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Abstract: The cubature Kalman filter (CKF) is widely used in the application of GPS/INS integrated
navigation systems. However, its performance may decline in accuracy and even diverge in the
presence of process uncertainties. To solve the problem, a new algorithm named improved strong
tracking seventh-degree spherical simplex-radial cubature Kalman filter (IST-7thSSRCKF) is proposed
in this paper. In the proposed algorithm, the effect of process uncertainty is mitigated by using the
improved strong tracking Kalman filter technique, in which the hypothesis testing method is adopted
to identify the process uncertainty and the prior state estimate covariance in the CKF is further
modified online according to the change in vehicle dynamics. In addition, a new seventh-degree
spherical simplex-radial rule is employed to further improve the estimation accuracy of the strong
tracking cubature Kalman filter. In this way, the proposed comprehensive algorithm integrates
the advantage of 7thSSRCKF’s high accuracy and strong tracking filter’s strong robustness against
process uncertainties. The GPS/INS integrated navigation problem with significant dynamic model
errors is utilized to validate the performance of proposed IST-7thSSRCKF. Results demonstrate that
the improved strong tracking cubature Kalman filter can achieve higher accuracy than the existing
CKF and ST-CKF, and is more robust for the GPS/INS integrated navigation system.

Keywords: GPS/INS integrated navigation; cubature Kalman filter; strong tracking filter;
spherical simplex-radial rule

1. Introduction

GPS/INS integration navigation systems have drawn great attention due to their widespread
applications in the areas of dynamic navigation and positioning [1–3]. Depending on the information
fusion level, three main forms of integration structures have been developed: loosely coupled [4],
tightly coupled [5] and deeply coupled [6]. In this paper, only the loosely coupled integrated navigation
system is considered due to its easier implementation and appropriate performance. For GPS/INS
integration, the most celebrated mechanism is the Kalman type filter and it has been widely used
in the practical systems. In the Kalman type filter, the optimal estimation can be achieved when
the distributions of both process noise and measurement noise are assumed to be Gaussian and the
corresponding statistics are accurately known [7]. However, due to the influence of vehicle’s severe
maneuvers in the actual applications, the Gaussian assumption may be violated and the statistics may
be uncertain, which will result in a degraded performance of the conventional KF-based GPS/INS
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integration system [8,9]. Therefore, in the presence of process uncertainties, there is a great demand to
develop an effective filter for better suppressing them, which is the main focus of this work.

To address the filtering problems with process uncertainty effectively, a large number of
fruitful algorithms have been investigated, such as the particle filter (PF) [10], the variational
Bayesian-based adaptive Kalman filter (VB-AKF) [11–14], the maximum correntropy-based Kalman
filter (MC-KF) [15–19] and the Huber’s M-Estimation-based Kalman filter (HKF) [8]. The particle filter
is based on the sequence Monte Carlo sampling technique and can solve the nonlinear non-Gaussian
system state estimation problem effectively [10]. It is, however, difficult to use the particle filter
to cope with the high dimensional filter problem since the computational complexity increases
exponentially with the dimensions of the state. The variational Bayesian-based adaptive Kalman filter
can estimate the statistics of the time-varying process noise variance online by approximating the
joint posterior distribution of the latent state and noise variance by a factorized free form distribution.
However, the dynamic model designed for variance parameters used in the VB-AKF is heuristic and
relatively rough, which may degrade its estimation accuracy when the process noise covariance
changes frequently [14]. The maximum correntropy-based Kalman filter is capable of suppressing the
larger process uncertainty by maximizing the correntropy of the predicted error and residual. However,
it is very difficult to determine the appropriate value of kernel bandwidth size in actual applications,
which may degrade the estimation performance of the MC-KF [16]. The Huber’s M-Estimation-based
Kalman filter handles the process uncertainty by employing the cost function of M-estimator to
construct weighting matrix, which can rescale the prior state estimate covariance as a result the process
uncertainty are suppressed. Unfortunately, the influence function of the HKF doesn’t redescend,
which results in limited estimation accuracy [20].

Another way of solving the problems of process uncertainty is to use adaptive filters where the
online estimates of process noise statistics are obtained together with the dynamic state. The adaptive
filters fall into two categories, i.e., the Multiple Model Adaptive Kalman filter (MM-AKF) [21] and
the Innovation-based Adaptive Kalman filter (IAKF) [22]. The multiple model adaptive Kalman filter
handles the process uncertainty by running a bank of Kalman filters with different stochastic models
in parallel. However, it is only suitable for systems with known dynamics since it operates under the
assumption that one of the models in the model bank is the correct one [22,23]. The Innovation-based
Adaptive Kalman filter can estimate the appropriate covariance matrix of process noise by forcing
the innovation sequence of the Kalman filter to be white Gaussian noise sequence with zero mean.
However, this algorithm suffers from the limitation that the convergence to the right process
noise covariance matrix can’t be guaranteed and rather large windows of data are required to
achieve a reliable estimation of process noise covariance matrix, making it only suitable for slowly
changing systems [22].

A feasible approach to deal with the process uncertainty is to employ the strong tracking filter [24–26].
The principle of strong tracking filter is that the strong tracking factor can maintain the residual sequence
orthogonal by introducing the time-variant suboptimal fading factor matrix to the state prediction covariance
matrix. As a result, the strong tracking filter provides a strong robustness against process uncertainty.
However, the conventional strong tracking filter may suffer from the following problems: (1) The suboptimal
fading factor is incorporated in the whole filtering process, which may result in the loss of precision when
there is no process uncertainty existed; (2) The symmetry of the prediction covariance matrix cannot be
guaranteed when the suboptimal fading factor with different diagonal elements is carried out on the error
covariance matrix, which may degrade the filtering performance and even lead to the divergence.

Thus, in order to solve the issues mentioned above, an improved strong tracking cubature Kalman
filter that could be applied to solve the high dimensional GPS/INS integrated navigation problem
is proposed in our paper. First, the hypothesis testing method is adopted to identify process model
uncertainty, which avoids the loss of precision when there is no process uncertainty in the dynamic
system. In addition, a defined suboptimal fading factor, which is based on the idea of Cholesky
decomposition, is proposed to ensure the symmetry of error covariance matrix when the fading
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factor is introduced. Second, the seventh-degree spherical simplex-radial cubature rule, which is used
to compute the more exact Gaussian type integral, is integrated into the strong tracking cubature
Kalman filter to improve the estimation accuracy and numerical stability of the GPS/INS integrated
navigation system. Finally, the car-mounted experiment is conducted to evaluate the effectiveness of
the proposed approach. The experiment results indicate that the proposed IST-7thSSRCKF method has
better robustness for the suppression of process uncertainties as compared with CKF and STCKF for
the GPS/INS integrated navigation problem.

The reminder of this paper is organized as follows: the strong tracking filter and cubature
Kalman filter are briefly reviewed in Section 2. Section 3 presents the improved STCKF for SINS/GPS
integration. In Section 4, experiments are carried out to evaluate the performance of the proposed
approach. Concluding remarks are given in Section 5.

2. The Strong Tracking Filter and Cubature Kalman Filter

In this section, the strong tracking filter and cubature Kalman filter are briefly reviewed and
discussed respectively. Consider the following nonlinear discrete-time dynamic system with additive
process and measurement noise: {

xk = f (xk−1) + wk−1
zk = h(xk) + vk

(1)

where xk ∈ Rn×1, zk ∈ Rm×1 are the state vector of the dynamic system and measurement vector at
discrete time k; f (·) denotes the nonlinear dynamic model and h(·) represents the measurement model.
wk−1 and vk are assumed to be independent process and measurement Gaussian noise sequences with
zero means and variances Qk−1 and Rk, respectively.

2.1. Strong Tracking Filter

The strong tracking filter, proposed by Zhou et al. [27], is essentially a kind of Kalman filter
which is based on the orthogonal principle of the output residual error. In the strong tracking filter,
the time-varing suboptimal fading factor λk is introduced to the predicted error covariance matrix
Pk|k−1, which adjusts the gain matrix Kk online in real time, making sure that the innovations remain
orthogonal and the available information in the residuals εk can be extracted completely. In this way,
the algorithm has strong robustness against process uncertainty. The general structure of the strong
tracking filter algorithm can be expressed as follows:

εk = zk − h(x̂k|k−1) (2)

x̂k|k = x̂k|k−1 + Kkεk (3)

where x̂k|k is the estimate value at discrete time k, εk denotes the residual sequence of measurement.
The question of strong tracking filter is how to adjust the time-varing gain matrix online according to
the measurement innovation. As we known, if there is no process uncertainty in the system model,
the strong tracking filter boils down to the standard Kalman filter and the time-varing gain matrix Kk
can be determined directly as follows:

Kk = Pk|k−1HT
k (HkPk|k−1HT

k + Rk)
−1

(4)

Pk|k−1 = Fk|k−1Pk−1FT
k|k−1 + Qk−1 (5)

where Fk|k−1 = ∂ f
∂x

∣∣∣
x=x̂k−1

and Hk = ∂h
∂x

∣∣∣
x=x̂k|k−1

are the system transition matrix and observation

matrix, respectively. However, the process uncertainty in actual application results in a deviation
between the state estimation and actual state, leading to the nonorthogonality among the residuals.
Actually, the nonorthogonality indicates that the available information in the measurement is not
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fully used in the filtering estimation. Thus, the suboptimal fading factor λk is introduced to the state
predicted error covariance matrix, which will deliberately decrease the effect of historical information
in the process estimation and keep the residual sequence mutually orthogonal. The predicted error
covariance matrix after incorporating the fading factor can be expressed as follows:

Pk|k−1 = λkFk|k−1Pk−1FT
k|k−1 + Qk−1 (6)

where the suboptimal fading factor λk is determined by the orthogonal principle and a popular choice
of this can be given by [28]:

λk =

{
αck, αck ≥ 1

1, αck < 1
, ck =

tr[Nk]

tr[Mk]
(7)

where α(α ≥ 1) denotes the proportional coefficient of fading factor λk, which is a constant and can be
predetermined by a prior knowledge. tr[Nk] and tr[Mk] represent the trace of the matrix Nk and Mk,
respectively. Nk and Mk are defined as follows:

Nk = Vk −HkQk−1
T
k − βRk (8)

Mk = HkFk|k−1Pk−1FT
k|k−1HT

k (9)

Vk =

{
ε1εT

1 , k = 0
ρVk−1+vkvT

k
1+ρ , k ≥ 1

(10)

where Vk denotes the residual error sequence covariance matrix. β denotes the softening factor of
the residual sequence, which is used to improve the smoothness and accuracy of the state estimation,
generally β = 4.5 [28]. ρ is the fading factor satisfying 0.95 ≤ ρ < 0.995, usually, we set ρ to be 0.95 [29].

2.2. Cubature Kalman Filter

The cubature Kalman filter was first presented by Haykin to solve high-dimensional nonlinear
filtering problems [30]. The heart of cubature Kalman filter is to use the third-degree cubature rule to
approximate the integral of form (nonlinear function × Gaussian density) instead of approximating
the nonlinear function. Based on the third-degree cubature rule, a set of 2n cubature points with the
same weight are chosen to propagate the state and covariance matrix at each update cycle. The integral
with respect to the general Gaussian weighted integral can be approximated by the cubature rule
as follows:

I( f ) =
∫
Rn f (x)N(x; x, P)dx =

∫
Rn f (

√
Px + x)N(x; 0, I)dx

≈
m
∑

i=1
ωi f

(√
Pξ i + x

) (11)

where P =
√

P
√

P
T

;
√

P can be calculated by the Cholesky decomposition or the singular value
decomposition. f (x) is the arbitrary nonlinear function, Rn is the integral domain, x is the mean of x,
m is the total number of cubature points. {ξ i, ωi} are the ith cubature point and the corresponding
weight, respectively, which are given by:

ξ i =

√
m
2
[1]i (12)

ωi =
1
m

, i = 1, 2, . . . m = 2n (13)

where [1]i denotes the ith column vector of the points set [1]. For example, [1] ∈ R2 represents the
following set of points: {(

1
0

)
,

(
0
1

)
,

(
−1
0

)
,

(
0
−1

)}
(14)
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Under the assumption that the initial state x̂0|0 and initial error covariance matrix P̂0|0 are known,
the computational steps of the cubature Kalman filter can be summarized as follows [30]:

2.2.1. Prediction

(1) Factorize the covariance and evaluate the cubature points (i = 1, 2, . . . 2n):

Pk−1|k−1 = Sk−1|k−1ST
k−1|k−1 (15)

Xi,k−1|k−1 = Sk−1|k−1ξi + x̂k−1|k−1 (16)

(2) Evaluate the propagated cubature points through the process model:

X∗i,k|k−1 = f
(

Xi,k−1|k−1

)
(17)

(3) Estimate the predicted state and the corresponding error covariance:

x̂k|k−1 =
1

2n

2n

∑
i=1

X∗i,k|k−1 (18)

Pk|k−1 =
1

2n

2n

∑
i=1

X∗i,k|k−1X∗
T

i,k|k−1−x̂k|k−1x̂T
k|k−1 + Qk−1 (19)

2.2.2. Update

(1) Factorize the covariance and evaluate the cubature points (i = 1, 2, . . . 2n):

Pk|k−1 = Sk|k−1ST
k|k−1 (20)

Xi,k|k−1 = Sk|k−1ξi + x̂k|k−1 (21)

(2) Evaluate the propagated cubature points through the observation model:

Zi,k|k−1 = h
(

Xi,k|k−1

)
(22)

(3) Estimate the predicted measurement:

ẑk|k−1 =
1

2n

2n

∑
i=1

Zi,k|k−1 (23)

(4) Estimate the covariance and Kalman gain:

Pzz,k|k−1 =
1

2n

2n

∑
i=1

Zi,k|k−1Zi,k|k−1−ẑk|k−1ẑT
k|k−1 + Rk (24)

Pxz,k|k−1 =
1

2n

2n

∑
i=1

Xi,k|k−1ZT
i,k|k−1−x̂k|k−1ẑT

k|k−1 (25)

Kk = Pxz,k|k−1/Pzz,k|k−1 (26)

(5) Estimate the updated state and the corresponding error covariance:

x̂k|k = x̂k|k−1 + Kk

(
zk − ẑk|k−1

)
(27)
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Pk|k = Pk|k−1 −KkPzz,k|k−1KT
k (28)

3. An Improved Strong Tracking 7thSSRCKF Algorithm

3.1. The Improvement of Strong Tracking Kalman Filter

In order to improve the tracking performance of the traditional strong tracking filtering algorithm
for multi-variable nonlinear system, an improved time-varying fading factor is proposed in this section.
In the proposed improved strong tracking Kalman filter, the hypothesis testing method is adopted
to identify process model uncertainty, which avoids the loss of precision when there is no process
uncertainty in the dynamic system. In addition, a defined suboptimal fading factor, which is based on
the idea of least squares and Cholesky decomposition, is proposed to ensure the symmetry of error
covariance matrix when the fading factor is introduced.

3.1.1. Process Uncertainty Identification

For the dynamic system without process uncertainty, the innovation εk should be zero-mean
Gaussian-distribution with covariance HkPk|k−1HT

k + Rk when the filtering is stable [31]. So the square
of the Mahalanobis distance of the innovation should obey a χ2 distribution [32], then we define the
statistical information of predicted residual vector as follows:

γk = εT
k

[
Hk

(
Fk|k−1Pk−1FT

k|k−1 + Qk−1

)
HT

k + Rk

]−1
εk ∼ χ2(m) (29)

where γk obeys a Chi-square distribution with m degrees of freedom, m is the number of state variable
that can be observed directly. According to the hypothesis testing theory, for a chosen significant level
α, we have:

P
(

χ2 < χ2
α,m

)
= 1− α (30)

where the α-quantile χ2
α,m of the Chi-square distribution is predetermined. In this paper, the value is

set α = 0.05, χ2
α,m = 12.592. If the actual γk is less than this α-quantile, i.e., γk < χ2

α,m, the standard
cubature Kalman filter is carried out. Otherwise, if γk ≥ χ2

α,m, it can be conclude with high probability
(1− α) that there exists process uncertainty in the dynamic system. In this case, the improved strong
tracking cubature Kalman filter is used.

3.1.2. Improved Strategy for Fading Factor

In order to make different channel have different fading rate and respective filter adjustment
capability in the multi-dimensional GPS/INS integrated navigation systems, a defined multiple
time-varing suboptimal fading factor matrix Λk to the prediction error covariance matrix is introduced:

Pk|k−1 = ΛkFk|k−1Pk−1FT
k|k−1 + Qk−1 (31)

where Λk = diag
{

1, 1, 1, λ4,k, λ5,k, . . ., λ9,k, . . .1, . . .1
}

is the matrix of multiple time-varying suboptimal
fading factor. Specifically,

{√
λ4,k,

√
λ5,k, . . .,

√
λ9,k

}
is used to adjust the state variable that can be

directly observed in the GPS/INS integrated navigation system which includes the velocity error and
position error, whereas the other elements of Λk is set as 1 since they cannot be estimated adaptively
due to their unobservablities. The defined multiple time-varing fading factor Λk can be determined
as follows:

According to the orthogonality principle [31], in order to satisfy E
[
εk+jε

T
k

]
= 0, we need to make

the following equation hold:
Pk|k−1HT

k −KkVk ≡ 0 (32)
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Substituting (4) into (32) yields:

Pk|k−1HT
k − Pk|k−1HT

k

(
HkPk|k−1HT

k + Rk

)−1
Vk ≡ 0 (33)

Simplifying Equation (33), we have:

HkPk|k−1HT
k = Vk −Rk (34)

Substituting (31) and the fading factor Λk into (34) yields:

HkΛkFk|k−1Pk−1FT
k|k−1HT

k = Vk −HkQk−1HT
k −Rk (35)

To be specific, for the GPS/INS integrated navigation system with the integration mode of velocity
and position, the observation matrix can be expressed as:

Hk =
[

06×3 I6×6 06×6

]
(36)

Here we define:

∆k = HkΛk =


06×3

λ4,k 0 0 0 0 0
0 λ5,k 0 0 0 0
0 0 λ6,k 0 0 0
0 0 0 λ7,k 0 0
0 0 0 0 λ8,k 0
0 0 0 0 0 λ9,k

06×6


(37)

Gk = Fk|k−1Pk−1FT
k|k−1HT

k (38)

Substituting (37) and (38) into (35) yields:

∆kGk = Nk (39)

i.e.,: 
06×3

λ4,k 0 0 0 0 0
0 λ5,k 0 0 0 0
0 0 λ6,k 0 0 0
0 0 0 λ7,k 0 0
0 0 0 0 λ8,k 0
0 0 0 0 0 λ9,k

06×6


Gk = Nk (40)

Using the method of least squares we have:

λ4,k =

6
∑

j=1
Gk[4, j]Nk[1, j]

6
∑

j=1
G2

k [4, j]
(41)

Similarly, we obtain the λ5,k ∼ λ9,k. Then the multiple suboptimal fading factor Λk for the
low-cost GPS/INS integration navigation system can be estimated adaptively as:

Λi,k =


6
∑

j=1
Gk [i,j]Nk [i−3,j]

6
∑

j=1
G2

k [i,j]
, i = 4, 5, · · · , 9

1 , i = 1, 2, 3, 10, · · · , 21

(42)
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Unfortunately, the symmetry of the prediction covariance matrix Pk|k−1 in (31) cannot
be guaranteed when the suboptimal fading factor Λk with different diagonal elements,
i.e., λ4,k 6= λ5,k 6= . . . 6= λ9,k, is carried out on the matrix Fk|k−1PkFT

k|k−1. To solve the problem,
the square root filter method is considered. Based on the idea of Cholesky decomposition, the fading
factor matrix Λk can be decomposed into:

Λk = Λ̂k·Λ̂T
k (43)

where Λ̂k = diag
{

1, 1, 1,
√

λ4,k,
√

λ5,k, . . .,
√

λ9,k, . . .1, . . .1
}

. Hence, by introducing the improved two
multiple fading factor Λ̂k, the prediction error covariance matrix can be rewritten as:

Pk|k−1 = Λ̂kFk|k−1PkFT
k|k−1Λ̂k

T + Qk−1 (44)

By using Equation (44), the properties of the prediction error covariance matrix such as symmetric
positive definite can be ensured and the stability of the filter can be therefore enhanced.

3.2. The Seventh-Degree Spherical Simplex-Radial Cubature Rule for Cubature Kalman Filter

The cubature Kalman filter based on the third-degree spherical-radial cubature rule has been
successfully applied in many practical applications. However, it still has limited estimation accuracy.
For example, the cubature Kalman filter can’t calculate exactly the Gaussian weighted integral of such
simple polynomial functions as x2

1x2
2, where x1 and x2 are the two components of the Gaussian random

vector function [33]. In order to overcome the shortcoming and further improve the accuracy and
efficiency of the traditional CKF, a high-degree cubature Kalman filter based on the seventh-degree
spherical simplex-radial rule is developed in this section.

In the seventh-degree spherical simplex-radial cubature rules, the following integral is considered:

I( f ) =
∫
Rn

f (x) exp(−xTx)dx (45)

where f (x) is some arbitrary nonlinear function, Rn is the domain of integration, and exp(−xTx) is
the weighting function. Let x = rs with sTs = 1 and r =

√
xTx, Equation (45) can be rewritten in the

spherical-radial coordinate system as:

I( f ) =
∫ ∞

0

∫
Un

f (rs)rn−1 exp(−r2)dσ(s)dr (46)

where Un =
{

s ∈ Rn
∣∣sTs = 1

}
is the spherical surface and σ(·) is the spherical surface measure

or the area element on Un. Then, the Equation (46) can be decomposed into the spherical
integral S(r) =

∫
Un

f (rs)dσ(s) with the weighting function ω f (s) = 1, and the radial integral∫ ∞
0 S(r)rn−1 exp(−r2)dr with the weighing function ω f (r) = rn−1 exp(−r2).

3.2.1. Seventh-Degree Spherical Simplex Rule

The spherical integral S(r) =
∫

Un
f (rs)dσ(s) can be derived based on the transformation group

of the regular simplex, with vertices aj =
[
aj,1, aj,2, · · · , aj,n

]T , j = 1, 2, · · · , n + 1 as follows [34]:

aj,i ≡


0, i > j√

(n+1)(n−j+1)
n(n−j+2) , i = j

−
√

n+1
n(n−i+2)(n−i+1) , i < j

(47)
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For example, when the dimension n = 2, we can obtain that
{

aj
}

=
{
[1, 0]T ,

[
−1/2,

√
3/2

]T
,[

−1/2,−
√

3/2
]T}

. Based on the projection from the midpoints of the vector aj, we can obtain the
following point sets [34]: {

bj
}
≡
{√

n
2(n− 1)

(
ai + aj

)
: i < j

}
(48)

{
cj
}
≡
{√

n
3(n− 2)

(
ai + aj + am

)
: i < j < m, m = 1, 2, . . . , n + 1

}
(49)

{
dj
}
≡
{√

n
10n− 6

(
ai + 3aj

)
: i 6= j

}
(50)

where
{

bj
}

are the set of midpoints of the vertices aj projected onto the surface of the sphere Un,
{

cj
}

are projections of the centroid of vertices aj faces onto Un, and
{

dj
}

are projections of the selected edge
points of the vertices aj onto the surface of Un.

Taking the sets
{

aj
}

,
{

bj
}

,
{

cj
}

and
{

dj
}

as cubature points and further employing the central
symmetry of the cubature formula, we can obtain the seventh-degree spherical simplex rule with
(n + 1)

(
n2 + 8n + 6

)
/3 cubature points as follows [34,35]:

S7(r) = |An |
36n(n+1)3(n+2)(n+4)

{
n3(9n2 − 793n + 1800

)n+1
∑

j=1

[
f
(
raj
)
+ f

(
−raj

)]
+144(n− 1)3(4− n)

n(n+1)/2
∑

j=1

[
f
(
rbj
)
+ f

(
−rbj

)]
+486(n− 2)3

(n−1)n(n+1)/6
∑

j=1

[
f
(
rcj
)
+ f

(
−rcj

)]
+(10n− 6)3

n(n+1)
∑

j=1

[
f
(
rdj
)
+ f

(
−rdj

)]}
(51)

where An = 2Γ
(

1
2

)
/Γ
( n

2
)
= 2
√

πn/Γ
( n

2
)

is the surface area of the unit sphere, the Gamma function is

defined as Γ(n) =
∫ ∞

0 xn−1e−xdx with the properties of Γ(1/2) =
√

π and Γ(n + 1) = nΓ(n).

3.2.2. Seven-Degree Radial Rule

Based on the idea of moment matching, the radial integral can be calculated by the following
moment equation: ∫ ∞

0
S(r)rn−1e−r2

dr ≈
Nr

∑
i=1

wr,iS(ri) (52)

where ri and wr,i denote the quadrature point and the weights, respectively. Nr is the total number of
points; S(r) = rl is a monomial in r, with l an even integer. Then, the left hand side of the Equation (52)
is reduced to 1

2 Γ
(

n+l
2

)
with Γ(n) =

∫ ∞
0 xn−1e−xdx, i.e.,:

∫ ∞
0 rlrn−1e−r2

dr = 1
2 Γ
(

n+l
2

)
(53)

Because the spherical rule and the resultant spherical-radial cubature rule are fully symmetric,
we only need to match the even-degree monomials. The quadrature point ri and wr,i can therefore be
obtained by solving the different even-degree monomials matching. For the seventh-degree radial
rule, we require that the points and weights satisfy the following four equations:

wr,1r0
1 + wr,2r0

2 = 1
2 Γ
( n

2
)

wr,1r2
1 + wr,2r2

2 = 1
2 Γ
( n

2 + 1
)
= n

4 Γ
( n

2
)

wr,1r4
1 + wr,2r4

2 = 1
2 Γ
( n

2 + 2
)
= 1

2
( n

2 + 1
)( n

2
)
Γ
( n

2
)

wr,1r6
1 + wr,2r6

2 = 1
2 Γ
( n

2 + 3
)
= 1

2
( n

2 + 2
)( n

2 + 1
)( n

2
)
Γ
( n

2
) (54)
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By solving the above four equations of zeroth, second, fourth, and sixth order moments, the points
and weights for the seventh-degree radial rule with 2 quadrature points can be obtained as follows:{

r1 = 1
2

√
4 + 2n + 2

√
4 + 2n

r2 = 1
2

√
4 + 2n− 2

√
4 + 2n

(55)

 wr,1 =
(

1
4 −

1
2
√

4+2n

)
Γ
( n

2
)

wr,2 =
(

1
4 + 1

2
√

4+2n

)
Γ
( n

2
) (56)

A detailed calculation of the points and weights can be found in [33]. Then, the seventh-degree radial
rule can be obtained as follows:∫ ∞

0
S(r)rn−1e−r2

dr = wr,1S(r1) + wr,2S(r2) (57)

where wr,1, r1, wr,2, r2 are given by Equations (55) and (56).

3.2.3. Seventh-Degree Spherical Simplex-Radial Rule

Combining Equations (51) and (57), the seventh-degree Spherical Simplex-Radial (SSR) rule can
be formulated as:

∫
Rn f (x)N(x; x, Px)dx =

(
1
2 −

1√
4+2n

) n2(9n2−793n+1800)
36(n+1)3(n+2)(n+4)

n+1
∑

j=1

[
f
(

x−
√(

n + 2 +
√

4 + 2n
)
Pxaj

)
+ f
(

x +
√(

n + 2 +
√

4 + 2n
)
Pxaj

)]
+
(

1
2 −

1√
4+2n

)
4(n−1)3(4−n)

n(n+1)3(n+2)(n+4)
n(n+1)/2

∑
k=1

[
f
(

x−
√(

n + 2 +
√

4 + 2n
)
Pxbk

)
+ f

(
x +

√(
n + 2 +

√
4 + 2n

)
Pxbk

)]
+
(

1
2 −

1√
4+2n

)
486(n−2)3

36n(n+1)3(n+2)(n+4)

(n−1)n(n+1)/6
∑

k=1

[
f
(

x−
√(

n + 2 +
√

4 + 2n
)
Pxck

)
+ f
(

x +
√(

n + 2 +
√

4 + 2n
)
Pxck

)]
+
(

1
2 −

1√
4+2n

)
(10n−6)3

36n(n+1)3(n+2)(n+4)
n(n+1)

∑
k=1

[
f
(

x−
√(

n + 2 +
√

4 + 2n
)
Pxdk

)
+ f

(
x +

√(
n + 2 +

√
4 + 2n

)
Pxdk

)]
(58)

3.3. Steps of the IST-7thSSRCKF

Based on the basic framework of spherical simplex-radial CKF, the proposed IST-7thSSRCKF
algorithm is constructed by incorporating the strong tracking filter (STF) with an improved fading
factor into the time update equation of seventh-degree SSRCKF. Hence, both the robustness against the
process uncertainty and high accuracy can be achieved. The proposed IST-7thSSRCKF involves four
steps for an iteration: (1) The state prediction; (2) Process uncertainty identification and calculation of
the improved fading factor; (3) Covariance prediction using the improved strong tracking technique;
(4) The measurement update.

Initialization: initialize state vector x̂0|0 and state covariance matrix P0|0

• Step 1. State prediction

Generate cubature points by employing the seventh-degree spherical simplex-radial cubature
rule as follows:

Pk−1|k−1 = Sk−1|k−1ST
k−1|k−1 (59)

Xi,k−1|k−1 = Sk−1|k−1ξ i + x̂k−1|k−1 (60)
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ξ i =



x +
√(

n + 2 +
√

4 + 2n
)

Pxai i = 1, · · · , n + 1,

x−
√(

n + 2 +
√

4 + 2n
)

Pxai−n−1 i = n + 2, · · · , 2n + 2,

x +
√(

n + 2 +
√

4 + 2n
)

Pxbi−2n−2 i = 2n + 3, · · · ,
(
n2 + 5n + 4

)
/2,

x−
√(

n + 2 +
√

4 + 2n
)

Pxbi−(n2+5n+4)/2 i =
(
n2 + 5n + 6

)
/2, · · · , n2 + 3n + 2,

x +
√(

n + 2 +
√

4 + 2n
)

Pxci−n2−3n−2 i = n2 + 3n + 3, · · · ,
(
n3 + 6n2 + 17n + 12

)
/6,

x−
√(

n + 2 +
√

4 + 2n
)

Pxci−(n3+6n2+17n+12)/6 i =
(
n3 + 5n2 + 18n + 18

)
/6, · · · ,

(
n3 + 3n2 + 8n + 6

)
/3,

x +
√(

n + 2 +
√

4 + 2n
)

Pxdi−(n3+3n2+8n+6)/3 i =
(
n3 + 3n2 + 8n + 9

)
/3, · · · ,

(
n3 + 6n2 + 11n + 6

)
/3,

x−
√(

n + 2 +
√

4 + 2n
)

Pxdi−(n3+6n2+11n+6)/3 i =
(
n3 + 6n2 + 11n + 9

)
/3, , · · · ,

(
n3 + 9n2 + 14n + 6

)
/3.

where n denotes the dimension of state vector xk; the points sets {ai}, {bi}, {ci} and {di} can be
obtained by Equations (47)–(50).

Propagate the cubature points through the nonlinear state equation, the predicted state x̂k|k−1 and
predicted error covariance without the fading factor Pl

k|k−1 can be given by:

χ∗i,k|k−1 = f (χi,k−1) (61)

x̂k|k−1 =
(n3+9n2+14n+6)/3

∑
i=1

ωiχ
∗
i,k|k−1 (62)

Pl
k|k−1 =

(n3+9n2+14n+6)/3
∑

i=1
ωi

(
χ∗i,k|k−1 − x̂k|k−1

)(
χ∗i,k|k−1 − x̂k|k−1

)T
+ Qk−1 (63)

where X∗i,k|k−1 denote the propagated cubature points, Qk−1 denotes the covariance matrix of process
noise, ωi represent the corresponding weights of the cubature points and can be obtained by:

ωi =



(
1
2 −

1√
4+2n

) n2(9n2−793n+1800)
36(n+1)3(n+2)(n+4)

i = 1, · · · , 2n + 2,(
1
2 −

1√
4+2n

)
4(n−1)3(4−n)

n(n+1)3(n+2)(n+4)
i = 2n + 3, · · · , n2 + 3n + 2,(

1
2 −

1√
4+2n

)
486(n−2)3

36n(n+1)3(n+2)(n+4)
i = n2 + 3n + 3, · · · ,

(
n3 + 3n2 + 8n + 6

)
/3,(

1
2 −

1√
4+2n

)
(10n−6)3

36n(n+1)3(n+2)(n+4)
i =

(
n3 + 3n2 + 8n + 12

)
/6, · · · ,

(
n3 + 9n2 + 14n + 6

)
/3.

• Step 2. Process uncertainty identification and calculation of the improved fading factor

Calculate the innovation εk according to Equation (29) and identify the process uncertainty by
using the hypothesis testing method described in:

(a) If εk < χ2
α,m, Λk = diag{1, 1, 1, . . .1, . . .1}, the strong tracking cubature Kalman filter therefore

reduces to the standard cubature Kalman filter.
(b) If εk ≥ χ2

α,m, perform the improved strong tracking cubature Kalman filter. The improved
multiple fading factor used in the IST-7thSSRCKF is calculated as follows:

Λi,k =


6
∑

j=1
Gk [i,j]Nk [i−3,j]

6
∑

j=1
G2

k [i,j]
, i = 4, 5, · · · , 9

1 , i = 1, 2, 3, 10, · · · , 21

(64)

• Step 3. Covariance prediction using the improved strong tracking technique

Then, by introducing the improved multiple fading factor according to Equation (64), the modified
prediction covariance can be calculated as:

Pk|k−1 =
√

Λi,k

(
Pl

k|k−1 −Qk−1

)√
Λi,k

T
+ Qk−1 (65)



Sensors 2018, 18, 1919 12 of 22

• Step 4. Measurement update

By utilizing the predicted state x̂k|k−1 and the modified predicted covariance Pk|k−1 in (65), we can
obtain the modified predicted measurement ẑk|k−1, the innovation covariance matrix Pzz,k|k−1 and the
cross covariance matrix Pxz,k|k−1 as follows:

Xi,k|k−1 = chol
(

Pk|k−1

)
ξi + x̂k|k−1 (66)

Zi,k|k−1 = h
(

Xi,k|k−1

)
(67)

ẑk|k−1 =
(n3+9n2+14n+6)/3

∑
i=1

ωiZi,k|k−1 (68)

Pzz,k|k−1 =
(n3+9n2+14n+6)/3

∑
i=1

ωi

(
Zi,k|k−1 − ẑk|k−1

)(
Zi,k|k−1 − ẑk|k−1

)T
+ Rk (69)

Pxz,k|k−1 =
(n3+9n2+14n+6)/3

∑
i=1

ωi

(
Xi,k|k−1 − x̂k|k−1

)(
Zi,k|k−1 − ẑk|k−1

)T
(70)

Finally, the state estimate x̂k|k and the corresponding covariance Pk|k at time k are calculated by
Equations (26)–(28).

4. Performance Evaluation

In this section, the simulation and experimental results are presented to validate the proposed
method. First, a new nonlinear filtering model that is suitable for the low-cost GPS/INS integrated
navigation system is designed. Second, simulations and car-mounted experiments are carried out to
evaluate the performance of different filters.

4.1. Design of SINS/GPS Filtering Model

In this paper, a 21-dimension state vector is adopted in the GPS/INS loosely coupled navigation
system, which is given by:

x =
[
ψ δv δp bg b f δbg δb f

]T
(71)

where ψ =
[
ψN ψU ψE

]
, δv =

[
δVN δVU δVE

]
and δp =

[
δλ δL δh

]
are the attitude

error vector, velocity error vector and position error vector respectively. bg denotes the static bias and
δbg is the dynamic bias noise of gyroscope expressed in body frame. Similarity, b f and δb f are the
static and dynamic bias of three axis accelerometer under the body frame respectively. The nonlinear
system error model of INS is defined by:

.
ψ = Cw

[(
I − Cp

n

)
wn

in + δwn
in − Cp

b δwb
ib

]
δ

.
v =

(
I−Cn

p

)
Cp

b fb
ib + Cp

b δfb
ib + δvn ×

(
2wn

ie + wn
en
)
+ vn ×

(
2δwn

ie + δwn
en
)

δ
.
λ = δVE

RN+h sec L + δL VEsecL
RN+h tan L

δ
.
L = δVN

RN+h

δ
.
h = δVU.

bg = 0
.
b f = 0
δ

.
bg = − 1

τg
δbg + ηg

δ
.
b f = − 1

τf
δb f + η f

(72)
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where Cw is the transformation matrix from angle rate to Euler angles, Cp
n is the rotation matrix from

n-frame(ideal navigation frame) to p-frame(actual navigation frame), Cp
b is the rotation matrix from

b-frame(body frame) to p-frame. fb
ib denotes the specific force expressed in body frame, δfb

ib is the
corresponding error vector. ωc

ba represents the rotation velocity of a-frame with respected to b-frame
expressed in c-frame and δωc

ba are the corresponding error vector. ψ is the misalignment angle and
ψN ψU ψE are the component in north, up and east direction. VE, VN , VU are the velocity

component in east, north and up direction, L, λ, h are the latitude, longitude, and height, and δVE,
δVN , δVU , δL, δλ, δh are the corresponding error. RN is the normal radius. τg and τf represent the
correlation time of 1st-order Markovian process for gyroscope and accelerometer. ηg and η f are the
zero-mean Gaussian white noise process.

4.2. Simulation for SINS/GPS Integration

In this section, the proposed method is compared with the CKF [30], STCKF [25] and
STSSRCKF [26] in the GPS/INS integrated navigation application. This application has been widely
used as a benchmark to validate the performance of nonlinear filter due to its practical application value.
The nonlinear model described in (72) will be employed as the dynamic process model, which can be
given by:

xk = f (xk−1) + vk−1 (73)

where f (.) is the nonlinear dynamic model function in Equation (72), vk−1 is Gaussian noise with
zero mean and covariance Qk.Qk is determined from the inertial sensor’s stochastic error and set as
Qk = diag([0.2 deg/

√
h, 0.2 deg/

√
h, 0.2 deg/

√
h, 0.003 m/s2/

√
Hz, 0.003 m/s2/

√
Hz, 0.003 m/s2/

√
Hz,

0.2 deg/
√

h, 0.2 deg/
√

h, 0.2 deg/
√

h, 0.003 m/s2/
√

Hz, 0.003 m/s2/
√

Hz, 0.003 m/s2/
√

Hz])2. In order
to show how the filters perform under process uncertainty, the process noise are generated according to [36]:

vk ∼
{

N(0, Qk) w.p.0.8
N(0, 100Qk) w.p.0.2

(74)

where w.p. denotes “with probability”, i.e., eighty percent of process noise are generated from Gaussian
distribution with nominal covariance Qk, and twenty percent of process noise are drawn from Gaussian
distribution with severely increased covariance.

The measurement model can be formulated as follows:

zk = Hkxk + ωk−1 (75)

where zk =



VN
gps −VN

ins
VU

gps −VU
ins

VE
gps −VE

ins
Lgps − Lins
hgps − hins
λgps − λins


, the subscripts (gps and ins) represent the velocity and geographical

position obtained from GPS and INS, respectively. Hk = [06×3, I6×6, 06×12] is the observation matrix.
ωk−1 is the white Gaussian measurement noise with zero mean and covariance Rk = diag([0.05 m/s,
0.05 m/s, 0.05 m/s, 1 m, 3 m, 1 m])2, which is determined from the GPS’s stochastic measurement error.

The simulation scenario is described in Table 1. For the first 30 s, the vehicle accelerates from
0 m/s to 30 m/s at the constant acceleration of 1 m/s2, and then head up and decelerates from 30 m/s
to 24 m/s at the constant acceleration of −1 m/s2. Finally, the vehicle keeps this constant velocity and
conducts the 8-driving. The three dimensional trajectory of the vehicle is shown in Figure 1.
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Table 1. Description of vehicle motion.

Time (s) Motion

0–30 Accelerate
30–36 Head up and decelerate
37–47 Uniform
48–87 8-driving

Figure 1. The three dimensional trajectory of the vehicle.

In this simulation, the sample rate of IMU and GPS are 1000 Hz and 10 Hz, respectively. The output
rate of GPS/SINS integration navigation system is 10 Hz. The initial state vector and the associated
covariance are set as x̂0|0 = 01×21, and P0|0 = diag([0.005 rad, 0.015 rad, 0.005 rad, 0.5 m/s, 0.5 m/s,
0.5 m/s, 10 m, 30 m, 10 m, 0.2 deg/s, 0.2 deg/s, 0.2 deg/s, 10 mg, 10 mg, 10 mg, 0.2 deg/s, 0.2 deg/s,
0.2 deg/s, 10 mg, 10 mg, 10 mg])2, respectively.

Similar to [30], we conduct 50 independent Monte Carlo runs for fair comparison and use the root
mean square error(RMSE) as the metrics to compare the performance of four filters. The RMSEs of the
attitude and velocity obtained by these filters are shown in Figure 2, respectively.

As can be seen from Figure 2, both the RMSEs from the proposed IST-7thSSRCKF, STSSRCKF
and STCKF are smaller than that of the existing CKF. It means that the strong tracking-based filter
can suppress the process uncertainty effectively. Moreover, we can also see from Figure 2 that the
proposed IST-7thSSRCKF using the seventh-degree spherical simplex-radial cubature rule outperforms
the STCKF and STSSRCKF as expected, which means that the estimation accuracy of the proposed
IST-7thSSRCKF is further improved by the new Gaussian integral rule. Thus, the proposed method is
more robust against process uncertainty for the GPS/INS integration navigation system as compared
with the existing filters.
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Figure 2. RMSEs of the attitude (left) and velocity (right).

4.3. Car-Mounted Experiment for SINS/GPS Integration

In order to verify the effectiveness and superiority of the proposed algorithm, a car-mounted
experiment was carried out by the advanced navigation system research group of the North University
of China (Taiyuan, China). As shown in Figure 3, the experimental platform is composed of a LCI-1
tactical grade inertial measurement unit (IMU) and a Propak satellite receiver, which uses Novatel
synchronized position attitude navigation (SPAN) as the reference solution [37]. The attitude, velocity
and position accuracy of the Novatel SPAN reference system are 0.01 deg, 0.05 m/s and 0.1 m,
respectively. The sensors specification of our self-made MINS/GPS integration navigation system is
listed in Table 2. The experiment is carried out in North University of China and the total test time is
152 s. In the experiment test, the car firstly moved smoothly from 0 s to 79 s and then maneuvered
severely from 79 s to 152 s. The test trajectory is shown in Figure 4. The reference attitude, velocity and
position provided by the high-precision integrated navigation system during the whole test are shown
in Figure 5. The original output of the tri-axis gyroscope and accelerometer are shown in Figure 6.
It can be clearly seen from Figure 6 that there are much stochastic process uncertainties during time
interval 80–152 s.

Figure 3. Setup of experimental platform.
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Table 2. Specifications of the SINS.

Quantity Gyroscope Accelerometer

Range ±300◦/s ±10 g
Bias 12◦/h 5 mg

Random walk 0.28 deg/
√

h 90 ug/
√

Hz

Figure 4. Car-mounted test trajectory.

Figure 5. The reference attitude (left) and velocity (right) during the whole test.
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Figure 6. The original outputs of the tri-axis gyroscope (left) and accelerometer (right).

4.4. Performance Comparison with Different Filtering Algorithms

In this section, the proposed filter is tested and compared with the existing CKF [30], strong
tracking cubature Kalman filter (ST-CKF) [25] and strong tracing spherical simplex-radial cubature
Kalman filter (STSSRCKF) [26] in the car-mounted experiment for the low-cost GPS/INS integration
navigation. For all the four methods, the initial state and corresponding error covariance are chosen
as x̂0|0 = [01×9, 0.2 deg/s, 0.2 deg/s, 0.2 deg/s, 16 mg, 16 mg, 16 mg, 0.0018 deg/s, 0.0018 deg/s,
0.0018 deg/s, 0.1 mg, 0.1 mg, 0.1 mg] and P0|0 = diag([0.005 rad, 0.015 rad, 0.005 rad, 0.1 m/s,
0.1 m/s, 0.1 m/s, 5 m, 10 m, 5 m, 0.2 deg/s, 0.2 deg/s, 0.2 deg/s, 16 mg, 16 mg, 16 mg, 0.0018 deg/s,
0.0018 deg/s, 0.0018 deg/s, 0.1 mg, 0.1 mg, 0.1 mg])2, respectively. The iSnitial value of the nominal
process noise covariance matrix and measurement noise covariance matrix are respectively set as
Qk = diag([0.3 deg/

√
h, 0.3 deg/

√
h, 0.3 deg/

√
h, 0.3 m/s2/

√
Hz, 0.3 m/s2/

√
Hz, 0.3 m/s2/

√
Hz,

0.3 deg/
√

h, 0.3 deg/
√

h, 0.3 deg/
√

h, 0.3 m/s2/
√

Hz, 0.3 m/s2/
√

Hz, 0.3 m/s2/
√

Hz ])2 and
Rk = diag([0.1 m/s, 0.1 m/s, 0.1 m/s, 5 m, 10 m, 5 m])2. In the ST-CKF, the forgetting factor ρ and softening
factor β are empirically selected as 0.95 and 4.5 for optimal purpose. In the proposed improved strong tracking
seventh-degree cubature Kalman filter (IST-7thSSRCKF), the parameters are set as: α = 0.05, χ2

α,m = 12.592.
The proposed algorithm and existing algorithms are all carried out by Matlab 2016 on a computer with
an Intel core i5-3320 CPU at 2.60 GHz, 4 GB memory, and Windows 7 operating system. For a fair comparison,
we conduct M = 20 independent runs. All the filters use the same parameter in each run.

The velocity and attitude error obtained from the four filtering algorithms when M = 10 are
respectively shown in Figures 7 and 8. Owing to the fact that the position error estimation is mainly
determined by the measurement noise matrix R and is not sensitive to the time-varying process noise,
it is unable to reflect the true performance of the four different filters in the maneuvering stage. For this
reason, we do not present the result of the position error here. It can be seen from Figures 7 and 8
that, in the smooth moving stage during intervals 0–79 s, the proposed method performs quite similar
with the existing filters. The results are not surprising, this is because that in this case the Gaussian
assumption for the statistical value of process noise can be satisfied. While for the maneuvering
stage in the intervals of 80–152 s, the proposed IST-7thSSRCKF and the existing strong tracking
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based filters such as ST-CKF and ST-SSRCKF, exhibit smaller navigation error than the traditional
CKF. This is because that in the maneuvering stage the Gaussian assumption of process noise is
violated and the statistical value of process noise is changed due to the influence of the vehicle’s severe
maneuvers, which results in a much degraded performance of CKF. In contrast, the severe vehicle
maneuverability can be tracked appropriately by the ST-CKF, ST-SSRCKF and IST-7thSSRCKF as shown
in Figures 7 and 8. The performance improvement is mainly due to the strong tracking technique used
in these filters, since the time-varying process uncertainty can be better suppressed by introducing the
time-variant suboptimal fading factor matrix to the state prediction covariance matrix to maintain the
residual sequence orthogonal. Furthermore, we can also see that the IST-7thSSRCKF outperforms the
ST-CKF and ST-SSRCKF, which indicates that the 7th-degree SSR rule is more accurate in computing
the multi-dimensional integrals than the SR and SSR rules. However, the accuracy improvement is at
the cost of slightly larger computational burden as shown in Table 3. The reason is that the computation
time is approximately proportional to the number of points used in these filters. The number of points
required in the IST-7thSSRCKF is 4510, which is greater than that of CKF, STCKF and ST-SSRCKF,
which are being 42, 42 and 44, respectively. In this respect, the implementation time of the proposed
method is almost 100 times of CKF, STCKF and ST-SSRCKF. Actually, for the GPS/INS integrated
navigation system with high performance navigation computer, the large computational burden can
be afforded. Thereby, the proposed IST-7thSSRCKF is a better choice to deal with process uncertainty
in terms of estimation accuracy when comparing with the investigated other three methods.

Figure 7. The attitude error in smooth stage (left) and maneuvering stage (right) from different filters.
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Figure 8. The velocity error in smooth stage (left) and maneuvering stage (right) from different filters.

Table 3. Number of points and computation complexity of different filter for each run.

Filers Points Number Time (s)

CKF 42 0.011
ST-CKF 42 0.016

ST-SSRCKF 44 0.018
IST-7thSSRCKF 4510 0.968

In order to compare the overall performance of the four methods and intuitively illustrate the
effectiveness of the proposed filter for low-cost GPS/INS integration, the root mean square error
(RMSE) of the velocity and attitude that averaged across all time instances is used as a comparison
metric, which are defined as follows:

RMSE =

√
1
N

N
∑

k=1
(xk − x̂k)

where N is the total sample number, xk and x̂k denote the true value and the estimated value of velocity
and attitude at time k, respectively. The RMSEs of the four methods in estimating the velocity and
attitude of the low-cost GPS/INS integrated navigation system when M = 10 are listed in Table 4.
The RMSEs of attitude error and velocity error when M = 1:20 are shown in Figure 9, respectively.
It can be clearly seen from Table 4 and Figure 9 that the CKF exhibits large error in the maneuvering
stage than the STCKF, STSSRCKF and IST-7thSSRCKF.

Table 4. RMSEs of different filters in the maneuvering stage when M = 10.

Filers CKF ST-CKF ST-SSRCKF IST-7thSSRCKF

Azimuth (deg) 1.70 1.19 1.11 0.96
Pitch (deg) 0.74 0.49 0.24 0.19
Roll (deg) 0.30 0.22 0.21 0.18

North Velocity (m/s) 0.39 0.22 0.17 0.12
Up Velocity (m/s) 0.50 0.27 0.25 0.16
East Velocity (m/s) 0.49 0.23 0.18 0.14
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Figure 9. The RMSEs of attitude error (left) and velocity error (right) when M = 1:20.

The STCKF and STSSRCKF maintain a good performance but are less accurate than the
IST-7thSSRCKF. Therefore, taking both the estimation accuracy and computational efficiency into
account, we can conclude that the proposed IST-7thSSRCKF can achieve high estimation accuracy
with slightly higher computational complexity, and has better robustness for the suppression of
process uncertainties.

5. Conclusions

In this paper, an improved strong tracking cubature Kalman filter is proposed to suppress
the process uncertainty induced by the severe maneuvering for the low-cost GPS/INS integrated
navigation systems. Based on the improved strong tracking technique, the process uncertainty can
be detected and suppressed by modifying the prior state estimate covariance online according to
the change in vehicle dynamics. Moreover, the seventh-degree spherical simplex-radial cubature
rule, which can be used to compute the more exact Gaussian type integral, is integrated into the
strong tracking cubature Kalman filter to further enhance the estimation accuracy. Thus, the proposed
IST-7thSSRCKF possesses the advantage of 7thSSRCKF’s high accuracy and strong tracking filter’s
strong robustness against process uncertainties. The car-mounted experiments are utilized to
demonstrate that the proposed IST-7thSSRCKF can achieve high estimation accuracy and has better
robustness for the suppression of process uncertainties.
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