple views to generate spatial-spectral features. The PF
addresses the cross-regional mixing problem of HSIs, however a too-large or too-small scale parameter
may have a negative impact and is not conducive to the suppression of cross-regional mixing problems.
Therefore, this paper proposes a novel spectral-spatial feature extraction method of an HSI based on
the PF method, which addresses the cross-regional mixing problem in HSIs effectively.

The structure of this paper is as follows. Section 2 details the proposed method. Experimental
results and discussions are given in Section 3, and Section 4 summarizes this paper.

2. Proposed Method

2.1. Propagation Filter

The PF [34] is a smoothing filter in which the pixel values of an HSI are acquired by

O
′
s =

1
Zs

∑
t∈Ns

ωs,t It, (1)

where Zs = ∑t∈Ns ωs,t is the normalised factor, Ns is the set of neighbouring pixels set, the size of
the window size is ((2w + 1)× (2w + 1)) for the central pixel s, ωs,t is the weight of pixel t of the
neighbouring pixel set to perform the filtering of pixel s, and It is the pixel value of pixel t of the HSI.

Here, ωs,t = P(s −→ t) is defined as the weight between pixel s and the its adjacent pixel t such
that t = s. The weight between pixel s and itself is ωs,s = P(s −→ s) = 1; otherwise,

ωs,t = ωs,t−1D(t− 1, t)R(s, t), (2)
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where the two distances D(t− 1, t) and R(s, t)can be defined by

D(t− 1, t) = g(‖ It−1 − It ‖; σα), (3)

R(s, t) = g(‖ Is − It ‖; σr), (4)

with the function g(.) being the Gaussian function

g(‖ It−1 − It ‖; σα) = exp (
− ‖ It−1 − It ‖2

2σ2
α

), (5)

g(‖ Is − It ‖; σr) = exp (
− ‖ Is − It ‖2

2σ2
r

). (6)

Without the loss of generality, it is assumed that σα = σr and D(.) = R(.) throughout the
this paper.

2.2. Spectral-Spatial Feature Extraction Method Based on the PF

As shown in Figure 1a, the cross-region mixture problem is quite common in HSIs. In particular,
a lower spatial resolution increases the number of classes. As the ground sample distance increases,
there is a potential for objects covered by a given pixel to be mixed [34]. Therefore, this paper presents
the spectral-spatial feature extraction of the HSI algorithm based on the advantage that the PF can
handle the cross-regional mixture problem [35]. As seen in Equations (1)–(6) and Figure 1b–d, the PF
generates a new center pixel using a weighted summation of the neighbouring pixels in the HSI.
The adjacent pixel t, center pixel s and pixel t − 1 in the neighbouring pixel set are all the same class,
and the weight of pixel t is relatively larger. In Figure 1d, pixel t − 1 selected is close to the pixel t
and points to the pixel t, where pixel s is in yellow, pixel t is in red, pixel t − 1 is in green. However,
when there are mixed pixels in the neighbouring pixel sets, the weight of pixel t is smaller. Therefore,
the PF ensures that the similar features of the same classes of pixels are enhanced, which suppresses
the effects of cross-regional mixed pixels.

s t-1

t

Search window Centre pixel s

Neighbour set

Arbitrary pixel tPixel t-1

s

ωs,t = ωs,t−1 ሻD(t − 1, tሻR(s, t

ωs,t−1

Output: Os
′ =

1

Zs
෌

t∈N s
ωs,t It

ሻR(s, t =exp(
− Is−It

2

2σr
2 ሻ

ሻD(t − 1, t =exp(
− It−1−It

2

2σα
2 ሻ

ωs,s = 1

Generate t-1

t
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Figure 1. Flow diagram of HSI filtering using the PF. (a) Hyperspectral image (b) Neighbour pixel set
Ns (c) the calculation of ωs,t and (d) the pattern for performing 2D filtering with w = 3 pixels.

In addition, to improve the performance of the PF for feature extraction in HSIs, PCA is performed
before filtering: the HSIs are reduced by PCA, and the redundant information between bands is greatly
reduced in the updated pixels. However, although the HSIs lose a small amount of information after
PCA, the bands are sorted according to the importance of the information. After the PF process,
the increased effects of the important and reduced effects of the less important features are beneficial
for feature extraction and in improving the classification accuracy.

The specific process is shown in Figure 2. In the first step, PCA is used to reduce the dimensionality
and remove the redundant inter-spectral information to obtain the principal components of an HSI.
Then, the PCA feature is filtered with the PF. When cross-regional mixing occurs in the image, the filter
template reduces or avoids the influence of cross-regional mixed pixels on the object pixel, thereby
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avoiding or effectively mitigating the effects of cross-regional mixed pixels. Through this technique,
the proposed method can accurately extract the reflected spectral-spatial features of the real objects.
Finally, to validate the effectiveness of the proposed method, experiments are carried out on HSIs using
an SVM classifier trained on the learned spectral-spatial features. Algorithm 1 depicts the proposed
HSI spectral-spatial feature extraction model based on the PF.

Dimension 
reduction

PCA

1st feature 

2nd feature…
kth feature 

PF

1st PF feature 

2nd PF feature…

kth PF feature

SVM

Hyperspectral image

PF

PF
Classification result

Figure 2. Schematic of the proposed PCA-PF-SVM method.

Algorithm 1: Specific flowchart of the spectral-spatial feature extraction algorithm based on
the PF.

Data: HSI I = (I1, I2, · · · , In) ∈ Rd×n, d is the number of HSI spectral bands, n is the number of
pixels, the size of filter window is w, and the variance of the Gaussian function is σα(σr).

Result: spectral-spatial feature O
′

= (O
′
1, O

′
2, · · · , O

′
n) ∈ Rk×n, k is the reduced dimension

1 The dimensionality of I is reduced from d to k using PCA, and the dimensionality-reduced HSI
is I

′
= (I

′
1, I

′
2, · · · , I

′
n) ∈ Rk×n ;

2 for n = 1 : k do
3 Using Equation (6), calculate the pixel value distance between pixel s and pixel t;
4 Using Equation (5), calculate the pixel value distance between the pixel t and the pixel

t − 1;
5 Using Equation (2), calculate the weight ωs,t of the pixel t in the adjacent set ;
6 Using Equation (1), calculate the pixel value O

′
s of the pixel s output by the PF operation ;

7 end
8 Output spectral-spatial feature O

′
=(O

′
1, O

′
2, . . . O

′
n) ∈ Rk×n.

3. Experimental Settings

In this paper, the training and testing samples for each HSI dataset were chosen randomly.
In the experiments shown in Table 1, 20 label samples were randomly selected for each class as
training samples, and the rest were used as test samples to verify the performance of the proposed
methods in the three experiments. To verify the classification performance of different methods with
sufficient training samples and insufficient training samples, in the experiments shown in Table 5,
10–50 training samples were selected from each class and the rest were used as test samples. For stability,
each experiment was performed 10 times; the reported results are the averages.
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Table 1. Train-Test Distribution of sample for three datasets.

Indian Pines Salinas University of Pavia

Class Train Test Class Train Test Class Train Test

Aifalfa 20 26 weeds_1 20 1989 Asphalt 20 18,629
Corn_n 20 1408 weeds_2 20 3706 Meadows 20 2079
Corn_m 20 810 fallow 20 1956 Gravel 20 3044

Corn 20 217 fallow_p 20 1374 Trees 20 1325
Grass_m 20 463 fallow_s 20 2658 Sheets 20 5009
Grass_t 20 710 stubble 20 3939 Soil 20 1310
Grass_p 14 14 Celery 20 3559 Bitumen 20 3662
Hay_w 20 458 Grapes 20 11,251 Bricks 20 927

Oats 10 10 Soil 20 6183 Shadows 20 170
Soybean_n 20 952 Corn 20 3258
Soybean_m 20 2435 Lettuce_4 20 1048
Soybean_c 20 573 Lettuce_5 20 1907

Wheat 20 185 Lettuce_6 20 896
Woods 20 1245 Lettuce_7 20 1050

Buildings 20 366 Vinyard_U 20 7248
Stone 20 73 Vinyard_T 20 1787

3.1. Dataset Description

Three real HSI sets are used in this paper: the Indian Pines, Salinas and University of Pavia scenes.
The Indian Pines image was obtained by the AVIRIS sensor and covers the northern agricultural Indian
Pines test site. The image, which includes 16 categories of ground objects, contains 145× 145 pixels,
and only 200 out of all 224 bands are valid due to water absorption. The spatial resolution is 20 m
per pixel, and the spectral range is 0.4 to 2.5 µm. The Salinas image contains 512× 217 pixels and
includes 16 types of ground objects at a 3.7-m spatial resolution and was acquired by the AVIRIS sensor
over the Salinas Valley in California, USA. After removing 20 of the 224 bands due to noise and water
absorption, the remaining 204 valid bands were utilized in the experiments. The University of Pavia
image was acquired with 610× 340 pixels at 1.3-m spatial resolution by the ROSIS Sensor in the city
area around the University of Pavia. The image has a spectral range of 0.43 to 0.86 µm with 115 bands,
where 12 bands that were noisy or impacted by water absorption were removed, and the remaining
103 bands were used.

3.2. Compared Algorithms

In the experiments, the proposed classification method PCA-PF-SVM was compared to other
widely used HSI classification methods, including SVM [11], PCA-SVM [36], PCA-Gabor-SVM [28],
EPF-SVM [29], HiFi [30], LBP-SVM [37], R-VCANet-SVM [38] and PF-SVM. The parameters used for
these methods were the default settings provided in the related literature. The source code for the
algorithms was provided by the respective authors. The SVM classifier was based on the Libsvm
library [39], and the optimal parameters of the SVM classifier were determined by a fivefold cross
validation. The overall accuracy (OA), the average accuracy (AA), and the kappa coefficient are used to
evaluate the performance of the methods. The OA indicates the probability that the classification results
are consistent with the reference classification results. The AA refers to the mean of the percentage of
correctly classified pixels for each class. The kappa coefficient is used for consistency check.

3.3. Parameter Sensitivity Analysis

The proposed PCA-PF-SVM method has the following three important parameters: the filtering
standard deviation σα(σr), the filtering window size (w) and the feature dimension (k). To test
the influence of the different parameter settings of the proposed model, we conducted extensive
experiments were conducted on the Indian Pines scene. As shown in Figure 3a, the best OA, AA and
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kappa values were achieved when σα(σr) = 1.5. In contrast, when σα(σr) < 1.5, the accuracies
decreased significantly because a small σα(σr) leads to a smoother image. When σα(σr) > 1.5,
the classification accuracy remains relatively stable because the ability to suppress bad information
improves after the filter parameter reaches a certain value. As shown in Figure 3b, the best OA,
AA and kappa values were achieved when w = 8. These values are significantly lower when
w < 8 because considerable important spatial information is lost when the window size is too small.
Moreover, the values also decrease when w > 8 because the window contains a larger amount of
irrelevant information that reduces the effect of the important spatial information and, thus, reduces
the classification accuracy. From Figure 3c, OA becomes lager with the increase of PCA dimensions.
When the dimension reaches to 45, OA trends to become decrease. In our experiments, k is set to 45 for
the tradeoff between the computation complexity and classification accuracy. Therefore, in all of our
experiments, the parameters were set as follows: σα(σr) = 1.5, w = 8 and k = 45.
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Figure 3. Indian Pines: analysis of the influence of parameters. (a) Standard deviation σα(σr);
(b) Window size w and (c) Dimension k.

3.4. Experimental Results

(1) The proposed PCA-PF-SVM method has strong spatial capabilities. According to Figures 4–6
and Tables 2–4, the PCA-PF-SVM method achieves better OA, AA and kappa values than does the
spectral classification method. The OA values based on the proposed PCA-PF-SVM method with
respect to the Indian pines, Salinas and University of Pavia datasets are 36.14%, 8.87% and 17.78%
higher, respectively, than the OA values based on the PCA-SVM method and 25.32%, 11.15% and
14.68% higher, respectively, than the OA values based on the SVM method. The main reason is that the
spectral classification methods do not consider spatial information, while the method proposed in this
paper fully considers spatial information. These results verify that the proposed method is effective in
spectral-spatial feature extraction.

(2) The results verify that combining PCA and the PF is effective for HSI feature extraction.
Figures 4–6 and Tables 2–4 show that the PCA dimensionality reduction of the HSI does not improve
the performance of the SVM classification and may even reduce the classification performance of the
SVM. For example, the OA values of the PCA-SVM method for the Indian Pines dataset are lower than
those for the SVM method. This result mainly occurs because although the PCA preserves the HSI’s
main information, it also loses a small amount of information, thus affecting the SVM classification
accuracy. However, the combination of PCA and the PF greatly enhances the performance. The OA
values based on the proposed PCA-PF-SVM method for the Indian pines, Salinas and University of
Pavia datasets are 13.26%, 3.42% and 7.86% higher, respectively, than are the OA values resulting the
PF-SVM method. These experimental results show that it is necessary to apply PCA dimensionality
reduction before filtering.
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Table 2. Classification accuracy of different methods on Indian Pines data set (%).

Class SVM PCA-SVM PCA-Gabor-SVM PF-SVM EPF-SVM HiFi LBP-SVM R-VCANet-SVM PCA-PF-SVM

Aifalfa 55.00 54.35 70.27 12.38 57.78 100.00 46.58 100.00 54.55
Corn_n 52.16 51.32 81.18 67.18 85.80 84.94 89.95 65.41 95.22
Corn_m 63.35 25.22 90.78 77.55 89.35 93.09 86.70 85.31 94.97

Corn 53.33 28.45 82.20 72.53 43.06 87.10 91.85 97.24 91.44
Grass_m 82.80 75.81 97.37 90.89 92.93 92.01 88.72 91.36 72.16
Grass_t 85.91 86.62 96.19 87.59 91.93 97.61 85.70 96.48 100.00
Grass_p 37.14 53.85 45.16 35.00 82.35 100.00 30.00 100.00 18.92
Hay_w 97.89 99.76 88.59 100.00 100.00 99.78 88.49 99.13 100.00

Oats 27.27 38.89 24.39 8.85 100.00 100.00 13.89 100.00 45.45
Soybean_n 57.38 29.14 95.84 68.79 66.32 93.70 74.14 83.61 84.34
Soybean_m 71.57 51.75 87.75 91.33 92.13 78.52 97.06 71.79 95.90
Soybean_c 37.88 36.69 93.13 68.58 52.77 94.24 85.89 87.43 88.51

Wheat 88.14 96.83 77.02 95.81 100.00 99.46 83.12 99.46 95.85
Woods 92.55 93.98 95.49 96.61 96.94 98.23 99.84 95.74 100.00

Buildings 39.31 53.67 90.20 74.44 88.99 93.99 95.87 95.36 72.58
Stone 95.77 87.65 76.04 34.45 87.95 100.00 78.43 100.00 87.01

OA 66.27±2.46 55.45 ± 4.38 88.99 ± 1.33 78.33 ± 1.69 83.03 ± 1.85 89.82 ± 2.01 88.70 ± 1.93 83.23 ± 1.75 91.59 ± 1.32
AA 64.84 ± 2.28 60.25 ± 5.63 80.73 ± 1.60 67.62 ± 1.52 83.02 ± 3.19 94.54 ± 0.97 77.26 ± 2.58 91.77 ± 0.82 81.06 ± 3.91

kappa 0.62 ± 0.02 0.50 ± 0.04 0.87 ± 0.02 0.76 ± 0.02 0.81 ± 0.02 0.88 ± 0.02 0.87 ± 0.02 0.81 ± 0.01 0.90 ± 0.01

Table 3. Classification accuracy of different methods on Salinas data set (%).

Class SVM PCA-SVM PCA-Gabor-SVM PF-SVM EPF-SVM HiFi LBP-SVM R-VCANet-SVM PCA-PF-SVM

weeds_1 98.05 100.00 88.18 98.07 100.00 98.49 99.40 99.90 100.00
weeds_2 99.37 99.43 88.99 99.92 99.89 98.70 99.26 99.84 99.84

fallow 91.22 94.35 82.46 93.93 94.91 99.80 97.92 99.39 100.00
fallow_p 97.68 94.41 73.87 86.13 97.86 97.45 83.89 99.56 91.79
fallow_s 97.00 95.24 81.13 97.62 99.96 88.75 97.28 99.62 99.52
stubble 100.00 99.95 92.22 99.95 99.92 99.59 95.13 99.97 99.97
Celery 99.94 100.00 96.04 98.22 100.00 96.60 94.66 98.17 100.00
Grapes 72.98 76.85 92.01 91.63 82.04 82.13 91.57 78.54 95.28

Soil 98.59 99.00 97.29 99.49 99.48 99.97 99.97 99.26 99.97
Corn 79.39 93.32 64.75 92.48 85.06 87.97 99.04 94.69 97.76

Lettuce_4 93.65 91.02 95.66 95.42 98.21 96.18 98.96 98.76 100.00
Lettuce_5 94.34 91.97 97.63 96.07 100.00 99.48 99.89 100.00 100.00
Lettuce_6 93.37 91.14 84.29 76.19 96.10 97.21 92.64 94.31 98.33
Lettuce_7 92.29 94.26 90.26 99.41 99.20 92.67 95.97 96.86 93.09

Vinyard_U 54.30 58.25 73.37 77.59 73.97 73.17 83.00 85.32 85.01
Vinyard_T 94.44 99.54 94.03 98.59 99.49 96.75 99.17 99.27 95.21

OA 84.96 ± 1.17 87.24 ± 1.73 85.67 ± 1.99 92.69 ± 1.38 91.41 ± 2.29 90.50 ± 1.32 93.97 ± 2.28 91.58 ± 1.09 96.11 ± 0.86
AA 91.04 ± 0.53 92.42 ± 0.93 87.01 ± 1.78 93.80 ± 0.85 95.38 ± 0.85 94.06 ± 0.68 95.48 ± 1.62 96.05 ± 0.40 97.24 ± 0.45

kappa 0.83 ± 0.01 0.86 ± 0.02 0.84 ± 0.02 0.92 ± 0.02 0.90 ± 0.03 0.89 ± 0.01 0.93 ± 0.03 0.91 ± 0.01 0.96 ± 0.01
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Table 4. Classification accuracy of different methods on University of Pavia data set (%).

Class SVM PCA-SVM PCA-Gabor-SVM PF-SVM EPF-SVM HiFi LBP-SVM R-VCANet-SVM PCA-PF-SVM

Asphalt 87.52 82.14 72.39 85.47 98.05 80.40 84.36 79.96 92.30
Meadows 91.00 90.51 95.96 97.60 97.40 89.74 97.98 83.39 99.47

Gravel 61.72 39.42 75.01 56.17 89.16 82.92 72.93 88.12 84.96
Trees 70.10 79.54 40.27 80.30 96.20 83.64 51.19 96.75 76.68

Sheets 98.42 100.00 88.21 99.25 95.05 99.17 86.32 100.00 99.92
Soil 46.04 53.61 68.69 70.30 64.27 89.72 75.02 93.57 84.80

Bitumen 54.64 32.06 78.94 71.72 58.20 96.79 76.85 99.01 85.61
Bricks 80.23 57.68 80.20 60.79 76.20 92.55 78.43 88.39 79.43

Shadows 100.00 99.35 49.44 83.23 99.89 99.46 45.34 100.00 96.95

OA 75.73 ± 1.64 72.63 ± 3.40 76.58 ± 2.98 82.55 ± 3.41 87.00 ± 2.43 88.48 ± 1.90 81.82 ± 1.68 87.03 ± 1.19 90.41 ± 1.90
AA 76.63 ± 1.43 70.48 ± 2.41 72.12 ± 2.81 78.31 ± 3.34 86.05 ± 2.39 90.49 ± 0.97 74.27 ± 2.19 91.17 ± 0.89 88.90 ± 2.05

kappa 0.69 ± 0.02 0.65 ± 0.04 0.70 ± 0.03 0.78 ± 0.04 0.83 ± 0.03 0.83 ± 0.02 0.76 ± 0.02 0.83 ± 0.01 0.89 ± 0.02

Table 5. Classification accuracy using varying numbers of training samples applied to three datasets.

Method
Quality
Indexes

Indian Pines Salinas University of Pavia

Training Samples Perclass Training Samples Perclass Training Samples Perclass

10 20 30 40 50 10 20 30 40 50 10 20 30 40 50

SVM
OA 57.43 66.27 73.31 75.94 78.66 82.64 84.96 86.42 86.20 87.70 67.02 75.73 78.95 82.30 83.78
AA 55.87 64.84 69.84 72.67 75.86 88.87 91.04 91.38 91.77 92.75 69.12 76.63 77.69 80.23 81.36

kappa 0.52 0.62 0.70 0.73 0.76 0.81 0.83 0.85 0.85 0.86 0.59 0.69 0.73 0.77 0.79

PCA-SVM
OA 47.89 55.45 58.47 62.07 66.67 84.47 87.24 88.59 88.37 89.30 61.71 72.63 76.53 77.90 80.41
AA 53.23 60.25 64.14 67.02 72.15 88.98 92.42 93.89 93.99 94.40 60.60 70.48 74.04 75.29 77.15

kappa 0.42 0.50 0.53 0.57 0.62 0.83 0.88 0.87 0.87 0.88 0.52 0.65 0.70 0.72 0.75

PCA-Gabor-SVM
OA 76.03 88.99 93.06 94.64 96.09 73.62 85.67 89.29 93.08 94.46 65.51 76.58 81.26 84.30 86.18
AA 75.90 80.73 86.93 88.79 91.78 76.95 87.01 90.49 93.70 94.91 63.76 72.12 77.19 80.11 83.28

kappa 0.73 0.87 0.92 0.94 0.96 0.71 0.84 0.88 0.92 0.94 0.57 0.70 0.76 0.80 0.82

PF-SVM
OA 64.77 78.33 84.19 87.84 90.40 88.69 92.69 94.28 95.16 95.46 71.23 82.55 87.62 89.13 91.73
AA 59.06 67.62 73.27 77.47 82.39 91.24 93.80 95.77 96.42 96.64 68.91 78.31 82.82 83.76 87.38

kappa 0.61 0.76 0.82 0.86 0.89 0.97 0.92 0.94 0.95 0.95 0.64 0.78 0.84 0.86 0.89

EPF-SVM
OA 69.32 83.03 87.41 89.63 92.41 87.71 91.41 92.70 92.73 94.15 73.76 87.00 88.97 92.19 93.57
AA 72.06 83.02 87.60 89.74 92.02 93.80 95.38 95.96 96.12 96.85 76.21 86.05 88.56 90.89 92.66

kappa 0.66 0.81 0.86 0.88 0.91 0.86 0.90 0.92 0.92 0.93 0.67 0.83 0.86 0.90 0.92

HiFi
OA 81.08 89.82 91.65 93.63 93.44 86.53 90.50 92.08 92.67 93.59 81.83 88.48 88.64 90.22 90.94
AA 89.44 94.54 95.74 96.36 96.72 92.08 94.06 95.47 96.20 96.76 85.40 90.49 91.91 92.99 93.58

kappa 0.79 0.88 0.91 0.93 0.93 0.85 0.89 0.91 0.92 0.93 0.77 0.83 0.85 0.87 0.88

LBP-SVM
OA 80.49 88.70 92.01 94.85 95.58 89.65 93.97 96.18 96.86 97.91 70.35 81.82 85.75 89.39 90.34
AA 70.96 77.26 83.29 86.72 87.00 90.41 95.48 96.13 96.88 97.87 66.39 74.27 81.33 84.85 86.41

kappa 0.78 0.87 0.91 0.94 0.95 0.89 0.93 0.96 0.97 0.98 0.63 0.76 0.82 0.86 0.87

R-VCANet-SVM
OA 75.40 83.23 87.56 89.66 91.33 87.96 91.58 92.93 93.29 94.21 81.47 87.03 90.95 92.18 93.46
AA 85.82 91.77 94.00 95.05 95.88 94.32 96.05 96.68 96.91 97.34 87.21 92.13 93.51 94.48 95.51

kappa 0.72 0.81 0.86 0.88 0.90 0.87 0.91 0.92 0.93 0.94 0.76 0.83 0.88 0.90 0.91

PCA-PF-SVM
OA 84.20 91.59 94.32 95.23 96.55 93.91 96.11 96.83 97.84 98.45 85.14 90.41 91.62 94.12 95.34
AA 78.28 81.06 87.29 89.65 92.22 96.04 97.24 98.28 98.70 99.14 83.17 88.90 88.26 91.80 93.41

kappa 0.82 0.90 0.94 0.95 0.96 0.93 0.96 0.96 0.98 0.98 0.81 0.89 0.89 0.92 0.94
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Figure 4. The classification results of the Indian Pines image.
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Figure 5. The classification results of the Salinas image.
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Figure 6. The classification results of the University of Pavia image.

(3) The proposed method is more effective than the other advanced classification methods.
As shown in Figures 4–6 and Tables 2–4, compared with other methods, the PCA-PF-SVM method
shows very good performance in terms of OA and kappa. On the Indian Pines, Salinas and University
of Pavia datasets, the PCA-PF-SVM method shows more obvious effects than do the HiFi-We, LBP-SVM
and R-VCANet-SVM methods. The OA values based on the proposed PCA-PF-SVM method for the
Indian Pines, Salinas and University of Pavia datasets are 1.77%, 5.61% and 1.93% higher, respectively,
than the OA values based on the HiFi-We method and 2.89%, 2.14% and 8.59% higher, respectively,
than the OA values based on the LBP-SVM method and 8.36%, 4.53% and 3.38% higher, respectively,
than the OA values based on the R-VCANet-SVM method.

(4) The experimental results demonstrate the robustness of the proposed PCA-PF-SVM method.
As shown in Figures 7–9 and Table 5, in both scenarios, as the number of training samples varies from
10 to 50, the proposed method achieves the highest OA. Its advantage is especially obvious when the
number of training samples is small. For example, when the number of training samples per class is 10,
our method has a 3.12–36.31% advantage on the Indian Pines image and a 3.5–20.29% advantage on the
Salinas image and a 3.31–23.43% advantage on the University of Pavia image compared to the other
methods. This is a highly meaningful result, because it means that a large number of non-labelled
samples can be distinguished using a much smaller number of labelled samples, thus greatly improving
the work efficiency, which further illustrates the robustness of the proposed method.

(5) These experimental results show that the proposed method is useful for addressing the
cross-regional mixture problems of HSIs. In Figure 10, the complete classified maps and ground truth
maps obtained by PCA-PF-SVM are presented. The proposed method achieves better results on the
cross-region mixture problem. For cross-region marked by white box in the three figures, PF can reduce
cross-region problem, which keep better feature of image and improve further classification accuracy.
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Figure 7. Influence of training samples on Indian Pines dataset.
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Figure 8. Influence of training samples on Salinas dataset.
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Figure 9. Influence of training samples on University of Pavia dataset.

(6) Statistical evaluation about the results: To further validate whether the observed increase in
kappa is statistically significant, we use paired t-test to show the statistical evaluation about the results.
T-test is popular in many related works [40–42]. We accept the hypothesis that the mean kappa of
PCA-PF-SVM is larger than a compared method only if Equation (7) is valid:

(ā1 − ā2)
√

n1 + n2 − 2√
( 1

n1
+ 1

n2
)(n1s2

1) + n2s2
2

> t1−α[n1 + n2 − 2] (7)

where ā1 and ā2 are the means of kappa of PCA-PF-SVM and a compared method, s1 and s2 are
the corresponding standard deviations, n1 and n2 are the number of realizations of experiments
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reported which is set as 10 in this paper. Paired t-test shows that the increases on kappa are statistically
significant in all the three datasets (at the level of 95%), and it can be also observed in Figure 11.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 10. Classification maps of PCA-BF-SVM methods on three datasets. (a,d,g) are false color
composite image (R-G-B = band 50-27-17) for Indian Pines , University of pavia and Salinas datasets;
(b,e,h) are ground truth classification results image; (c,f,i) are complete classified results image.
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Figure 11. Box plot of kappa of different methods on three datasets. (a) Indian Pine (b) University of
pavia (c) Salinas 1. SVM 2. PCA-SVM 3. PCA-Gabor-SVM 4. PF-SVM 5. EPF-SVM 6. HiFi 7. LBP-SVM
8. R-VCANet-SVM 9. PCA-PF-SVM. The center line is the median value, the edges of the box are the
25th and 75th percentiles, the whiskers extend to the most extreme points, and the abnormal outliers
are plotted by “+”.

4. Conclusions

The motivation for this study was to develop a simple feature extraction method to handle the
cross-regional mixed problem of HSIs. The developed method extracts spectral-spatial features via
the PF. However, the HSI’s high-dimensional problems affect the PF’s performance to a certain extent.
To ensure a real effect, based on the characteristics of the HSI, PCA is used to reduce an images
dimensions. Moreover, a combination PCA-PF feature extraction method is proposed. To evaluate
the performance of the proposed method, three classical datasets with different complexities of
cross-regional mixing problems were analyzed, and comparative experiments were also employed.
The results show that the proposed method effectively solves the cross-regional mixture problem.
In addition, feature extraction method in this paper use NRS and ELM for classification, and compares
with PCA-Gabor-NRS and LBP-ELM.As shown in Table 6, classification results show that our method
can obtain better results than that of the compared methods.

Table 6. Classification Results obtained by PCA-Gabor-NRS, PCA-PF-NRS, LBP-ELM and PCA-PF-ELM.

Indian Pines

Training Samples
Perclass

PCA-Gabor-NRS PCA-PF-NRS LBP-ELM PCA-PF-ELM

OA AA kappa OA AA kappa OA AA kappa OA AA kappa

10 68.46 61.32 0.65 84.50 76.99 0.83 80.89 89.16 0.79 83.15 90.43 0.81
20 82.56 75.63 0.80 90.82 83.84 0.90 88.37 93.62 0.87 91.44 95.32 0.90
30 88.93 83.28 0.87 93.73 87.69 0.93 92.57 96.09 0.92 94.35 96.81 0.94
40 91.99 87.17 0.91 94.79 89.67 0.94 94.42 96.76 0.94 95.69 97.68 0.95
50 93.71 89.21 0.93 95.72 90.08 0.95 95.76 97.77 0.95 97.08 98.37 0.97

Salinas

Training Samples
Perclass

PCA-Gabor-NRS PCA-PF-NRS LBP-ELM PCA-PF-ELM

OA AA kappa OA AA kappa OA AA kappa OA AA kappa

10 57.53 55.95 0.54 93.54 95.64 0.93 90.41 92.92 0.89 93.22 96.70 0.92
20 75.74 75.55 0.73 95.97 97.46 0.96 94.90 96.47 0.94 95.96 98.12 0.96
30 87.62 88.11 0.86 96.91 98.24 0.97 96.46 97.84 0.96 96.58 98.49 0.96
40 91.94 92.2 0.91 97.41 98.48 0.97 97.69 98.38 0.97 97.90 98.99 0.98
50 94.85 94.8 0.94 7.93 98.74 0.98 98.02 98.67 97.79 98.40 99.23 0.98

University of Pavia

Training Samples
Perclass

PCA-Gabor-NRS PCA-PF-NRS LBP-ELM PCA-PF-ELM

OA AA kappa OA AA kappa OA AA kappa OA AA kappa

10 50.86 51.76 0.41 80.73 78.73 0.75 73.98 76.15 0.67 82.18 82.47 0.77
20 63.07 62.57 0.55 89.18 86.87 0.86 82.47 82.9 0.78 89.42 89.09 0.86
30 69.39 67.65 0.62 93.06 91.04 0.91 86.52 86.42 0.82 91.13 91.26 0.88
40 76.64 75.21 0.71 94.48 92.77 0.93 88.83 87.93 0.85 92.69 92.52 0.90
50 82.26 81.09 0.78 95.21 93.73 0.94 90.77 90.36 0.88 94.60 93.42 0.93
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