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Abstract: In wireless powered communication networks (WPCNs), the harvested energy varies
greatly among user nodes (UNs), resulting in throughput unfairness. Since the harvested energy
is limited, each UN must strategically allocate the energy used for forwarding the other nodes’
information and for transmitting its own information, which further aggravates the global unfairness
in terms of throughput. In this paper, we leverage user cooperation in multi-hop transmission to
improve the throughput fairness. We formulate the fairness problem as the max-min throughput
with resource allocation, which is NP-hard. We design an approximate algorithm to address this
problem. The theoretical proof and the simulation results both show that the proposed algorithm
provides tight upper and lower bounds for the optimal solution. Compared with the benchmark
methods, our proposed method significantly enhances the throughput fairness for WPCNs.

Keywords: user cooperation; approximate algorithm; WPCN; max-min throughput problem

1. Introduction

Wireless sensor networks (WSNs) have developed rapidly due to their ubiquitous applications
in a wide range of areas, such as military, transportation, and disaster rescue [1–4]. In conventional
WSNs, sensor nodes are powered by batteries and may not be recharged after deployment. As a result,
the network lifetime is severely restricted due to the limited energy provided by the on-board battery.
As a promising solution, energy harvesting technologies can combat this power limitation by collecting
energy via solar or electromagnetic signals [5,6]. As a representative technology, wireless power transfer
(WPT) has several advantages, including a long transmission range and controllable transmission
pattern. With the support of WPT, the applications of WPT-based energy harvesting can be divided
into two branches. The first branch is the simultaneous wireless information and power transfer [7–9],
where harvesting energy and information transmission are realized over the separated radio frequency
signals simultaneously. The second branch is the wireless powered communication networks (WPCNs).
Each user node (UN) in a WPCN harvests energy from an energy transmitter (ET) in the downlink and
uses the energy to transmit information in the uplink. Compared to conventional WSNs, WPCNs have
a prolonged operating lifetime and provide stable energy to UNs, i.e., sensor nodes [10].

However, the throughput fairness in WPCNs remains challenging due to the diversity of the nodes’
physical channel states. In contrast to a stable, on-board, battery energy supply, radio-frequency-based
WPT is closely related to the different channel state of each UN. The channel states among UNs are
highly diverse due to their distributed locations in WPCNs. The UNs that are further from the ET
receive less energy than those closer to the ET. Consequently, the “far” UNs transmit less data than the
“near” UNs. Such a “near-far” effect leads to throughput performance unfairness [11].
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Prior works have attempted to address this problem in two ways: Equalization-based and
cooperation-based approaches. The former type of approach aims to equally balance the throughput
by controlling the energy distribution, for example, signal beamforming [12], or by metric-tuning,
such as the common throughput [11] and weighted sum-rate [13]. These approaches, however,
suffer from either costly hardware, e.g., multi-antenna ET, or strong dependence on the link state
between the UNs and ET, as well as between the UNs and the information receiver. On the other hand,
the cooperation-based approach establishes cooperation among several UNs to achieve a “win-win”
result by designing routine selection, power control, or time allocation mechanisms. In addition to
the additional cost and complexity of deployment, dedicated designs that comprehensively combine
the above mechanisms are difficult to achieve. Meanwhile, prior works focus on single transmission
and fixed paths between source-destination pairs; they do not consider user cooperation in multi-hop
transmissions, which is essential for achieving fairness in cooperative WPCNs. In [14], they tested the
user cooperation between two UNs and proved that it helped to improve the throughput fairness in
a simple two-hop WPCN. However, they assumed that only two UNs transmitted information in the
WPCN. In actual multi-user networks, the reasonable transmission path for improving throughput
fairness cannot be ignored.

In this paper, we consider user cooperation in the multi-hop WPCN and find the optimal
transmission path in the max-min throughput (MMT) problem. We further formulate this problem
as a mixed-integer nonlinear programming (MINLP) model, which is NP-hard and subject to time
allocation, energy harvesting, and traffic conservation constraints. The problem cannot be solved
directly by existing methods. We design an approximate algorithm, namely, new max-min throughput
algorithm (NE-MMT), where the power control, time allocation, and link scheduling are jointly
optimized. We present the tight upper and lower bounds of the optimal solution. The extensive
simulation results show that NE-MMT can significantly enhance the throughput fairness of WPCNs.

The remainder of the paper is organized as follows. In Section 2, we describe related works.
In Section 3, we describe the system model and the MMT problem formulation. In Section 4, we introduce
our algorithm for solving the problem. In Section 5, numerical simulations, the performance analysis of
our method, and the proposed algorithm are given. Section 6 concludes the paper.

2. Related Work

Methods to improve fairness to combat the “near-far” effect in WPCNs are widely researched.
Multi-antenna ET has been proposed to perform the WPT, with the energy beamforming during energy
harvesting [12]. In [13], the weighted sum-rate maximization problem was considered to incorporate
fairness based on energy beamforming. In [15], energy beamforming was optimally designed for
a WPCN in which multiple antennas were equipped at the ET and user cooperation between two UNs
was considered. Due to the complexity and high cost of multi-antenna ET deployment, some solutions
have considered resource allocation to balance the throughput among UNs in the single-antenna
ET case.

In [11], the authors defined a performance metric called common throughput to evaluate
the constraint where all UNs were assigned equal throughput by time allocation, regardless of
their locations, to address the double “near-far” effect. Based on the same system model in [11],
the authors considered the circuit power dissipation, which was not negligible, especially for the
WPT. They also proposed a low-complexity, fixed-point, iteration algorithm for the MMT problem
in [16]. Because cooperation is an efficient method to improve fairness in wireless powered networks,
energy and transmission cooperation have been widely studied [17–20]. In [21], they considered
cooperation in terms of energy, rather than information, and solved an online optimization problem
to focus on the long-term weighted throughput performance. In [22], they proposed a novel energy
cooperative framework in which the “far” UNs can harvest energy continuously by overhearing signals
sent by nearer UNs to the destination node before its information transmission. This cooperative
protocol can significantly improve user fairness. In addition to energy cooperation, there has been
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some research in transmission cooperation. In [20], a “harvest-then-cooperate” protocol was proposed
in which the UNs and their dedicated relay nodes harvest energy and then cooperatively work to
transmit the information of the UNs to improve the fairness. The relay selection problem, based on the
user and relay cooperation, was studied in [23]. The authors maximized the capacity under an energy
transfer constraint. In [24], they proposed a Nash bargaining approach to achieve optimal information
transmission efficiency of source-destination pairs, with multiple source-destination pairs and one relay.
However, setting dedicated relay nodes adds additional costs and increases deployment complexity.

User cooperation is another method to improve fairness performance. User cooperation helps the
UNs that harvested more energy to relay the information of the UNs that have less energy or poorer
transmission channel states [14]. In [25], they presented a new pricing strategy to motivate one UN,
with more energy, to sell its excess energy to help another UN, with less energy, complete a uplink
information transfer. The “relay” UN placement and the UN’s communication mode selection problems
were also discussed. In [26], the paper considered two communication groups that cooperated via
the WPT and time sharing to fulfill their expected information delivery and achieve a “win-win”
collaboration. In [27], they presented a new user cooperation method where a pair of wireless powered
UNs first exchanged their independent messages with each other and then transmitted jointly to the
destination node, enhancing the throughput fairness in WPCNs. In [28], they considered implementing
energy-efficient information transfer to mitigate the “near-far” effect. They proposed an optimized
transmission protocol to maximize the sum-throughput and chose an appropriate device-to-device
communication mode.

In user cooperation, the forwarding UNs must sacrifice harvested energy and transmission time to
improve the throughput of the UNs with less energy. If a UN forwards a large amount of information,
then the UN needs to spend more time to harvest energy. However, more time spent harvesting energy
may lead to less time for transmission for a given time length because UNs cannot simultaneously
harvest energy and transmit information in a half duplex [29,30]. Therefore, in the WPCN, the UNs
must select a reasonable forwarding UN. Improving fairness performance requires a combination of
reasonable routine selection, power control, and time allocation.

To the best of our knowledge, all the works above improve the fairness via power control and time
allocation based on a fixed transmission path and do not consider multi-hop transmission based on user
cooperation. In [31], the letter focused on fairness-aware power and time allocation in the WPCN under
the “harvest-then-transmit” protocol in which downlink wireless energy transfer was implemented first
and, then, uplink wireless information transfer occurred in a spectrum-sharing fashion. They aimed to
achieve the rate fairness of all UNs under three fairness criteria: Max-min, proportional, and harmonic
fairness. In [32], they studied fairness among UNs and presented a time resource allocation scheme
to maximize the individual energy efficiency of each UN based on the max-min criterion. However,
they considered the single transmission method without user cooperation.

3. System Model and Problem Formulation

We consider a WPCN consisting of a hybrid access point (HAP), denoted by H, and a set of
UNs, N = {1, 2, . . . , N}, without fixed energy sources, as shown in Figure 1. According to the
“harvest-then-transmit” protocol, the HAP provides wireless power to all the UNs in the downlink;
then, all UNs use the harvested energy to transmit information to the HAP. Due to the “near-far”
effect, the UNs close to the HAP obtain more energy than those far from the HAP. More importantly,
these “far” UNs consume more energy to transmit information due to the poorer channel quality.
Therefore, we consider multi-hop transmission to help the “far” UNs to transmit information.
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Before a time block starts, the HAP first uses the algorithm mentioned later to calculate the
information, such as forwarding path, transmission time, etc. Then, the HAP broadcasts the
information to the UNs. Based on the information, each UN controls its operation in the time block.
Since the energy consumption of receiving the controlling information is much less than that of
transmission information in the time block, its energy cost is ignored [14,25–27,32].

In the time block, the UNs harvest energy from the HAP during the downlink, which is denoted by
t0. Let LHi denote the link formed between the HAP and the UN, i, during the downlink. The downlink
power gain of link, LHi, is denoted by hHi. We use P0 to denote the transmission power of the HAP.
The available harvesting energy of the UN, i, is given by the following equation [11]:

Ei = ζP0hHit0, (1)

where ζ represents the power conversion efficiency, which is generally 50–70%. Each UN starts to transmit
its information through its output links after it receives the harvested energy. Receiving information and
transmitting energy simultaneously causes self-interference at the HAP; thus, the HAP acts only as a sink in
the uplink and does not provide wireless power.

We denote the set of all UNs and the HAP as V and use Lij to denote the link formed between
the node, i, and the node, j, in the uplink, where ∀i ∈ V/H and ∀j ∈ V. The uplink power gain
of the link, Lij, is denoted by gij. In the transmission uplink, the link may be active for forwarding
information only if the quality of the link, Lij, is better than that of the link, LiH . Otherwise, the link,
Lij, is inactive and the UN, i, transmits information to the HAP directly due to the limited harvested
energy. Links that may be active are called feasible links. The set of all feasible links is denoted by L.
We introduce the binary variable, Uij, to indicate whether the feasible link, Lij, is active in the uplink,
Lij ∈ L. If the link, Lij, is active, then Uij is one; otherwise, it is zero. When the link, Lij, is active,
its reverse link must be silent in the uplink. Thus, we have:

1 ≥ Uji + Uij, ∀Lij ∈ L (2)

Let tij denote the transmission time of the link, Lij. For the convenience of this discussion,
we normalize a length of one time block into unit time. We can express the time constraint as:

∑Lij∈L tij + t0 = 1, (3)

tij ≤ Uij, ∀Lij ∈ L. (4)
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where Equation (3) guarantees that the sum of the time for harvesting energy and the time for
transmission information does not exceed the length of the time block and then Equation (4) ensures
that the transmission time of one feasible link is zero when the link is inactive in the time block.
We use Pi, which takes a value in [0, Pmax], to denote the transmission power of the UN, i. During the
transmission phase, the energy consumption also includes non-ideal circuit energy consumption,
such as sampling and signal processing. We use Pc to denote the additional circuit loss energy
consumption [33]. The transmission energy consumption of the UN, i, is expressed by:

Eti = ∑Lij∈L(Pc + Pi)tij, ∀i ∈ N. (5)

Using the time-division multiple access method for transmission avoids co-channel interference,
that is, only one link at a time can be active for data transmission. Therefore, the quality of each active
link depends on only the corresponding signal-to-noise ratio (SNR). We use SNRij to denote the SNR
of the link, Lij. Once the transmission node, i, of the link, Lij, determines the level of transmission
power, the link capacity, Cij, can be calculated by:

Cij = Wlog
(
1 + SNRij

)
, (6)

where SNRij =
Pi gij
Wη , W is the bandwidth, η is the noise power, and log is base 2 logarithm. We use

rij to indicate the amount of information passing through the link, Lij, in the time block. Then, in the
time, tij, the amount of information transmitted, rij, must satisfy the following capacity constraint:

rij ≤ Cijtij, ∀Lij ∈ L. (7)

When the receiving node, j, receives data through the link, Lij, it consumes a certain amount of
energy for the energy dissipation of the radio, which is caused by running the receiver circuitry and is
denoted by Eelec nJ/bit. The energy consumed by the UN, i, to receive information is expressed as [34]:

Eri = Eelec ∑Lui∈L rui, ∀i ∈ N. (8)

With the inequalities (1), (5), and (8), the energy constraint of the UN, i, can be expressed as:

Eri + Eti ≤ Ei. (9)

The data generated and forwarded by each UN must be transmitted through multiple output
links. We use fi to represent the amount of data generated by the UN, i. Then, the UN, i, must satisfy
the traffic constraint:

∑Lij∈L rij −∑Lui∈L rui ≥ fi, ∀i ∈ N. (10)

Before the end of the time block, the data of each UN must be fully imported into the HAP;
therefore, the HAP must satisfy the following traffic conservation constraint:

∑i∈V/H fi = fH . (11)

where fH denotes the receiving data of the HAP in the time block. Constraints (7) and (10) ensure the
reliability of each active link. If (7) and (10) hold, then (11) is satisfied; therefore, constraint (11) can be
relaxed. Let f denote the minimum value of the transmitted information of the UNs in the time block;
then, the amount of transmitted data for each UN is no less than the values in the time block, that is:

fi ≥ f , ∀i ∈ N. (12)
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The MMT problem is an important issue for optimizing throughput fairness. In this paper,
we focus on resource allocation in the max-min problem. As a common indicator of throughput
fairness in the MMT problem, we adopt the minimum throughput of the UNs as the performance
metric [11], i.e., the amount of data, f . With (12), the objective function of the max-min problem can be
transformed into maximizing the amount of data, f . The max-min problem is modeled as the MMT,
which is:

MMT: : max f
s.t. (1)− (10), (12)
Uij ∈ {0, 1}, rij ≥ 0, f ≥ 0, Pi ≥ 0, t0 ≥ 0, tij ≥ 0.

The MMT is a MINLP model. Such programming problems are, generally, NP-hard [35]. The existing
methods cannot be used to solve the problem directly. The programming model shows that the main
challenges in solving the model are as follows: (1) The multiplication of the nonlinear log function and
linear variable appears on the right side of constraint (7) in the MMT; and (2) bi-linear products, such as
Pitij, exist. In the next section, we propose converting the model to a mixed-integer linear programming
(MILP) model via the piece-wise linear (PWL) method. Based on the PWL method, we propose an
approximate algorithm called NE-MMT.

4. NE-MMT Approximate Algorithm for the Max-Min Problem

In the MMT, constraint (7) contains the log function, which leads to the main difficulty in solving
the problem. We use the PWL method to transform constraint (7) into a linear constraint.

4.1. PWL Method to Transform the Nonlinear Function into a Piece-Wise Linear Function

We use the proposed PWL method to linearize the log function term [36], as shown in Figure 2.
The idea behind the PWL method is to approximate the log curve (base e) by a set of line segments and
guarantee that the gap between the piece-wise function and the log function (base e), denoted as the
ln function, is less than a threshold. We denote the threshold as γ. For the sake of discussion, we use
the following constraint in place of constraint (6):

Cij =
W
ln2

ln
(
1 + SNRij

)
(13)

Since the ln function of the corresponding active links, Lij, is a function of the SNRij variable,
we segment the interval of SNRij, which is [0, Pmaxgij/Wη], into multiple segments. We use Dij to
denote the number of segments in the interval, [0, Pmaxgij/Wη]. The qth interval segment is expressed

as
(
(SNRq

ij)L
, (SNRq

ij)U

)
, q ∈ Dij. The slope of the qth piece-wise segment corresponding to SNRij is

denoted by vq
ij and is expressed as:

vq
ij =

ln
(

1 + (SNRq
ij)U

)
− ln

(
1 + (SNRq

ij)L

)
(

SNRq
ij

)
U
−
(

SNRq
ij

)
L

(14)

Next, we determine the value of Dij via the PWL method, such that the gap between the piece-wise
function and the log function is less than the threshold, γ. The process of the PWL method is shown in
Algorithm 1.
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Algorithm 1: Piece-wise Linear Method

1. Initialization: q = 0, Dij = 0,
(

SNRq
ij

)
L
= 0.

2. Use Newton’s method to solve the following equation:

−ln
(

vq
ij

)
+ vq

ij

(
1 +

(
SNRq

ij

)
L

)
− 1− ln

(
1 +

(
SNRq

ij

)
L

)
= γ.

Determine the slope vq
ij.

3. Use Newton’s method to solve Equation (14) to obtain
(

SNRq
ij

)
U

If
(

SNRq
ij

)
U
≥ Pmaxgij/Wη, then stop and set

(
SNRq

ij

)
U

and Dij to Pmaxgij/Wη and q. Otherwise, continue to
step 4.

4. Use the equation
(

SNRq
ij

)
U
=
(

SNRq+1
ij

)
L

to obtain the value of
(

SNRq+1
ij

)
L
. Set q = q + 1, return to step 2.
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The log function of the variable, SNRij, can be transformed to a linear piece-wise via Algorithm 1.
The value of the linear piece-wise function is the lower bound of that of the log function. We convert
constraint (7) to the following group of constraints with the log function:

rij ≤
Wtij

ln2

[
vq

ij

(Pigij

Wη
−
(

SNRq
ij

)
L

)
+ ln

(
1 +

(
SNRq

ij

)
L

)]
, ∀Lij ∈ L, q ∈ Dij (15)

After replacing constraint (7) in the MMT with constraint (15), all the terms are linear in the MMT,
except for the term Pitij. We use a new variable, αij, to represent the bi-linear product term. The MMT
can be transformed into MMT1 as follows:

MMT1 : max f
s.t. fi ≥ f , ∀i ∈ N

1 ≥ Uji + Uij, ∀Lij ∈ L
∑Lij∈L tij + t0 = 1
tij ≤ Uij, ∀Lij ∈ L
∑Lij∈L(Pctij + αij) + Eelec ∑Lui∈L rui ≤ ζP0hHit0

∑Lij∈L rij −∑Lui∈L rui ≥ fi, i ∈ V/H

rij ≤ W
ln2

[
vq

ij

(
αijgij
Wη − (SNRq

ij)L
tij

)
+ tijln

(
1 + (SNRq

ij)L

)]
, ∀Lij ∈ L, q ∈ Dij

Uij ∈ {0, 1}, rij ≥ 0, f ≥ 0, αij ≥ 0, t0 ≥ 0, tij ≥ 0
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The new model eliminates the variable, Pi, and is a MILP problem that can be easily solved by
existing optimization software, such as Gurobi and CPLEX. We now give the relationship between the
solution of the MMT and that of the MMT1.

Lemma 1. The optimal solution of the MMT1 is a feasible solution of the MMT.

Proof. The only difference between the MMT and the MMT1 is the capacity constraint. The capacity
constraint in the MMT1 is obtained by linearizing the right term of the corresponding constraint in
the MMT. For the given values, Pi and tij, the value of the right term of the capacity constraint (15) in
the MMT1 is no more than that of the capacity constraint (7) in the MMT. The solution space of the
variable, rij, in the MMT1 is covered by that in the MMT. Because of the same solution spaces of the
other variables, the optimal solution in the MMT must be a feasible solution to the MMT. �

We see from Lemma 1 that the optimal solution in the MMT1 provides a lower bound to that of
the MMT. We rewrite the group of capacity constraints in the MMT1 as:

rij ≤
Wtij

ln2

[
vq

ij

(Pigij

Wη
−
(

SNRq
ij

)
L

)
+ ln

(
1 +

(
SNRq

ij

)
L

)]
+

γW
ln2

, ∀Lij ∈ L, q ∈ Dij. (16)

With the new capacity constraint (16), we build a new model as the MMT2:

MMT: : max f
s.t. fi ≥ f , ∀i ∈ N

1 ≥ Uji + Uij, ∀Lij ∈ L
∑Lij∈L tij + t0 = 1
tij ≤ Uij, ∀Lij ∈ L
∑Lij∈L(Pctij + αij) + Eelec ∑Lui∈L rui ≤ ζP0hHit0

∑Lij∈L rij −∑Lui∈L rui ≥ fi, i ∈ V/H

rij ≤
Wtij
ln2

[
vq

ij

( Pi gij
Wη − (SNRq

ij)L

)
+ ln

(
1 + (SNRq

ij)L

)]
+ γW

ln2 , ∀Lij ∈ L, q ∈ Dij.

Uij ∈ {0, 1}, rij ≥ 0, f ≥ 0, αij ≥ 0, t0 ≥ 0, tij ≥ 0

Through a similar proof as that of Lemma 1, we can find the upper bound of the optimal solution
of the MMT.

Lemma 2. The optimal solution of the MMT2 is the upper bound of that of the MMT.

Proof. The only difference between the models of the MMT and the MMT2 is the use of capacity
constraint (7) in the MMT and constraint (16) in the MMT2. The capacity of the link, Lij, in the MMT is
no more than the upper bound value. Thus, we have:

ln
(
1 + SNRij

)
≤ vq

ij

(Pigij

Wη
− (SNRq

ij)L

)
+ ln

(
1 + (SNRq

ij)L

)
+ γ

Since the transmission time of the link, Lij, is subject to 1 > tij ≥ 0, we have:

rij ≤ cijtij =
Wtij
ln2

[
vq

ij

( Pi gij
Wη − (SNRq

ij)L

)
+ ln

(
1 + (SNRq

ij)L

)
+ γ

]
≤ Wtij

ln2

[
vq

ij

( Pi gij
Wη − (SNRq

ij)L

)
+ ln

(
1 + (SNRq

ij)L

)]
+ γW

ln2

The solution space of the variable, rij, in the MMT is covered by that in the MMT2, ∀Lij ∈ L.
Because of the same solution space for the other variables, the optimal solution of the MMT2 is the
upper bound of the optimal solution of the MMT. �
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Although we cannot obtain the optimal solution of the problem, we use Lemmas 1 and 2 to
determine the boundaries of the optimal solution. However, we do not know how large the gap
between the upper and lower bounds is. We use the approximate algorithm in the next section to
ensure that the gap is within a specified range.

4.2. Approximate Algorithm for the Max-Min Problem

In the MMT, the group of variables, Uij, is the unique integer variable set, ∀Lij ∈ L. As the active
state of the link, Lij, and the transmission power of the transmission node are given, the MMT is
transformed into a linear programming model of the traffic and time allocation. We use

(
Pi, Uij

)
to

denote the case of a determined state of the link, Lij, and the chosen transmission power of the UN, i,
∀i ∈ V/H, ∀Lij ∈ L. Then, for the given case,

(
Pi, Uij

)
, the MMT is expressed as the MMT

(
Pi, Uij

)
as:

MMT
(

Pi, Uij
)

: max f
s.t. fi ≥ f , ∀i ∈ N (17)

∑Lij∈L tij + t0 = 1 (18)

∑Lij∈L(Pc + Pi)tij + Eelec ∑Lui∈L rui ≤ Ei, ∀i ∈ N (19)

rij ≤ cijtij, ∀Lij ∈ L (20)

∑Lij∈L rij −∑Lui∈L rui ≥ fi, ∀i ∈ N (21)

rij ≥ 0, fi ≥ 0, f ≥ 0, tij ≥ 0, t0 ≥ 0

where L denotes the set of active links in the given
(

Pi, Uij
)

case, and cij represents the capacity of
the link, Lij, in the given case, which can be calculated by (6). We use (15) to obtain the capacity of
the link, Lij, in the same case and denote it as ĉij. If we use the constraints (22) and (23) in place of
the capacity constraint (21), the model MMT

(
Pi, Uij

)
is transferred into two new models, denoted by

MMT-UP
(

Pi, Uij
)

with constraint (22) and MMT-DOWN
(

Pi, Uij
)

with constraint (23):

rij ≤ ĉijtij +
γW
ln2

, ∀Lij ∈ L (22)

rij ≤ ĉijtij, ∀Lij ∈ L (23)

According to Lemmas 1 and 2, we obtain the upper and lower bounds of the optimal solution
of the MMT

(
Pi, Uij

)
by solving the MMT-UP

(
Pi, Uij

)
and the MMT-DOWN

(
Pi, Uij

)
, respectively.

We denote the upper and lower bounds in the given
(

Pi, Uij
)

case as f and f . The gap between the
upper and lower bounds is denoted by ∆ f , that is, ∆ f = f − f . We find the characteristics of the gap
in the given

(
Pi, Uij

)
case.

Lemma 3. In the given
(

Pi, Uij
)

case, the gap ∆ f ≤ γW
ln2

∣∣L∣∣.
Proof. The proof of Lemma 3 is given in Appendix A. �

Through Lemma 3, we determine the relationship between the upper and lower bounds of the
MMT. We use f

∗
and f ∗ to represent the upper and lower bounds, which are obtained by solving the

MMT2 and the MMT1. The gap between them is denoted by ∆ f ∗.

Lemma 4. Assume that the number of feasible links is |L| ; then, the gap between the upper and lower bounds of
the optimal solution of the MMT is no less than γW

ln2 |L|, that is, ∆ f ∗ ≤ γW
ln2 |L|.
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Proof. We use (t∗ij, U∗ij, P∗i , f ∗, f ∗i , r∗ij) to represent the optimal solution of the MMT. In the given case of

(U∗ij, P∗i ), the optimal solutions of the MMT2 and MMT1 are expressed as (t∗ij, U∗ij, P∗i , f ∗, f ∗i , r∗ij) and

(t∗ij, U∗ij, P∗i , f ∗, f ∗i , r∗ij), respectively. According to Lemma 3, ∆ f ∗ ≤ γW
ln2 |L

∗|, where L∗ represents the

optimal set of active links. Since L∗ ∈ L, we obtain ∆ f ∗ ≤ γW
ln2 |L|. �

According to Lemma 4, the gap between the optimal solution of the original problem and the
upper bound or lower bound is no greater than ∆ f ∗. We propose our following NE-MMT approximate
algorithm based on Lemma 4.

Algorithm 2: NE-MMT Algorithm

1. Initialization: ∆ f ∗.

2. Solve the following equation: ∆ f ∗ = γW
ln2 |L|. Determine γ.

3. Use the PWL method to transform the MMT into a MILP model.
4. Solve the MMT-UP or MMT-DOWN with a solver, such as CPLEX. Obtain an approximate solution.

Algorithm 2 produces the upper and lower bounds of the original problem. A smaller value of
∆ f ∗ indicates that the performance of the solution is closer to the optimal solution.

5. Experiment and Evaluation

5.1. Simulation Setup

In the WPCN, the bandwidth is set to 1 MHz and the noise power, η = −90 dBm. We assume the channel
short-term fading is Rayleigh distributed. The channel power gains, hHj = 10−3ρ2

Hjd
−α
Hj , gji = 10−3ρ2

jid
−α
ji ,

∀i ∈ V, j ∈ V/H [6], ρ2
ij follow the Rayleigh distribution, dij denotes the distance between the UN, i, and the

UN, j, and α is the path-loss exponent. We assume a 30 dB average signal attenuation at the 1 m reference
distance and we set ∆ f ∗ = 0.1 Kb. All the algorithms are implemented by C++ and GPLEX on a Sony EA37EC
notebook with an Intel Core i3 CPU (2.4 GHz) and 4 GB RAM. We run 100 instances of each setup.

We simulate the network throughput fairness performance using our proposed multi-hop
transmission method based on user cooperation. We use “MMT2” and “MMT1” to express the
upper and lower bounds obtained by our proposed method. Few studies have considered path
mechanisms in WPCNs. Thus, we chose two conventional wireless network path mechanisms with
user cooperation as performance benchmarks: Random progress (RA), in which the data of the UNs
are routed with equal probability through a feasible link; and the greedy method (GR), in which
the UNs transmit information by a feasible link based on which receiver node is closest to them.
In addition, we also assess the direct transmission method in which each UN transmits its information
directly to the HAP without user cooperation [6]. The “without user cooperation” method is the third
benchmark used to demonstrate the effect of user cooperation on throughput fairness. In Section 3,
the minimum throughput of the UNs is considered as a measure of user fairness. Therefore, we focus
on the average minimum throughput of the UNs, that is, the data value, f , as the performance measure
in the simulation.

5.2. Routing Results for the WPCN

In this WPCN, we assume that there are |N| = 20 UNs. The topology of the 20-node WPCN
is shown in Figure 3. The HAP is at the center point and is denoted by a triangle symbol. The UNs
are randomly distributed in the 10 × 10 square area and denoted by the red dots. We assume the
transmission power of HAP is 30 dBm. The path-loss exponent is set to 2.
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Figure 4 shows the transmission routing results obtained by our proposed method, the RA
method, the GR method, and the “without user cooperation” method. As can be seen from Figure 4a,
the proposed method can achieve a good balance between transmitting information and energy
consumption. As shown in Figure 4a, UN 2 cannot help to forward information generated by UN 9
due to its limited energy. Although UN 4 is closest to UN 17, it transmits its information to UN 11 and
UN 5. This is because UN 17, far from the HAP, harvests little energy and has no remaining energy
for forwarding other UNs’ information. UN 2, UN 3, and UN 7 are not close to the HAP. They have
limited harvested energy from broadcasting signals of the HAP. Therefore, they can only jointly help
UN 8 to forward information.

The routing result obtained by the “without user cooperation” method is shown in Figure 4b.
Since the method does not consider user cooperation, the information from UN 15 is transmitted to
the HAP over a long distance, which causes the large signal attenuation. The throughput of UN 15 is
greatly affected. Since the way to improve the throughput fairness performance is mainly through
improving the throughput performance of the UNs far from the HAP, the low throughput of UN 15
becomes a bottleneck in throughput fairness performance. However, the information from UN 15 is
forwarded by UN 5 in Figure 4a. Using the proposed method can break the bottleneck.
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Figure 4. Transmission routing results for the 20-node WPCN. (a) Transmission routing result obtained
by the proposed method; (b) Transmission routing result obtained by the “without user cooperation”
method; (c) Transmission routing result obtained by the “GR” method; (d) Transmission routing result
obtained by the “RA” method.



Sensors 2018, 18, 1890 12 of 19

Figure 4c,d shows the routing results obtained by the “RA” method and the “GR” method. It can
be found that UN 17 forwards information from UN 4 in Figure 4c. Although the UN17 is closest to the
UN 4, it is very far from the HAP. The UN 17 has a low harvested energy and it is almost impossible to
forward information. Thus, the throughput of UN 4 is affected. The information of UN 4 is forwarded
by UN 11 by the proposed method in Figure 4a. UN 11, close to the HAP, has a certain amount of
residual energy to help UN 4 transmit information. Thus, using the proposed method can improve the
throughput fairness. In Figure 4d, the transmission information from UN 6 and UN 9 is transmitted to
UN 18. With limited energy, UN 18 can only forward very little information. Therefore, the throughput
of UN 6 and UN 9 is very low. Using the proposed method can help UN 6 transmit information to the
“relay” nodes, UN 1, UN 14, UN 16, and UN 18. This can improve the throughput of UN 6.

The minimum throughput corresponding to the routing results in Figure 4a–d is 4.75 Kb, 4.46 Kb,
2.48 Kb, and 0.52 Kb, respectively. Compared with the benchmark methods, the proposed method can
improve throughput fairness efficiently. In the next section, we simulate the impact of changes in the
parameters on the throughput fairness.

5.3. Throughput Fairness for the WPCN

Figure 5 shows the average throughput for various given values of the proportion of time for
harvesting energy, with P0 = 40 dBm, α = 2, and N = 20. It is observed that the average throughput
first increases as t0 increases from 0 to 0.5. This is because the UNs harvest more energy with increasing
t0. More harvested energy helps the UNs transmit more information in the uplink. However, as t0

becomes larger than 0.5, the average throughput decreases due to the reduction of transmission time in
the uplink. In addition, using the proposed method can significantly increase the average throughput
as t0 in the interval [0,0.5]. This is because the UNs close to the HAP obtain more energy and can help
the “far” UNs forward information. The throughput of “far” UNs increases with user cooperation.
However, the throughput performance when using our proposed method and the “without user
cooperation” method is the same as when t0 is in the interval [0.7,1]. This is because the UNs harvest
enough energy over a long time. The energy can cause the UNs to directly transmit information to the
HAP in the uplink. In Figure 5, the gap between the upper bound and lower bound is less than the
preset value 0.1 Kb.
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Figure 5. Change in the proportion of time for harvesting energy.

Figure 6 displays the average throughput for various values of transmission power of the HAP,
with α = 3 and N = 20. The optimized throughput performance tends to increase with P0, which is
expected because a larger P0 provides more energy when harvesting energy, which provides more
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energy to transmit information. Figure 6 shows that the throughput when using our proposed
algorithm or without cooperation is greater than that when using GR or RA. In Figure 6, the average
throughput performance when using our proposed method and the “without user cooperation”
method is similar to when P0 is small. Our proposed method improves the average throughput
performance as the intensity of harvested energy increases because more energy can be harvested by
UNs and used to forward information as P0 increases. When P0 = 40 dBm, our proposed method
improves the throughput by 25%, 76%, and 100%, respectively, compared with the other three methods.
In Figure 6, the upper bound and lower bound of the optimal solution, which are solved by our
algorithm, are close. We can see the gap between the upper bound and lower bound is no more
than 0.1 Kb.Sensors 2018, 18, x FOR PEER REVIEW  13 of 18 
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In the third simulation study, the average throughput performance under the individual path-loss
exponent is evaluated using different methods, with P0 = 30 dBm, as shown in Figure 7. As the
path-loss exponent decreases, the average throughput is observed to increase rapidly. This is because
decreasing the path-loss exponent helps to improve the channels for harvested energy and transmission.
When the path-loss exponent is large, the performance of our proposed method is similar to that of
the “without user cooperation” method because when the qualities of links are poor, the UNs cannot
provide sufficient energy for forwarding information. However, the proposed method is far better than
that of the GR and RA methods when the path-loss exponent is large. This is because the traditional
methods force some nodes to become “relay” nodes, causing bottlenecks in the average throughput
performance of these “relay” nodes. When the path-loss exponent is small, the performance gap of
the throughput between the proposed method and the “without user cooperation” method increases.
This is because the UNs close to the HAP obtain more energy and have better channel quality as the
path-loss exponent decreases. These UNs begin to utilize more energy for forwarding information and
help the UNs far from the HAP improve the throughput performance. In addition, with the proposed
algorithm we can obtain a small gap in the average throughput performance between the upper and
lower bounds of the optimal solution.
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We show the effect of the energy dissipation of the radio caused by running the receiver circuitry,
with P0 = 30 dBm and α = 3 in Figure 8. Because the “without user cooperation” method does not
include information forwarding, its average throughput performance is not affected by this change in
parameter values. We observe that the average throughput performances of both traditional methods
and our proposed method decrease as the energy dissipation, Eelec, increases because a UN needs to
allocate more energy to cope with the energy cost of receiving forwarding information as the energy
dissipation is increased. When the energy dissipation, Eelec, increases, the amount of information
forwarding at each UN decreases in the same harvest energy case and the average throughput
performance of our proposed method will be closer to that of the “without user cooperation” method.
In addition, our proposed method is superior to the two traditional methods.
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We further show the effect of the additional circuit loss energy consumption for transmission
in Figure 9. As the energy consumption increases, the performances of all methods decrease almost
linearly, with very small slopes, because the additional energy consumption has a very low duty
cycle in terms of transmission energy consumption. In the transmission process, most of the energy is
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provided to the UN, i, to transmit signals, that is Pc � Pi, i ∈ N. The average throughput performance
when using our proposed method is superior to those of the other methods.
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We investigate the average throughput versus the number of users in Figure 10. As the number of
UNs increases, the number of forwarding links formed by the UNs increases. More links can help UNs
to forward their information and, indirectly, improve the average throughput performance. However,
increasing the number of UNs causes less transmission time to be allocated to each UN and leads to
a decrease in the average throughput performance. Therefore, the average throughput performances
of the all methods remain nearly constant and we find that our method has the best performance.
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6. Conclusions

In this paper, we proposed a user cooperation transmission method to solve the “near-far” problem
in multi-hop WPCNs. Based on the method, we formulated the max-min throughput fairness problem
as a mixed non-linear integer programming model. We obtained the upper and lower bounds for the
optimal solution by the proposed approximate algorithm based on the piece-wise linear method and
performed simulation studies to assess our algorithm. We also showed the impact of system setups
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to the max-min throughput performance. From simulation results, we showed that the proposed
algorithm can obtain the compact upper and lower bounds for the problem in different system setups.
Through comparison with three benchmark methods, we also showed the proposed method can
effectively enhance the throughput fairness when the transmission power of the HAP is sufficiently
large to provide enough energy to user nodes for forwarding information. Furthermore, the proposed
method can also effectively improve the max-min throughput performance when the amount of energy
consumption of the receiver circuitry or the path-loss exponent is small enough. The proposed method
has evident performance gain over the other methods.
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Appendix A

Proof of Lemma 3. We use the dual theory to analyze the MMT-UP
(

Pi, Uij
)

and MMT-down
(

Pi, Uij
)

models. The dual variable, corresponding to the ith constraint in constraint (17), is denoted by
λi. The dual variable, corresponding to constraint (18), is denoted by µ. Let αi and βi denote
the dual variables corresponding to the ith constraint in constraints (19) and (21). We denote
the dual variable corresponding to the link, Lij, in constraints (22) and (23) as εij. The dual
problems of MMT-UP

(
Pi, Uij

)
and MMT-DOWN

(
Pi, Uij

)
are denoted by D-MMT-UP

(
Pi, Uij

)
and

D-MMT-DOWN
(

Pi, Uij
)
. D-MMT-UP

(
Pi, Uij

)
can be expressed as:

min µ +
γW
ln2 ∑Lij∈L εij

s.t. ∑i∈V/H λi ≥ 1

− λi + βi ≥ 0, ∀i ∈ N

µ−∑i∈V/H αiζP0hHi ≥ 0

µ + αi(Pc + Pi)− ĉijεij ≥ 0, ∀i ∈ V/H, ∀Lij ∈ L

αjEelec + εij + β j − βi ≥ 0, i ∈ V/H, ∀Lij ∈ L

where all the dual variables are non-negative. We can also write D-MMT-DOWN
(

Pi, Uij
)

as:

min µ

s.t. Same constraintsin D-MMT-UP
(

Pi, Uij
)

The above two dual models and their corresponding original problem models are all convex
optimization models. We use

(
µ∗, εij

∗) to denote a part of the optimal solution of the model
D-MMT-DOWN

(
Pi, Uij

)
. Since the above two dual models have the same constraints,

(
µ∗, εij

∗)
is a feasible solution of D-MMT-UP

(
Pi, Uij

)
. According to convex optimization theory, as the original

problem is a maximization problem, any feasible solution of the dual problem is not less than the
optimal solution of the original problem. Thus, we have:

f ≤ µ∗ +
γW
ln2 ∑

Lij∈L

εij
∗
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The object value of D-MMT-DOWN
(

Pi, Uij
)

is same as that of MMT-DOWN
(

Pi, Uij
)
, that is

f = µ∗. Thus, the following formula is established:

∆ f = f − f ≤ µ∗ +
γW
ln2 ∑

Lij∈L

εij
∗ − µ∗ =

γW
ln2 ∑

Lij∈L

εij
∗.

The dual variable, εij
∗, can also be regarded as the corresponding increment in the optimal object

value as the constant term of constraint (23) increases by one unit. According to the concept of shadow
price, the dual variable, εij, is taken as the shadow price of the resource capacity of the link, Lij.
When the link capacity of Lij is increased by 1, the amount of information the UN, i, can transmit
increases by no more than one through link, Lij. Thus, εij

∗ ≤ 1. Therefore, the following formula holds:

∑
Lij∈L

εij
∗ ≤

∣∣L∣∣
From the above inequalities, we obtain:

∆ f ≤ γW
ln2

∣∣L∣∣.
�
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