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Abstract: Indoor positioning is currently a research hotspot. In recent years, Pedestrian Dead
Reckoning (PDR) has been widely used in indoor positioning. However, the positioning error caused
by heading drifts will accumulate as the walking distance increases, so some methods need to be used
to correct the heading angle. Heuristic Drift Elimination (HDE) is an effective heading correction
algorithm, which only uses the information of a building’s dominant directions to reduce the heading
error, but it does not apply to the non-dominant direction condition. In this paper, we propose
a heading drift suppressing method for the limitation of HDE. Firstly, the method constructs
membership functions to judge the pedestrian’s motion according to the result of comprehensive
evaluation. Then, it further determines by a threshold condition whether the pedestrian walks along
the dominant directions, and a heading error measurement is introduced for heading correction.
Finally, we verify by experiments that the proposed method can correct heading angles properly for
different conditions, which indicates an adaptability to the environment.
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1. Introduction

As technology advances, people’s lives are becoming more and more intelligent, and the demand
for location services is gradually increasing. Therefore, the development of indoor positioning
technology has drawn wide attention from people. It has broad application prospects in target
monitoring, emergency rescue, shopping guides, and so on.

Currently, indoor positioning relies mainly on WiFi, Bluetooth, UWB (Ultra Wide Band), and other
wireless location technologies, as well as optical communications, machine vision, and so forth.
Using the above positioning technologies can achieve good results. For instance, when we use
UWB, the positioning accuracy can even reach centimeter level. However, due to the layout of
reference beacons in advance and a high cost, its application is limited. Thus, some researchers
apply inertial navigation technology to indoor positioning. With the data collected by MEMS
(Micro-Electro-Mechanical Systems)-integrated IMUs (Inertial Measurement Units), the pedestrian’s
position can be calculated. This method can effectively resist environmental disturbance and has
strong autonomy, but cumulative errors caused by MEMS devices cannot be ignored. Foxlin [1] first
proposed the IEZ framework, that is, Inertial Navigation System (INS), Extended Kalman Filter (EKF),
and Zero Velocity Update (ZUPT) to estimate the motion track. Some researchers carried out their
work based on this method [2,3]. The framework restrains the horizontal attitude errors well, but it
cannot make the heading correction. Hence, many scholars at home and abroad have conducted
in-depth studies. Yang Hong et al. [4,5] adopted a geomagnetic correction algorithm to correct the
heading angle by taking the difference of courses calculated by the magnetometer and attitude matrix
as a measurement. Afzal [6] estimated the heading error by capturing changes in the magnetic field
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measured by magnetometers in the pedestrian’s stationary state. Since the magnetometer suffers
more perturbations in indoor environments, the reliability of its calculated heading angle cannot be
guaranteed. Therefore, some people believe that the magnetometer is not suitable for indoor use [7].
To improve the accuracy of heading calculation, Widyawan et al. [8] fused INS and visual image
information, but this method was greatly affected by the light intensity. Similarly, some researchers
used the particle filter method to estimate the heading angle by getting the interior plan of the building
in advance [9], but most of the time it was hard to do that. Borenstein [10] proposed the Heuristic Drift
Elimination (HDE) algorithm in 2010. The algorithm is based on the fact that most walls and corridors
inside buildings are made up of straight lines and right angles and use only four or eight dominant
directions as a reference without prior information about the environment, which can effectively
reduce the heading drift.

However, as Jiménez mentioned in Reference [11], the HDE algorithm is suitable for pedestrians
walking along the dominant directions, but sometimes the building does not all consist of paths along
the dominant directions. Special structures, such as circular arcs, may exist, and the heading angle
will be wrongly corrected if the HDE algorithm is used in this case. Thus, the algorithm needs to be
improved in some ways.

In this paper, we conducted a study of the heading correction method based on the IEZ framework
for the problems above. We first describe the basic IEZ framework for getting the pedestrian’s motion
information, propose the improved HDE (IHDE) method, and then verify the validity of proposed
method by experiments.

2. Pedestrian Dead Reckoning (PDR) Implementation with Kalman Filter

PDR is implemented based on a Kalman filter. The method is to obtain the motion information
by calculating the inertial sensor data. When the footfall of the pedestrian is detected, the EKF
measurements will be updated by ZUPT and the estimated errors are used to correct the motion

information. The 15-dimensional error state vector of EKF is δxk =
[

δrk δvk δϕk δab
k δωb

k

]T
.

The vector contains the errors in position, velocity, and attitude, as well as the estimated biases for
accelerometers and gyroscopes, each of which consists of its 3-axis components. k indicates the moment
of data sampling. Figure 1 shows the PDR implementation process.
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Figure 1. Pedestrian Dead Reckoning (PDR) implementation scheme.

An accelerometer and gyroscope are mounted on the human body to collect data related to the
motion information. The Micro-Inertial-Navigation System (MINS) block then calculates the data.
The Zero Velocity Detector (ZVD) block is used to detect zero speed moments to trigger ZUPT and
IHDE blocks, and these two blocks provide the EKF block with measurements to estimate errors.
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2.1. Micro-Inertial-Navigation System

The MINS block calculates the data collected by the IMU to get the position, velocity, and attitude
information. The process is divided into 4 steps:

• Data Preprocessing: Due to the drift characteristics of inertial sensors, we compensate the raw
data ak and ωk by the estimated errors δab

k and δωb
k before calculating them.

• Attitude Update: We update the quaternion to get the pedestrian’s attitude information.
The quaternion updating method is as follows:

Qk =

(
cos

∆
2
· I4×4 +

2
∆

sin
∆
2
· ∆θ

)
Qk−1. (1)

Qk =
[

q0 q1 q2 q3

]T
represents the quaternion, and I4×4 is a 4 by 4 unit matrix. Since the

sampling period ∆t is very short,

∆θ =
1
2


0 −∆θx −∆θy −∆θz

∆θx 0 ∆θz −∆θy

∆θy −∆θz 0 ∆θx

∆θz ∆θy −∆θx 0

. (2)

∆θi(i = x, y, z) indicates the angle increment of gyroscope, and ∆ =
√
(∆θx)

2 +
(
∆θy

)2
+ (∆θz)

2 is
the modulus of angle increments. The attitude angles can then be calculated by the quaternion as:

γ = arctan
(
2(q2q3 − q0q1)/

(
q3

2 − q2
2 − q1

2 + q0
2))

θ = arcsin(2(q0q2 − q1q3))

ψ = arctan
(
2(q1q2 + q0q3)/

(
q1

2 + q0
2 − q2

2 − q3
2)) . (3)

γ, θ and ψ are the roll, pitch, and yaw angle, respectively.
• Position and Velocity Update: We first transform the acceleration in the sensor body frame to the

navigation frame with the attitude matrix, and then remove the gravitational acceleration:

ak = Ct
bak + [ 0 0 g ]

T
. (4)

ak represents the free acceleration, and [ 0 0 g ]
T

the gravitational acceleration with g’s value
chosen as 9.80665 m/s2. Ct

b is the attitude matrix, where t refers to the navigation frame (defined
to be North-East-Down on the ground) and b is the body frame. The pedestrian’s position and
velocity are updated by the integral of ak.

• Motion Information Correction: If a zero speed moment is detected, because theoretically the
pedestrian’s velocity should be zero, we take the difference between zero and vk, that is,

∆vk = [ 0 0 0 ]
T − vk (5)

as the measurements, and estimate the error state by EKF to correct the motion information.
The position and velocity can be directly corrected by δrk and δvk. The attitude correction is
equivalent to the correction of attitude matrix:

Ct
b = (I3×3 − ∆t)Ct

b (6)

where ∆t is the skew symmetric matrix for δϕk. According to the conversion relationship between
the attitude matrix and quaternion, the quaternion can then be corrected.
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2.2. Extended Kalman Filter

• State Equation

δxk/k−1 = Fk/k−1δxk−1 + Gk/k−1wk−1 (7)

δxk/k−1 is the predicted error state, and δxk−1 is the last filtered error state. wk−1 is the process
noise with covariance matrix Qk−1 = E

(
wk−1wk−1

T). The state transition matrix Fk/k−1 and noise
driven matrix Gk/k−1 corresponding to the error state are derived from the error model of INS as
follows [12]:

Fk/k−1 =


I3×3 I3×3 · ∆t O3×3 O3×3 O3×3

O3×3 I3×3 Ω · ∆t Ct
b · ∆t O3×3

O3×3 O3×3 I3×3 O3×3 −Ct
b · ∆t

O3×3 O3×3 O3×3 I3×3 O3×3

O3×3 O3×3 O3×3 O3×3 I3×3



Gk/k−1 =


O3×3 O3×3 O3×3 O3×3

Ct
b · ∆t O3×3 O3×3 O3×3

O3×3 −Ct
b · ∆t O3×3 O3×3

O3×3 O3×3 I3×3 · ∆t O3×3

O3×3 O3×3 O3×3 I3×3 · ∆t



. (8)

Ω is the skew symmetric matrix for the acceleration transformed to the navigation frame.
O3×3 refers to a 3 by 3 zero matrix.

• Measurement Equation

zk = Hkδxk/k−1 + ηk (9)

where zk represents the measurements, and ηk is the measurement noise with covariance matrix Rk
equal to E

(
ηkηk

T). Since the measurements are velocity errors of three axes, the measurement matrix is

Hk =
[

O3×3 I3×3 O3×3 O3×3 O3×3

]
. (10)

We divide the role of EKF into two cases: if the zero speed moment is not detected, then EKF will
only be updated in time, that is, only the last filtered error covariance matrix Pk−1 is updated when zk
is obtained [13].

Pk/k−1 = Fk/k−1Pk−1Fk/k−1
T + Gk/k−1Qk−1Gk/k−1

T (11)

Pk/k−1 is the predicted error covariance matrix, and Pk is equal to Pk/k−1 at this moment. In the
other case, EKF is updated in state with zk as below:

δxk = δxk/k−1 + Kk(zk −Hkδxk/k−1). (12)

Kk is the filter gain.

Kk = Pk/k−1HT
(

HPk/k−1HT + Rk

)−1
(13)

2.3. Zero Velocity Detector

The accuracy of zero speed moment detection is closely related to the calculation result.
The pedestrian’s movement can be divided into two cases: station and motion, denoted as C1 and C2,
respectively. Specifically, the foot swings forward when moving and clings to the ground in station
case [14]. We determine whether n is zero speed moment based on the generalized likelihood ratio
(GLRT) method [15]:

LG(mn) =
p(mn; C1)

p(mn; C2)
. (14)
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LG(mn) indicates GLRT, and mn refers to the sampling sequence.

mn =

{[
ak
ωk

]}
k = n, n + 1, . . . , n + N − 1 (15)

where N is the length of selected sliding window, and p(mn; C1) and p(mn; C2) are the probability
density functions for C1 and C2. According to the multiplication principle in probability statistics and
considering the independence of two-dimensional random variables,

p
(
mn; Cj

)
=

n+N−1

∏
k=n

p
(
ak; Cj

)
p
(
ωk; Cj

)
j = 1, 2. (16)

From Equations (14) and (16) we know, to obtain LG(mn), it is necessary to get the probability
distributions of ak and ωk in advance, but in practice this information is unavailable. So, we represent
the sample at each moment as: [

ak
ωk

]
=

[
ar

k
ωr

k

]
+ nk. (17)

The ideal sampling acceleration ar
k and angular velocity ωr

k meet the following conditions:
in motion case, ar

k is not equal to the gravitational acceleration g, and ωr
k is not equal to 0; comparatively,

they are both equal to the ideal values in the other case. nk is the sampling noise. If we assume it to
be zero-mean white noise with the noise variances of the accelerometer and gyroscope σa

2 and σω
2,

respectively, then ak and ωk follow the Gaussian distribution. Hence, based on the above equations we
obtain the probability density functions as below:

p
(
mn; Cj

)
= 1

(
√

2πσa)
N · 1

(
√

2πσω)
N · exp

(
−

n+N−1
∑

k=n

(
1

2σa2

∣∣∣∣ak − ar
k

∣∣∣∣2 + 1
2σω

2

∣∣∣∣ωk −ωr
k

∣∣∣∣2)). (18)

According to the basic principle, the GLRT corresponding to moment n can be calculated by
maximizing Equation (18) with a proper selection of ar

k and ωr
k. We substitute the maximum values for

Equation (14) and reorganize the result:

LG
′(mn) =

n+N−1

∑
k=n

 1
σa2

∣∣∣∣∣
∣∣∣∣∣ak − g

an∣∣∣∣an
∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

+
1

σω
2 ‖ωk‖2

 < thG. (19)

an represents the average value of acceleration samples in the sliding window. Through the
above equation we can determine the pedestrian’s movement at moment n. If LG

′(mn) is less than the
threshold thG, then C1 is true, as shown in red in Figure 2, or C2 is true otherwise.Sensors 2018, 18, x FOR PEER REVIEW  6 of 12 
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2.4. The Improved HDE Method

• Limitations of original methods

Although using the IEZ framework has a significant effect upon correcting the horizontal attitude
angles, it influences little on heading correction. The reason is that, according to the observability
analysis of INS error equations, the error state δψk is unobservable [16]. Thus, the estimated trajectory
will gradually deviate from the expected as the moving distance increases.

In indoor environments, the HDE algorithm can effectively correct the heading angle by taking
the dominant directions of the building as a reference. However, not all motion paths in indoor
environments are along the dominant directions. If the HDE algorithm is still used in a non-dominant
direction condition, as can be seen in Figure 3, the heading angle will be overcorrected, and a new
heading error is then generated, which will lead to the wrong estimation of the motion track. Therefore,
this problem needs to be considered in practice.
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• Details of the proposed method

Based on the above reasons, we first determined whether the pedestrian walked in a straight
line. A fixed number of successive steps are taken as the unit of calculation, and all the calculated
heading angles of steps are put into a dataset. The standard deviation of the dataset is then used
to determine whether the current motion path is a straight line. Considering the complexity of
calculation and accuracy of results, we take W (W = 5) steps as the unit of calculation [17], and the
heading angle of step s is calculated by MINS. The dataset of heading angles is represented as
Ψ = {ψl |l = s, s− 1, . . . , s−W + 1}, whose standard deviation is obtained by the following equations: std =

√
1

W−1

s
∑

l=s−W+1

(
ψl − ψ

)2

ψ = mean(Ψ)

. (20)

ψ is the average of heading angles. As the pedestrian cannot walk strictly along the actual path,
by learning from fuzzy mathematics theory, we take std as variable and use the Z-type membership
function to describe the motion path.

µ1(std) =
1

1 + exp(k1 · std− a)
k1 > 0, a > 0 (21)

µ1(std) ranges from 0 to 1. The membership degree of motion path to the straight line decreases
as std becomes larger. Figure 4 reflects the trend of the function.
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Second, as the normal walking process of the pedestrian is periodic, the time interval between two
adjacent steps, denoted as STs, is relatively uniform. If STs is out of the normal range, the pedestrian
may be in abnormal activities, and to prevent the heading angle from being wrongly corrected in this
condition, the proposed method should be avoided.

Hence, we take STs as variable and adopt the commonly used bell-shaped membership function
to characterize the pedestrian’s motion state.

µ2(STs) =
1

1 + b(STs − γT)
2c b > 0, c > 0 (22)

where γT is associated with the motion period, usually set to 1.0~1.2 s. Combined with the motion path
and motion state, we can make a comprehensive evaluation of the pedestrian’s motion condition and

the evaluation vector M is [ µ1(std) µ2(STs) ]
T

. Though the conditions of triggering the proposed
method mainly depend on whether the motion path is a straight line, the role of the method needs to
be limited in abnormal motion state. Therefore, we adopt M(.,+) model, and with the weight vector
w = [ w1 w2 ], the comprehensive evaluation is

E = w ·M = w1µ1(std) + w2µ2(STs). (23)

Then we give a binary controller as below:

En =

{
1 E > γ2

0 else
. (24)

If E is greater than the threshold γ2, then En is set to 1 and the proposed method will be triggered,
or the method has no effect otherwise. Figure 5 shows the analysis process above.

Finally, we get the error measurement δψ. If En is 0, δψ will be set to 0 as well, or δψ is obtained
by determining whether the pedestrian walks along the dominant directions. We define 4 dominant
directions denoted as ψd (d = 1, 2, 3, 4) to be 0◦, 90◦, 180◦, and 270◦ respectively, and select 5◦ and 355◦

as the thresholds. ∣∣ψd − ψ
∣∣ < 5◦‖

∣∣ψd − ψ
∣∣ > 355◦ (25)
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Figure 5. The block diagram of the proposed method.

If the above equation holds for a certain ψd, then it will be taken as the closest dominant direction
ψdominant corresponding to the current heading angle. By subtracting the current heading angle from
ψdominant we obtain

δψ = ψdominant − ψs. (26)

If, instead, Equation (26) holds for no ψd, then ψdominant will be substituted for ψ as the reference
direction to calculate δψ [18]. After that, this error, together with the velocity errors of three axes,
is taken as the filter measurements to estimate and correct the heading error, as well as other inertial
sensor errors. The measurement matrix in this condition is

H =

[
O3×3 I3×3 O3×3 O3×3 O3×3

O1×3 O1×3

[
0 0 1

]
O1×3 O1×3

]
. (27)

3. Tests

3.1. IMU Description

We used the IMU MTi-G-710 produced by Xsens Technologies B.V in Enschede, The Netherlands,
which integrates 3-axis MEMS sensors. The IMU was easily installed on the human body, and had
a large measuring range and a small size, and we fixed it to the left foot of a person to collect data.
Table 1 lists the relevant technical parameters.

Table 1. Technical parameters of MTI-G-710.

Accelerometers Gyroscopes

Full Scale (FS) ±15 g ±1000◦/s
Non-linearity 0.03% FS 0.01% FS
Bias stability 40 µg 10◦/h
Bandwidth 375 Hz 415 Hz

3.2. Results and Analyses

Several tests have been performed in different environments to verify the adaptability of the
proposed method. For each test, we used IEZ, HDE, and IHDE methods, respectively, to estimate a
person’s walking trajectories and compare results. The following index was adopted to compare the
performance of different methods.

Perr =
Derr

TTD
× 100% (28)
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Derr indicates the deviation distance from the expected ending point, TTD means the total travelled
distance, and Perr is the positioning error of estimated trajectory.

Test 1 was performed on the first floor of the IT laboratory building in the Beijing Institute of
Technology. The person walked from the starting point and followed the directions indicated by the
arrows in Figure 6a. The 202-m long path, divided into 8 segments (identified by numbers), is made
up of straight lines and right angles. Segments 1 and 7 are 27 m long, while the length of Segments 3
and 5 is 36 m, and the rest of the segments are all 19 m. Before starting to walk, the person was still for
5 s. The reference path and estimated trajectories are shown in Figure 6.
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The results in Figure 6b show that, due to the lack of heading correction, the drift of the IEZ
trajectory gradually accumulated in the straight lines, which led to an increasing deviation between
the estimated trajectory and reference path, with the positioning error reaching about 9.0%. As each
segment of the path coincided with the dominant directions, both the HDE and IHDE methods could
make full use of the information to correct the heading angle. The final positioning error of the HDE
trajectory was less than 0.6%, and for the IHDE trajectory, the smallest error was only 0.2% during
the test.

In order to compare with the real environment, we chose the east playground for Test 2 and
Test 3. Different from Test 1, the paths in Test 2 and Test 3 contained both the dominant and
non-dominant directions.

In Test 2, the person first walked in straight lines along the dominant directions, then walked
along the curved track for a distance, and finally walked in a straight line along a non-dominant
direction and returned to the starting point. The actual path was about 90 m long, shown in a black
dotted line in Figure 7, through which we illustrate the heading correction based on the proposed
method. Figure 7a shows the result of evaluation E during the walk. The proposed method was
triggered when E exceeded a certain threshold, corresponding to the red part, which indicated straight
lines. Then, as explained in Section 2.4, we could further determine if the path was in a dominant
direction and introduce error measurement δψ. It is worth noticing that between sampling point
1600 and 2475, as the person walked along a circular path, E close to 0 indicated that the method can
identify abnormal situations, and thus avoid overcorrection of heading. For other parts in black, due to
the sudden change of heading (corresponding to the “edges” in the above subfigure), corrections were
not made within a short time.
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In contrast, dominant directions were always taken as a reference in the original HDE method,
so the heading was still corrected to approach its nearest dominant direction for the last two segments
of path, as can be seen in the above subfigure of Figure 7a, making the trajectory wrongly estimated.
The positioning error of the HDE trajectory was about 1% larger than that of the IHDE, according to
the test results. Figure 7b shows the estimated trajectories using different methods.

The actual path in Test 3 consisted of two straight lines along dominant directions and two arcs,
as shown in Figure 8. The heading angle of the HDE trajectory was continuously wrongly corrected
based on the dominant directions as a person stepped onto the curved track, which eventually led to
the trajectory being useless for positioning. Instead, no heading correction was made on the curved
track by using the proposed method, and the estimated trajectory maintained a small deviation from
the actual path with Derr only about 2 m. The values in Table 2 show the typical range of positioning
errors for several tests in different environments like those presented in Figures 6–8.

Sensors 2018, 18, x FOR PEER REVIEW  10 of 12 

 

direction and returned to the starting point. The actual path was about 90 m long, shown in a black 
dotted line in Figure 7, through which we illustrate the heading correction based on the proposed 
method. Figure 7a shows the result of evaluation E during the walk. The proposed method was 
triggered when E exceeded a certain threshold, corresponding to the red part, which indicated 
straight lines. Then, as explained in Section 2.4, we could further determine if the path was in a 
dominant direction and introduce error measurement δψ . It is worth noticing that between 
sampling point 1600 and 2475, as the person walked along a circular path, E close to 0 indicated that 
the method can identify abnormal situations, and thus avoid overcorrection of heading. For other 
parts in black, due to the sudden change of heading (corresponding to the “edges” in the above 
subfigure), corrections were not made within a short time.  

  
(a) (b) 

Figure 7. (a) Heading correction with IHDE; (b) estimated trajectories for Test 2. 

In contrast, dominant directions were always taken as a reference in the original HDE method, 
so the heading was still corrected to approach its nearest dominant direction for the last two segments 
of path, as can be seen in the above subfigure of Figure 7a, making the trajectory wrongly estimated. 
The positioning error of the HDE trajectory was about 1% larger than that of the IHDE, according to 
the test results. Figure 7b shows the estimated trajectories using different methods.  

The actual path in Test 3 consisted of two straight lines along dominant directions and two arcs, 
as shown in Figure 8. The heading angle of the HDE trajectory was continuously wrongly corrected 
based on the dominant directions as a person stepped onto the curved track, which eventually led to 
the trajectory being useless for positioning. Instead, no heading correction was made on the curved 
track by using the proposed method, and the estimated trajectory maintained a small deviation from 
the actual path with errD  only about 2 m. The values in Table 2 show the typical range of positioning 
errors for several tests in different environments like those presented in Figures 6–8.  

 

Figure 8. Starting somewhere on the outside straight, the person was asked to walk along the track
and return to the starting point, and the entire path was approximately 455 m.



Sensors 2018, 18, 1874 11 of 12

Table 2. The results of positioning errors in each test.

Method
Positioning Errors

Test 1 Test 2 Test 3

IEZ 8.7~9.6% 2.3~2.8% 2.6~3.2%
HDE 0.3~0.6% 1.3~1.7% >20%
IHDE 0.2~0.4% 0.4~0.7% 0.3~0.5%

4. Conclusions

To solve the problem that the IEZ frame cannot suppress the heading drift, and the HDE method
does not apply to the non-dominant direction’s condition, we have proposed the IHDE method and
have tested its performance in different environments. The results show that, if the person walks in the
non-straight line, using the proposed method can judge this condition by comprehension evaluation
compared to the HDE method, and then the heading angle will not be overcorrected, ensuring the
correct estimation of trajectories. The positioning errors of estimated IHDE trajectories in tests indicate
the adaptability of the proposed method to different environments.
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