
sensors

Article

Enhancing the Discrimination Ability of a Gas Sensor
Array Based on a Novel Feature Selection and
Fusion Framework

Changjian Deng 1, Kun Lv 2, Debo Shi 3, Bo Yang 1, Song Yu 1, Zhiyi He 1 and Jia Yan 1,*
1 College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China;

deng150911@email.swu.edu.cn (C.D.); ny4501yb@email.swu.edu.cn (B.Y.); s0531@email.swu.edu.cn (S.Y.);
hzy563255@email.swu.edu.cn (Z.H.)

2 High Tech Department, China International Engineering Consulting Corporation, Beijing 100048, China;
lvk@ciecc.com.cn

3 Westa College, Southwest University, Chongqing 400715, China; shidebo@email.swu.edu.cn
* Correspondence: yanjia119@swu.edu.cn; Tel.: +86-23-6825-0394

Received: 27 May 2018; Accepted: 9 June 2018; Published: 12 June 2018
����������
�������

Abstract: In this paper, a novel feature selection and fusion framework is proposed to enhance
the discrimination ability of gas sensor arrays for odor identification. Firstly, we put forward an
efficient feature selection method based on the separability and the dissimilarity to determine the
feature selection order for each type of feature when increasing the dimension of selected feature
subsets. Secondly, the K-nearest neighbor (KNN) classifier is applied to determine the dimensions
of the optimal feature subsets for different types of features. Finally, in the process of establishing
features fusion, we come up with a classification dominance feature fusion strategy which conducts
an effective basic feature. Experimental results on two datasets show that the recognition rates of
Database I and Database II achieve 97.5% and 80.11%, respectively, when k = 1 for KNN classifier
and the distance metric is correlation distance (COR), which demonstrates the superiority of the
proposed feature selection and fusion framework in representing signal features. The novel feature
selection method proposed in this paper can effectively select feature subsets that are conducive to
the classification, while the feature fusion framework can fuse various features which describe the
different characteristics of sensor signals, for enhancing the discrimination ability of gas sensors and,
to a certain extent, suppressing drift effect.

Keywords: electronic nose; feature selection; feature fusion; multiclass recognition; sensor drift

1. Introduction

An artificial olfactory system (AOS), also known as the machine olfactory system or electronic
nose (E-nose), is designed for imitating the biological sensory system based on the principle of bionics.
Nowadays, it has become a major innovation in the field of gas detection technology, due to its
advantages, such as real time, non-invasiveness, easy operation, and low cost. However, there are still
some deficiencies in AOS, such as being susceptible to the environment, not directly distinguishing
the mixed gas, and drifting over time. Since the concept of E-nose was put forward in 1994 [1],
the perception and judgment process of bionic olfactory information, as well as its related applications,
have been of wide concern to scholars in related fields [2–6].

On the one hand, it is observed that some features of chemical sensors may not be necessary,
and only a subset of the original features contribute to the classification when deploying a gas sensor
array for a specific application [7]. Meanwhile, the cross-sensitivity of sensor array has both merits
and demerits. Specifically, this cross-sensitivity is conducive to the detection of various gases when the
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number of sensors is limited. However, it also leads to redundancies and interferences. The sensor
array may produce redundant, incomplete, imprecise, and inconsistent information, and the presence
of these irrelevant features increases the dimensionality of the feature space, which may reduce the
accuracy of the pattern recognition. Robust features can describe the characteristic of sensor signals
effectively. The performances of classifiers can be improved by using a subset of features instead of the
whole set. This requires a systematic or structured approach to select the optimal subset of sensors to
enhance the performance of the overall system.

Generally, feature selection algorithms can be roughly divided into two major categories [8]. The filter
approach filters the redundant features by a certain figure of merit using a preprocessing process, such as
using the Mahalanobis distance between response distributions to evaluate the configurations of sensor
array [9]. It possesses less amount of computation, and can find feature sets which are able to be applied
to models with different requirements. The wrapper approach selects feature subsets by models trained
on all the feature subsets to predict the accuracy of the features. It is more accurate to a certain calibration
model [10]. The utilization of classifiers (such as SVM) to select the optimal features of the different sensors
for enhancing the classification ability of the compound is a typical wrapper approach [11]. The two
approaches are widely used in the feature selection of gas sensor arrays [12–15]. However, there are
still disadvantages of the existing approaches. The filter approach is not accurate enough for different
classification models, while the wrapper approach requires more computational resources, and may
not have such accuracy in other occasions for its specificity.

Many previous studies have made improvements based on the two basic methods in different
research fields. The minimal-redundancy maximal-relevance (mRMR) method is based on the filter
method, which selects relevant and nonredundant features according to the mutual information
criterion [16]. Sequential forward selection (SFS) has been used for evaluation of breath alcohol
measurement [17]. It starts with an empty subset and sequentially adds the best features, which can
make the rank of the feature subset higher. Conversely, sequential backward selection (SBS) reduces
feature elements sequentially from all to none, and has been used to assess the odor of automobile
interior components [18]. In addition, other improved feature selection methods have been also
widely applied in many areas, including cloud computing [19], identifying different kinds of meat [20],
and social image annotation [21], but still there were not enough such improvements in the E-nose
area. However, the improvements mentioned above cannot both reduce the dimension of features and
select features efficiently.

On the other hand, it is well known that a single feature cannot fully reflect the characteristics of
sensor signals, which achieves low classification accuracy. Thus, the fusion strategy [22] is an advisable
choice to improve the prediction accuracy of a gas sensor array. The fusion strategy is an idea that
synthesizes the signals from different sources to obtain a better model representation. The purpose of
data fusion is to combine information obtained from multiple sources by different strategies, which can
potentially achieve a better description and enhance the classification accuracy [23]. Many studies have
reported that combining the features of the E-nose, E-tongue, or E-eye will improve the performance of
a gas sensor array for odor identification. Hong et al. [24] described the use of four fusion approaches
for an E-nose and an E-tongue to distinguish cherry tomato juice from adulteration, and demonstrated
that the utilization of perceptual knowledge from both the E-sensors could perform better than using
E-nose or E-tongue individually. Buratti et al. [25] proposed an effective mid-level data fusion method
to discuss the applicability of the E-nose, E-eye, and E-tongue for the quality decay assessment and
characterization of olive oil, which evidenced the ability to classify samples, and has greatly improved
the KNN classification model. Rodriguez-Mendez et al. [26] proposed a method of combining the
correlations between the chemical parameters from an E-nose and an E-tongue associated with the
oxygen and the polyphenolic composition of red wines, which significantly improved the quality of the
predictions. In Ref. [23], a multilevel fusion strategy framework of the E-nose and E-tongue is proposed
in this paper, which can improve the tea quality prediction accuracies through modeling decision
fusion and feature fusion. However, the aforementioned conventional feature fusion strategy focuses
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on simply and directly combining the original features from different instruments into one feature
matrix, which only increases the dimensions of the feature matrix without taking the contribution of
each kind of feature on the final classification into account. Recently, Lijun Dang et al. [27] proposed a
weighted fusion framework with logarithmic form, which concentrated on the contribution of each
feature. However, for the particularity of logarithms, the method of calculating the weights cannot
properly reflect the classification accuracy of each feature.

In this paper, we present a feature selection and fusion framework, and the merits of this paper
include the following.

(1) We propose a feature selection method, which couples the filter and wrapper strategies,
to evaluate the subfeatures of a gas sensor array using two indicators, i.e., separability and
dissimilarity, as well as the KNN classifier, for effectively describing the characteristics of different
odors under the premise of reducing the data redundancy as much as possible.

(2) We propose a weighted feature fusion framework combining information according to a classification
dominance strategy, for achieving better description of odor and increasing the accuracy of
final classification.

(3) The novel feature selection and feature fusion framework can not only improve the recognition
rate of a gas sensor array, but also greatly suppress the negative effects of sensor drift effect on
gas identification.

In the rest of this paper, we will firstly introduce the whole methodology of the proposed feature
selection and fusion framework will be described in Section 2; then, the data sets are introduced
briefly in Section 3; the results of this experiment will be shown in Section 4; finally, we will draw our
conclusions in Section 5.

2. Methodology

In this section, a novel feature selection and fusion framework of E-nose are described, which
contains three parts: firstly, the separability and dissimilarity of different features are calculated for the
order of feature selection. Secondly, use the classifier to determine the optimal dimension of the feature
subsets. Finally, fuse the selected features based on a weighted voting according to a classification
dominance strategy for obtaining gas classification results. The flow chart of this feature selection and
fusion framework is shown in Figure 1.
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2.1. Feature Selection

In order that the information provided by an E-nose can represent the characteristics of different
odors more clearly and can contribute to the classification, a new feature selection method is defined
based on the separability and the dissimilarity. First, we introduce the principle of class separability
criterion in Section 2.1.1. Then, to eliminate redundant features, we define a dissimilarity criterion in
Section 2.1.2. At last, the feature selection algorithm is shown in Section 2.1.3.

2.1.1. Separability Index

A pretty good classification rate will be achieved if one feature produces a distinct scent
fingerprint in the feature space for different gases. That is to say, if scent fingerprints contain good
separable information, the pattern recognition algorithm can easily identify them. On the contrary,
the classification performance will not improve in case all the features have poor information that four
classes of odors cannot be correctly identified.

Suppose K is the number of samples for each class of gases, M is the number of dimensions of
original feature matrix, and N is the number of classes of gases. Xmn(i) denotes the feature of the
i-th (i = 1, 2, · · · , k) sample of the m-th (m = 1, 2, · · · , M) dimension of the feature matrix (denoted
as fm) for the n-th (n = 1, 2, · · · , N) gas (denoted as Gn). Thus, the mean vector µmn for feature fm

and gas Gn is

µmn =

K
∑

i=1
Xmn(i)

K
. (1)

The Euclidean distance between each sample of each dimension of feature matrix for each class of
gases and the mean vector can be written as

dmn(i) = ‖Xmn(i)− µmn‖. (2)

The mean and variance of dmn(i) for feature fm and gas Gn are defined as Equations (3) and (4):

µdmn =

K
∑

i=1
dmn(i)

K
, (3)

σ2
dmn

=

K
∑

i=1
(dmn(i)− µdmn)

2

K− 1
. (4)

Then σ2
m1, defined as the average of σ2

dmn
for each gas as Equation (5), is a measure of variation of

within-class scatter for feature fm:

σ2
m1 =

n
∑

n=1
σ2

dmn

N
. (5)

Define the sample mean vector for N classes of gases as follows:

µm =

N
∑

n=1
µmn

N
. (6)

The Euclidean distance from µmn to overall mean vector µm is:

dmn = ‖µmn − µm‖. (7)
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The mean and variance of dmn are

µdm =

N
∑

n=1
dmn

N
, (8)

σ2
m2 =

N
∑

n=1
(dmn − µdm)

2

N − 1
. (9)

Here, σ2
m2 is a measure of variation of between-class scatter for feature fm.

Finally, we define the ratio of σ2
m2/σ2

m1 as the class separability index (SI):

SI( fm) = σ2
m2/σ2

m1. (10)

Hence, SI( fm) describes the capability of class separability for the features to be selected.
The larger SI( fm) means the more separability information that the feature contains.

2.1.2. Dissimilarity Index

We can acquire little additional information if different features are similar for all the gases.
It means that each of the selected features not only must have good separability, but also contain
more diverse but less redundant information for a subset of features to be optimized, so we define a
dissimilarity index (DI) for all the features as follows:

DI( fi, f j) = 1−
∣∣ρ( fi, f j

)∣∣ (i, j = 1, 2, · · · , M), (11)

where ρ( fi, f j) is the correlation coefficient between the feature fi and f j. The larger DI( fi, f j) means
there is less shared information between two features. It means that the selected features have more
additional, but less redundant information for classification.

2.1.3. Feature Selection Algorithm

The purpose of class separability and dissimilarity is to choose the optimal feature subsets for
classification. The larger both separability and dissimilarity means the selected features have more
advantages to enhance classification capability. The steps are described in detail in the following
Algorithm 1.

Algorithm 1. Feature Selection

Input:
Original feature matrix XM with M-dimensional features.

Output:
Selected feature subset S with D-dimensional features (D = 1, 2, · · · , M).

Procedure:
1: D = 1. Compute SI( fi) (i = 1, 2, · · · , M) of each dimension of the original feature matrix and record

the score1: score1 = SI( fi). Choose the feature with the largest score1 as the first element of the optimal feature
subset S. Then, the remaining feature element is XM−D.

2: do
Step 1: D = D + 1. Then, choose a feature element from XM−D in turn, and combine the element with S

into a new feature subset XT , all subset XT make up a new feature matrix X′. Compute the class separability

index (SI) of each feature subset in the X′ and the SI is defined as SI = 2
D

D
∑

i=1
SI( fi).
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Algorithm 1. Cont.

Step 2: For the formed new feature matrix X′ in Step 1, obtain t =

(
2
D

)
subsets. Then, compute the

average DI of the pairwise dissimilarity of all the subsets.
Step 3: For each subset, compute the score2 defined as score2 = SI + DI, which reflects whether the feature

subset is appropriate.
Step 4: Put the feature element with the largest value of score2 into S and reset the remaining feature

element XM−D.
Step 5: Input the selected feature subset S with D-dimensional features into the classifier. Then, the

classification accuracy of the D-dimensional features accuracy(D) will be obtained.
End while until the number of selected elements D reaches M.
3: Choose the best classification accuracy from accuracy(D)(D = 1, 2, 3 · · · M) as the final accuracy for

this kind of feature after feature selection. If accuracy(i) = accuracy(j) but i ≤ j(i, j = 1, 2, 3 · · · M), i can be
considered as the optimal feature dimension.
Return: S = {s1, s2, . . . , sM}.
Note: The larger score2 means the feature is more beneficial to increasing classification performance.

2.2. Feature Fusion Framwork

Suppose that there are L kinds of features and N types of samples. Each kind of feature makes
decisions according to its prediction accuracy on test data. Firstly, each kind of feature is used as the
input of the classifier, respectively, and L classification accuracy rates are obtained and denoted as
a = [a1, a2, · · · , aL]. The importance weight of each kind of feature w = [w1, w2, · · ·wL] is calculated
by Equation (15):

wi =
ai

L
∑

i=1
ai

, (12)

where wi(i = 1, 2 · · · , L) denotes the importance weight of the i-th kind of feature.
For each sample, the output form of the classifier for the L kinds of features can be predicted as

δ = [δ1, δ2, · · · , δi, · · · , δL]
T , (13)

where δi ∈ [1, 2, · · · , N] can be transformed into binary encoding. If the prediction result of the i-th
kind of feature is δi = 1, then encode it by δ

binary
i = [1 0 · · · 0︸ ︷︷ ︸

N elements

]T . Similarly, if δi = 2, then encode it by

δ
binary
i = [0 1 · · · 0︸ ︷︷ ︸

Nelements

]T . By that analogy, if δi = c, its binary encoding δ
binary
i is a vector with N elements,

whose c-th element equals 1 and the others are 0. Thus, we can obtain

δbinary = [δ
binary
1 , δ

binary
2 , · · · , δ

binary
i , · · · , δ

binary
L ]

T
. (14)

The weighted feature fusion framework according to a classification dominance fusion strategy
leverages the classification rates of the base features, and makes a final decision based on Equations (15)
and (16).

fusion = [ f usion1, f usion2, · · · f usionj · · · f usionN ] = w · δbinary, (15)

where f usionj(j = 1, 2, · · · , N) is the fusion score of the j-th class. It means that each class has its own
fusion score, and the class label of one sample can be predicted by the maximum fusion score, which is
shown as

predict_label = max( f usion1, f usion2, · · · f usionj · · · f usionN). (16)

All the computations involved in this paper are implemented in the E-nose software system and
Matlab R2015b (Mathworks, Natick, MA, USA). The K-Nearest Neighbor (KNN) algorithm is used as
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the classifier, which classifies samples based on closest training examples in the feature space. There are
numerous advantages of the KNN that has been proved. One of the advantages is that it is effective to
reduce the misclassification when the number of samples in the training dataset is large. Meanwhile,
KNN can easily deal with multiclass recognition problems especially when the class size is three and
higher. What is more important is that KNN is superior to many other supervised learning methods,
such as support vector machine (SVM), neural network (NN), etc. Since the process of their parameters
to be optimized will cost much time, while the KNN method demands only few parameters to tune for
achieving excellent classification accuracy: the value of k and the distance metric [28–30].

3. Description of Experimental Data

In this paper, two different datasets of gas sensor arrays are utilized, and here is a brief description
of the materials and gas sensor array to make the paper self-contained.

3.1. Dataset I

A sensor array containing fourteen metal oxide sensors (TGS800, TGS813, TGS816, TGS822,
TGS825, TGS826, TGS2600, TGS2602, TGS2620, WSP2111, MQ135, MQ138, QS-01, and SP3S-AQ2),
and one electrochemical general air quality sensor (AQ) produced by Dart Sensors Ltd. (Exeter, UK)
were applied to detect four types of rates wounds (uninfected and infected by Staphylococcus aureus,
Pseudomonas aeruginosa, and Escherichia coli, respectively). The details of the samples and experiments
are presented in previous publication [31]. The specific distribution of data is shown in Table 1.

Table 1. Number of samples in Dataset I.

Group Training Set Test Set

No infection 20 20
Pseudomonas aeruginosa 20 20

Escherichia coli 20 20
Staphylococcus aureus 20 20

Total 80 80

Seven kinds of features were extracted from the original response curves and their transform
domains: maximum value (MV), the DC component and first order harmonic component of the
coefficients of fast Fourier transformation (FFT), and the approximation coefficients of discrete wavelet
transformation (DWT) based on wavelets Db1, Db2, Db3, Db4, and Db5, respectively. The structures of
the feature matrix are shown in Table 2.

Table 2. Data structure of seven features.

Features MV FFT Db1 Db2 Db3 Db4 Db5

Feature structure 15 × 80 30 × 80 30 × 80 60 × 80 90 × 80 120 × 80 150 × 80

Note: MV, maximum value; FFT, the DC component and first order harmonic component of the coefficients of fast
Fourier transformation; Db1, Db2, Db3, Db4, Db5, the approximation coefficients of discrete wavelet transformation
based on wavelets Db1, Db2, Db3, Db4, and Db5, respectively.

3.2. Dataset II

We used a big sensor data array with long-term drift effect of 36 months, which was publicly
released by UCI Machine Learning Repository [32], as the second dataset. This data contains 13910
measurements from an E-nose system with 16 gas sensors (TGS2600, TGS2602, TGS2610, and TGS2620
(four of each) from Figaro Engineering Inc. (Tianjin, China). All sensors are exploited to detect six kinds
of pure gaseous substances at distinct concentration levels, including ethanol, ethylene, ammonia,
acetaldehyde, acetone, and toluene. The concentration ranges of the six kinds of gases are shown in
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Table 3. Eight kinds of features extracted from the original response data for each sensor make up a
128-dimensional feature vector (16 sensors × 8 features). In total, 10 batches of sensor features are
collected at different time intervals. The details of the sensor batches are presented in Table 4.

Table 3. Concentration ranges of analytes in Dataset II.

Analytes Ammonia Acetaldehyde Acetone Ethylene Ethanol Toluene

Concentration Range (ppm) 50–1000 5–300 10–300 10–300 10–600 10–100

Table 4. Experimental long-term sensor drift big data.

Batch ID Month
Number of the Data

Ethanol Ethylene Ammonia Acetaldehyde Acetone Toluene

Batch 1 1, 2 83 30 70 98 90 74
Batch 2 3~10 100 109 532 334 164 5
Batch 3 11, 12, 13 216 240 275 490 365 0
Batch 4 14, 15 12 30 12 43 64 0
Batch 5 16 20 46 63 40 28 0
Batch 6 17~20 110 29 606 574 514 467
Batch 7 21 360 744 630 662 649 568
Batch 8 22, 23 40 33 143 30 30 18
Batch 9 24, 30 100 75 78 55 61 101

Batch 10 36 600 600 600 600 600 600

During the gas injection phase, the resistance of the sensor will increase with the growth trend
gradually slowing down, and the response will gradually decrease with the declining trend gradually
slowing down during the cleaning phase. Therefore, we can use the maximum/minimum value of the
exponential moving average (EMA) to reflect the growth/declining trend of the sensor signals [32],
and the EMA is defined as:

y[k] = (1− α)y[k− 1] + α(R[k]− R[k− 1]), (17)

where α is a scalar smoothing parameter between 0 and 1, while y[k] and R[k] are the EMA and the
response at time k, respectively.

Three different values of α(α = 0.1, α = 0.01, a = 0.001) were used in the formula to obtain three
different maximum/minimum values of EMAs for increasing stage and decreasing stage, which are
defined as EMAi1, EMAi2, EMAi3, EMAd1, EMAd2 and EMAd3, respectively. In addition, another
two features contain a steady-state feature, defined as the difference of the maximal resistance change
and the baseline (DR); normalized version steady-state feature (NDR), is expressed by the ratio of the
maximal resistance and the baseline values. In order to display that the feature selection and fusion
framework can enhance the discrimination ability of the gas sensor array with drift effect, batches 1 to
9 are used as training set, while the batch 10 is used as the test set, respectively.

4. Results and Discussion

In this work, the different values of k which will be tested are {1, 3, 5, 7, 9}, and the different
distance metrics are Euclidean distance (EU), cityblock distance (CB), cosine distance (COS) and
correlation distance (COR) [28,33].

4.1. The Optimal Value of k and the Distance Metrics

First of all, in order to further certify the optimal value of k and the distance metrics for different
features of two datasets, we perform a comparison between different values of k and distance metrics
in KNN classifier without feature selection, and each kind of feature is experimented individually.
Tables 5 and 6 lists the classification accuracy of different values of k and distance metrics using
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the KNN classifier for Dataset I and Dataset II, respectively. In Table 5, it is observed that the
classification rate descends as the values of k increases on the whole. Compared with the feature of
MV, the recognition results of the features from transform domain are greatly improved. As for the
distance metric, it is obvious that the COS and COR perform generally better than EU and CB. For the
COS and COR, the performances of DB1, DB2, DB3, and DB4 can achieve above 90%. For the COR,
especially, the best performances obtained by Db1 are better than COS, which can achieve 93.75%
when k = 1, while the COS has the performance of 90.00%. For Dataset II, which is shown in Table 6,
the variation of classification accuracy using the classifier with different values of k and distance metrics
is inconspicuous, and the performances of different features are all bad. It indicates that the sensor drift
effect seriously affects the stability of the outputs of sensors, and finally deteriorates the performance
of the classifier. In general, EU and CB measure the absolute distance between points in the high
dimensional space, which is directly related to the position coordinates of each point, i.e., the values of
the elements of each feature. EU and CB can reflect the absolute difference of individual numerical
values of features, so they are usually used to analyze the difference from the numerical values of
different dimensions. The COS and COR measure the angle between the vectors and lay emphasis on
the difference in the directions of the vectors rather than the positions. For the classification for the
signals of a gas sensor array, the patterns of distinct odors are mainly reflected in the relative directions
among different features rather than the absolute values. Therefore, COS and COR are superior to EU
and CB. To exhibit the effect of feature selection and fusion framework, COS and COR, as well as k = 1,
are used in the following experiments.

Table 5. Classification results of seven features based on different values of k and distance metrics for
Dataset I (%).

Distance k MV FFT Db1 Db2 Db3 Db4 Db5

EU

1 68.75 73.75 90.00 91.25 87.50 88.75 83.75
3 63.75 72.50 75.00 78.75 78.75 81.25 80.00
5 46.25 45.00 66.25 70.00 70.00 71.25 73.75
7 51.25 53.75 60.00 68.75 70.00 73.75 75.00
9 43.75 60.00 57.50 66.25 66.25 66.25 70.00

CB

1 66.25 70.00 91.25 91.25 86.25 86.25 82.50
3 60.00 62.50 71.25 75.00 76.25 77.50 75.00
5 41.25 47.50 61.25 71.25 70.00 72.50 72.50
7 52.50 53.75 57.50 71.25 71.25 72.50 73.75
9 48.75 48.75 55.00 65.00 63.75 65.00 67.50

COS

1 77.50 77.50 90.00 92.50 91.25 91.25 86.25
3 72.50 78.75 80.00 82.50 82.50 82.50 82.50
5 57.50 60.00 68.75 68.75 72.50 73.75 80.00
7 58.75 53.75 63.75 65.00 67.50 71.25 75.00
9 46.25 43.75 55.00 62.50 61.25 61.25 66.25

COR

1 78.75 77.50 93.75 92.50 91.25 92.50 87.50
3 71.25 76.25 81.25 85.00 85.00 85.00 85.00
5 56.25 57.50 66.25 76.25 75.00 76.25 82.50
7 52.50 61.25 63.75 66.25 67.50 71.25 76.25
9 51.25 58.75 50.00 58.75 63.75 65.00 67.50

Note: EU, Euclidean distance; CB, cityblock distance; COS, cosine distance; COR, correlation distance. The bold
numbers are the highest accuracies for each distance metric.
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Table 6. Classification results of eight features based on different values of k and distance metrics for
Dataset II (%).

Distance k DR NDR EMAi1 EMAi2 EMAi3 EMAd1 EMAd2 EMAd3

EU

1 53.53 60.00 36.31 53.61 59.06 36.31 43.56 48.78
3 54.25 58.89 37.28 54.03 58.42 36.61 43.47 49.39
5 54.06 59.42 38.47 54.28 58.00 37.11 43.47 49.00
7 53.47 59.53 38.61 54.08 57.97 37.39 43.25 48.42
9 53.50 59.50 38.11 53.64 57.61 37.03 43.00 48.31

CB

1 57.33 61.97 38.22 54.03 60.25 36.64 44.36 50.50
3 60.58 62.19 37.50 55.78 58.89 36.75 44.42 51.36
5 60.00 61.28 38.69 55.58 59.36 36.81 44.31 51.28
7 60.03 61.78 38.11 54.53 59.61 37.03 44.36 51.03
9 59.97 62.17 37.86 53.69 60.28 36.89 44.31 51.50

COS

1 49.42 60.42 37.39 52.22 57.25 34.50 43.39 48.58
3 51.33 59.81 37.97 50.47 55.28 35.00 43.56 48.69
5 51.31 59.22 38.28 50.42 55.58 35.64 43.19 48.50
7 51.53 59.31 38.08 50.28 55.42 36.17 42.94 48.42
9 52.00 59.00 37.78 50.06 55.42 36.19 42.58 48.19

COR

1 49.56 59.72 37.89 51.03 56.44 35.72 40.86 46.69
3 49.94 59.97 37.75 49.50 54.58 35.61 41.06 47.31
5 50.25 59.53 37.86 49.94 55.00 35.08 40.56 47.78
7 50.36 59.14 37.36 49.11 54.69 35.67 40.47 47.50
9 50.22 59.28 36.97 48.81 55.69 36.28 40.14 47.14

Note: the bold numbers are the highest accuracies for each distance metric.

4.2. Separability Index and Dissimilarity Matrix

Among all the features of an E-nose, not all of them are sensitive to the target gases. In order to
remove the features which are not helpful for classification, the proposed feature selection method is
conducted in this section. MV of Dataset I and DR of Dataset II are taken as examples to illustrate the
process of feature selection. Figure 2 shows the class separability index of 15 features of MV and class
separability index of 16 features of DR. It is obvious that sensor 4 for MV and sensor 13 for DR have
the highest separability, while sensor 8 of MV and sensor 9 of DR have the worst one. Hence, if the
selection is just based on separability, the feature of sensor 4 for MV and feature of sensor 13 for DR
should be chosen in the final subset.
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resistance change and the baseline (DR) for Dataset II.

The dissimilarity for all the pairwise combinations of features of MV for Dataset I and DR for
Dataset II, as computed by Equation (11), are shown in Figure 3. Colors biased towards red/blue tones
denote higher/lower values of the dissimilarity. Note that the distributions of values are symmetric
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with respect to the swap of features for Figure 3. We can see clearly that the combination of features
index of the MV with highest dissimilarity turns out (6, 8), and the different situation appears for the
DR features when the features index for the selected pair of features is (4, 10). Hence, if we choose
two subfeatures only based on dissimilarity, the feature subset {6, 8} of the MV and the feature subset
{4, 10} will be chosen on the basis of the pigment band.
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4.3. Optimal Numbers of Different Kinds of Features after Selection

To obtain the optimal numbers of different features after feature selection, the classification
accuracies performed by KNN classifier with the selected feature subset for Dataset I and Dataset II
are computed. Figure 4 shows the best classification accuracies of seven features of Dataset I, while
Figure 5 shows the best classification accuracies of eight features of Dataset II when COS is used as
distance metric and k = 1. It can be clearly observed that the recognition rate rises rapidly when the
number of selected feature dimensions, which are put into KNN classifier, is small. Generally, the
recognition rate increases with the increasing number of selected features. However, for the vast
majority of the features, using all the features cannot obtain the optimal recognition rate. This means
that not all the features are beneficial for the identification. Therefore, the number of selected features
corresponding to the best classification accuracy is regarded as the optimal number of the subset after
feature selection.
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We can obtain the optimal numbers of different kinds of features with COS and COR distance
metrics when k = 1 for both Datasets, which are given in Tables 7 and 8.

Table 7. Optimal numbers of different features after selection for Dataset I.

Features MV FFT Db1 Db2 Db3 Db4 Db5

Distance metrics
COS 15 18 21 10 10 36 74
COR 14 26 25 23 18 49 109

Table 8. Optimal numbers of different features after selection for Dataset II.

Features DR NDR EMAi1 EMAi2 EMAi3 EMAd1 EMAd2 EMAd3

Distance metrics
COS 13 16 7 13 8 7 11 12
COR 13 9 7 10 8 16 11 12

4.4. Comparison of Classification Accuracies with and without Feature Selection

Table 9 lists the classification results of Dataset I with/without feature selection, and Table 10 lists
the classification results of Dataset II with/without feature selection. It can be concluded from the
Tables 9 and 10 that the classification accuracy with feature selection based on the proposed feature
selection approach is improved obviously than without feature selection. For Dataset I, it can be seen
that the Db1 and Db2 achieve best classification accuracy when the distance metric is COR with feature
selection, which achieve 96.25%. For Dataset II, the classification accuracies of DR and EMAi3 can
achieve the classification rate above 70% when the distance metric is COR. However, for COS, only the
classification accuracies of DR can achieve the classification rate above 70%. Hence, COR is used as the
optimal distance metric in the following feature fusion framework.
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Table 9. Classification accuracy of Dataset I with/without feature selection.

Features MV FFT Db1 Db2 Db3 Db4 Db5

Without selection

COS

Dimension 15 30 30 60 90 120 150
1 80.00 85.00 90.00 90.00 95.00 95.00 95.00
2 80.00 80.00 90.00 95.00 85.00 85.00 80.00
3 65.00 70.00 95.00 90.00 90.00 90.00 90.00
4 85.00 75.00 85.00 95.00 95.00 95.00 80.00

Average 77.50 77.50 90.00 92.50 91.25 91.25 86.25

COR

1 75.00 85.00 95.00 90.00 90.00 95.00 95.00
2 85.00 85.00 100.00 90.00 90.00 90.00 85.00
3 70.00 65.00 90.00 90.00 90.00 90.00 90.00
4 85.00 75.00 90.00 100.00 95.00 95.00 80.00

Average 78.75 77.50 93.75 92.50 91.25 92.50 87.50

With selection

COS

Dimension 15 18 21 10 10 36 74
1 80.00 85.00 95.00 95.00 95.00 95.00 95.00
2 80.00 80.00 90.00 90.00 95.00 90.00 85.00
3 65.00 75.00 95.00 95.00 90.00 95.00 85.00
4 85.00 80.00 95.00 95.00 90.00 90.00 90.00

Average 77.50 80.00 93.75 93.75 92.50 92.50 88.75

COR

Dimension 14 26 25 23 18 49 109
1 85.00 85.00 95.00 95.00 90.00 90.00 95.00
2 90.00 85.00 100.00 95.00 95.00 100.00 85.00
3 70.00 70.00 95.00 95.00 95.00 95.00 90.00
4 80.00 80.00 95.00 100.00 95.00 95.00 85.00

Average 81.25 80.00 96.25 96.25 93.75 95.00 88.75

Note: 1, No-infection; 2, S. aureus; 3, E. coli; 4, P. aeruginosa.

Table 10. Classification accuracy of Dataset II with/without feature selection.

Features DR NDR EMAi1 EMAi2 EMAi3 EMAd1 EMAd2 EMAd3

without selection

COS

Dimension 16 16 16 16 16 16 16 16
1 61.00 26.00 73.17 98.67 65.00 61.17 69.67 85.00
2 85.17 98.67 67.17 83.33 84.50 54.00 62.83 67.67
3 90.33 91.83 10.00 37.17 89.33 27.33 58.50 79.50
4 6.67 17.33 40.67 59.50 67.67 1.33 5.83 15.00
5 46.17 58.17 30.83 23.83 27.50 23.33 55.50 40.67
6 7.17 70.50 2.50 10.83 9.50 39.83 8.00 3.67

Average 49.42 60.42 37.39 52.22 57.25 34.50 43.39 48.58

COR

1 53.00 25.50 73.33 98.83 65.50 60.83 70.67 83.00
2 85.17 98.83 67.67 83.83 83.83 54.33 63.17 68.67
3 90.17 90.17 6.33 29.50 86.33 27.33 45.67 78.67
4 5.17 14.83 43.67 58.17 67.67 0.83 4.50 11.50
5 51.83 59.83 32.17 22.67 24.00 20.67 51.50 34.67
6 12.00 69.17 4.17 13.17 11.33 50.33 9.67 3.67

Average 49.56 59.72 37.89 51.03 56.44 35.72 40.86 46.69

with selection

COS

Dimension 13 16 7 13 8 7 11 12
1 47.17 26.00 75.00 87.50 82.00 52.50 77.83 82.50
2 92.00 98.67 67.17 84.33 90.17 53.00 66.00 79.33
3 85.83 91.83 31.83 32.83 75.33 31.67 58.67 76.50
4 31.67 17.33 16.50 71.33 43.00 1.50 30.50 20.00
5 93.67 58.17 88.17 49.33 62.83 41.00 70.00 47.00
6 76.33 70.50 19.67 29.50 59.67 43.67 47.17 62.00

Average 71.11 60.42 49.72 59.14 68.83 37.22 58.36 61.22

COR

Dimension 13 9 7 10 8 16 11 12
1 41.00 51.00 73.33 92.17 85.83 60.83 74.00 79.50
2 92.67 99.17 72.33 87.50 91.17 54.33 64.00 79.33
3 86.67 98.67 24.17 60.50 59.33 27.33 44.83 76.67
4 31.33 0.00 9.50 5.33 43.67 0.83 16.00 9.33
5 93.17 30.33 81.83 43.33 65.33 20.67 69.00 42.17
6 81.33 95.67 37.17 52.83 91.00 50.33 47.17 60.33

Average 71.03 62.47 49.72 56.94 72.72 35.72 52.50 57.89

Note: 1, ethanol; 2, ethylene; 3, ammonia; 4, acetaldehyde; 5, acetone; 6, toluene.
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4.5. Results of Feature Fusion

In order to compare the performance of different identification methods, we applied two control
methods: (1) the conventional feature fusion strategy combining the original features simply and
directly; (2) the proposed feature fusion method but without feature selection. Figures 6 and 7 showed
the results of the three methods for both the datasets, respectively. For both of the datasets, the
proposed feature selection and fusion method can obtain the best classification accuracy. Particularly,
for Dataset I, it is observed that the conventional feature fusion method, which integrates all the
features without feature selection, only has the accuracy of 77.5%, which is much lower than the other
two methods. The conventional fusion method does not consider the importance of each kind of
feature, which have distinct contributions to the identification. The proposed feature fusion method
enhances the effects of “good” features and suppresses the effects of “bad” features, which can improve
the performance. The proposed feature selection and fusion method can obtain the highest accuracy
of 97.5% among the three methods. It demonstrates that the redundant features will deteriorate
the performance of the gas sensor array, and the proposed feature selection methods can eliminate
the redundant and irrelevant features and finally enhance the performance of the gas sensor array.
For Dataset II, we can see clearly in Figure 7 that the recognition rate of the proposed feature fusion
method with selected features obviously improved the performance, which has achieved an accuracy
of 80.11%. The classification for each kind of gas has been significantly improved, compared with
the conventional method. This means that the proposed feature selection and fusion method can
effectively compensate the drift effect and enhance the discrimination ability of the gas sensor array.
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Figure 6. The 3D plot of classification results of the four feature fusion methods for Dataset I.
(a) The conventional feature fusion method without feature selection; (b) the proposed feature fusion
method without feature selection; (c) the proposed feature fusion method with feature selection; (Note:
1, No infection; 2, S. aureus; 3, E. coli; 4, P. aeruginosa.).
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Figure 7. The 3D plot of classification results of the four feature fusion methods for Dataset II. (a) The
conventional feature fusion method without feature selection; (b) the proposed feature fusion method
without feature selection; (c) the proposed feature fusion method with feature selection; (Note: 1,
ethanol; 2, ethylene; 3, ammonia; 4, acetaldehyde; 5, acetone; 6, toluene).
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5. Conclusions

In this paper, efforts are made to improve the discrimination ability of a gas sensor array using a
new feature selection and feature fusion framework. The feature selection integrates the filter and the
wrapper approaches, and the feature selection emphasizes the classification dominance fusion strategy
based on the classification rates of each base feature. Compared with original features, the selected
features can better represent the E-nose signal characteristics. Based on the proposed framework,
the E-nose performs better markedly than not only using all the basis features without selection,
but also the conventional feature fusion method. The experimental results show that the classification
rates of gases have been excellent, and improved after feature selection compared with the results
without feature selection. The feature selection method can select more relevant but less redundant
feature elements, which are beneficial to the gas identification. Furthermore, compared with the
conventional direct fusion method, the fusion method proposed in this paper has better performance
on gas classification, as the conventional fusion method directly integrates “good” features as well as
“bad” features to one blended feature matrix, without considering the different discrimination ability of
each kind of features. The blended feature matrix may contain redundancies between feature elements,
which are not conducive for distinguishing different kinds of gases. Moreover, the discrimination
ability of the base feature is the most intuitive indicator of the contribution of each feature for the final
discrimination in the decision level. It indicates that the superiority of the proposed feature selection
and fusion framework in enhancing E-nose performance. It also indicates that proposed framework
can be successfully used in overcoming the long-term drift effect of a gas sensor array.
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