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Abstract: In the series of studies on new types of elastic and compressible artificial skins with hybrid
sensing functions, photovoltaics, and battery, we have proposed a hybrid skin (H-Skin) by utilizing an
electrolytically polymerized magnetic compound fluid (MCF) made of natural rubber latex (NR-latex).
By using the experimental results in the first and second reports, we have clarified the feasibility
of electric charge at irradiation, and that without illumination under compression and elongation.
The former was explained in a wet-type MCF rubber solar cell by developing a tunneling theory
together with an equivalent electric circuit model. The latter corresponds to the battery rather than to
the solar cell. As for the MCF rubber battery, depending on the selected agent type, we can make the
MCF rubber have higher electricity and lighter weight. Therefore, the MCF rubber has an electric
charge and storage whether at irradiation or not.

Keywords: hybrid skin (H-Skin); solar cell; battery; charge; discharge; sensing; piezoelectricity;
photovoltaics; natural rubber; electrolytic polymerization; magnetic cluster; magnetic field; magnetic
compound fluid (MCF); artificial skin; robot; humanoid

1. Introduction

Artificial skin will be required more in the future as a substitute for human skin and as a part
of the humanoid exterior of robots. The requisites for artificial skin are the material properties of
flexibility, elasticity, and extensibility, and a high sensing ability for force and temperature. The former
requires high tension and compression for sturdiness. The latter is related to haptic sensing, as human
skin has five types of touch sensation: tactile, pressure sensation, algometry, warm, and cold [1].
Current ordinary sensors have a unique sensitivity to forces that are applied normal to a touched
material; however, they do not have sensitivity to a shear force. When we need to measure the shear
force, strain gauges or piezoelectric elements must be added [2–5], making the sensor’s structure
complicated and vulnerable to extrinsic mechanical forces. Therefore, it is significant to make the
sensor more sensitive with a simple morphology. The sensing of shear force is effective in the case of
rubbing some object, such as for example when measuring surface roughness [6], the softness of a soft
material such as a diaper [7], or the case of a robot stroking a person’s head.

On the other hand, current ordinary robots require a lightweight battery. If the battery is not
incorporated into the robot, electric wires connected to the outlet of an electric source are required,
and can act as an obstacle. There have been proposed lightweight batteries, solar cells, etc. However,
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recently, batteries, including polymer batteries, have been developed. If the skin installed in a robot has
a battery, the battery must be elastic and compressible in addition to being more lightweight. A battery
made of rubber has been investigated [8,9]. However, the effects of compression and elongation
on the conductivity properties have not been clarified. To answer these problems, a solar cell is
proposed to be installed in a robot, usually in the form of a solid-state flat plate. Although flexible solar
power generators have been investigated recently, including a conducting polymer [10–16], they have
remained within the realm of solid-state devices. Based on the above, the utilization of a rubber
in batteries and solar cells is a significant step toward solving the problems related to the material
dynamic properties of elasticity, compressibility, and weight.

In order to make the rubber utilized in batteries and solar cells more sensitive, as described
above, we have proposed a lightweight hybrid skin (H-Skin) integrated with multiple functionalities
of flexibility, elasticity, and compressibility, photovoltaics, and high sensing modalities for force and
temperature for artificial human skin, humanoid skin, or the outer layer of robot skin in the first
report [17]. On this subject, we have investigated temperature susceptibility and challenged the
sensing of various bodily surfaces related to shearing motion by dry-type magnetic compound fluid
(MCF) rubber, as shown in Appendix A, before the series of these present three reports. Dry-type MCF
rubber means that the rubber was solidified in air without electrolytic polymerization. In contrast,
electronic skin (E-Skin) has been proposed by integrating multiple functionalities of sensing modalities
to force, temperature, and so on for sensitive skin, smart skin, or intelligent skin [18]. The difference
between H-skin and E-Skin is that the former has photovoltaic functionality, whereas the latter does
not, as presented previously by the first report [17]. Since H-Skin also has piezoelectricity, it can use
solar power for self-sensing by utilizing the generated piezo effect. Piezoelectricity corresponds to
the piezoelectric effect, which is the built-in voltage generated by the approaching of positive and
negative ions, and is different from piezoresistivity, which means changes in resistance (piezoresistive
resistance) when a voltage is applied under compression or elongation.

We have investigated H-Skin for its properties of photoelectricity (photovoltage and photocurrent)
as a solar cell and built-in electricity (built-in voltage and built-in current) from its piezoelectricity
by utilizing the MCF rubber used in the previous two reports [17,19]. MCF rubber is the elastic and
compressible rubber included in the MCF, which is an intelligent fluid that is responsive to a magnetic
field involving 10-nm Fe3O4 particles coated by oleic acid because of the compounding magnetic fluid
(MF) and other metal particles, such as Fe, Ni, or Cu, on the order of 1 µm. MF is a significant factor
in producing MCF rubber; the role of magnetic fluid (MF) corresponds to the one oleic acid coated
around the Fe3O4 particle. The dielectric polarization of the oleic acid is significant. The dielectricity
induces the built-in voltage and current, which is generated as another mechanism by the gap between
A− and D+. The built-in electricity and photoexcitation are based on p-type and n-type semiconductors
viewing in the isoprene molecules of NR-latex, oleic acid, water, and Ni particles, photosensitized
dye molecules, and so on. By ionized p-type and n-type semiconductors, the former becomes an
acceptor A, which is charged negatively to become A-, and the latter becomes a donor D, which is
charged positively to become D+. In addition, the production of MCF rubber by the electrolytic
polymerization is significant for solidification among the isoprene of the NR-latex particle and the
oleic acid. This mechanism has been clarified by the previous report [20]. The MCF rubber consisting
of natural rubber (NR-latex) is solidified under the application of a magnetic field, and magnetic
clusters combined by the aggregation of Fe3O4 and metal particles are formed along the direction of
the magnetic field lines. The first report showed that MCF rubber can become a solar cell without dye
or electrolytes. In general, ordinary organic thin solar cells have sensitized dye and electrolytes for
photoexcitation by the oxidation–reduction reaction. In addition, the electrolytically polymerized MCF
rubber involving the dye and electrolyte was also able to become a solar cell. These cases were the
dry-type MCF rubber solar cell. The type includes another condition in which dye and electrolyte
are poured on an MCF rubber dried in a drying machine, which was also able to become a solar cell
in the second report. The first report showed the physical–chemical fabrication and principle of the
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dry-type solar cell, and clarified the effect of compression on its photoelectricity. In contrast, the second
report dealt with the wet-type solar cell, which denotes pouring dye and electrolyte. The same
physical–chemical fabrication and principle of the solar cell as in the dry-type MCF rubber solar cell
were established in the wet-type cell. This clarified the effects of several experimental condition factors,
namely, of the simultaneous existence of both compression and elongation on its photoelectricity and
piezoelectricity, and the electrode location.

However, the electric charging of the MCF rubber has not been elucidated. Since electricity can be
charged between A− and D+, MCF rubber can be proposed to create a feasible battery.

Therefore, in the present study, we clarify the electric charging of wet-type MCF rubber solar
cells. Furthermore, the effects of compression and elongation on the electric charging are clarified.
In addition, the MCF rubber without irradiation is found to have the function of electric charging,
which corresponds to a battery without sensitized dye. Its effects of compression and elongation on
the electric charging of the MCF rubber battery are also clarified.

2. Photovoltaics MCF Rubber Solar Cell

An ordinarily solar cell is evaluated with an equivalent electric circuit comprising a capacitor and
resistor, as shown by Figure 1. First, we investigate the resistance R, and the total resistance of the solar
cell in which there exists some internal resistances.
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Figure 1. Equivalent electric circuit with capacitance C and resistance R of a magnetic compound fluid
(MCF) rubber solar cell.

The experimental data of R in a wet-type MCF rubber solar cell is shown in Figure 2 under
elongation and compression. Figure 2a,b shows the amplitude of tension and Figure 2c,d shows that
of pressure. The experimental apparatus and procedure were the same as those used in the second
report [19]. In general, the voltage and current of the solar cell have both photo and built-in electricity.
The former and the latter causes were explained previously in the second report. Therefore, resistance
can be estimated to be divided between the two cases. At a lesser elongation, by compression,
the photovoltaic resistance is almost constant; however, the built-in voltaic resistance increases.
At a greater elongation, by compression, both resistances decrease or remain constant. On the other
hand, by elongation, both resistances have a peak in the linear elastic region of the MCF rubber,
and then decrease in the plastic region. In contrast, tunneling theory is applicable to the MCF rubber
solar cell. The transfer of electric current over the potential barrier of the rubber under compression
as a one-dimensional Schrödinger equation is easier because of the decreasing size of the gap of
the insulator, as shown previously in the first report [17]. From the equations presented in the
report, the resistance R of the MCF rubber solar cell is given by Equation (1) with a transmitted
probability of T, where eEo is the applied voltage, e is the elementary charge, γ is the wave number
presented by Equation (2), h̄ is h/2π, h is Planck’s constant, m is the mass of the electron, Vo is the
potential energy at region γ for each i-ordered pair of regions fabricated with non-conductive rubber
sandwiched by conductive materials, and ε is the energy of the electron. At each i-ordered pair of
regions, the transmitted current is given as the denominator of the middle expression of Equation (1)
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and approximately evaluated as Tout, which is T at the outlet of n pairs of regions through which the
electrons transfer.

Sensors 2018, 18, x 4 of 19 

 

approximately evaluated as Tout, which is T at the outlet of n pairs of regions through which the 
electrons transfer. 

 
 

(a) (b) 

  
(c) (d) 

Figure 2. Changes in the effect of compression and elongation on resistance based on the photovoltaic 
effect and built-in electricity under ultraviolet light. (a,b) under compression;  
(c,d) under elongation; (a,c) based on photovoltaic effect; (b,d) based on built-in electricity for a  
wet-type MCF rubber solar cell electrolytically polymerized under a magnetic field with 0.22 g of 
Ruthenium complex dye and 7.4 g of KI+I2 electrolyte. The MCF rubber had 3 g of TiO2, 6 g of Ni,  
4.5 g of MF, and 9 g of natural rubber (NR)-latex. The irradiation light was ultraviolet (40 lx). 

1

1 1

o o

n
outi i

i
i

i i

e e
R E E

T
Tγ γ

γ γ
+

= +

= ≅
 
 −
 
 


 

(1) 

2
2 ( )

o

m
Vγ ε= −


 (2) 

Figure 2. Changes in the effect of compression and elongation on resistance based on the photovoltaic
effect and built-in electricity under ultraviolet light. (a,b) under compression; (c,d) under elongation;
(a,c) based on photovoltaic effect; (b,d) based on built-in electricity for a wet-type MCF rubber solar
cell electrolytically polymerized under a magnetic field with 0.22 g of Ruthenium complex dye and
7.4 g of KI+I2 electrolyte. The MCF rubber had 3 g of TiO2, 6 g of Ni, 4.5 g of MF, and 9 g of natural
rubber (NR)-latex. The irradiation light was ultraviolet (40 lx).
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As a result, dimensionless resistance R* (=R/R∞, R∞ the representative resistance) to compressive
strain cs is given by Figure 3. At a high tensile strain, the resistances based on both the photovoltaic
effect and built-in voltage decrease with increasing compressive strain. The tendencies in Figure 2a,b
can be explained by the theoretical results of Figure 3. However, the properties of these resistances in
Figure 2c,d at low tensile strain cannot be explained by the present tunneling theory, and are due to
the complicated fabrication of particles involved in the MCF rubber solar cell.
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On the other hand, electric current I in the circuit of Figure 1 is presented as Equation (4)
with dimensionless factors of C* and R*, where t* is the dimensionless time. The formula of Equation (4)
presents that I is an exponential function of 1/C*R*.

I =
V
R

exp
(

t∗

C∗R∗

)
(4)

By substituting the equation for 1/C*R* shown in Figure 4 to Equation (4), we find that I contains
an exponential function of cs, and that I decreases with increasing cs. The theoretical results
qualitatively coincide with the experimental results obtained in the second report [19], in which the
built-in current and photocurrent density decrease with increasing compressive strain. This tendency
implies that the isolated layers of rubber or oleic acid among the particles and molecules in the
n–p-type semiconductor dispersed in the MCF rubber solar cell are changed by compression. Therefore,
we suggest that there exist thin layers among them. Based on this suggestion, we propose that I is
presented by Equation (5) in the case of another equivalent electric circuit; it is usually introduced in
ordinary solar cells as shown by Figure 5, where IS is the reverse-bias saturation current, Nd is the diode
ideality factor (=Vf/(Vf − Vi)), Vf is the forward bias voltage, Vi is the voltage drop at the thin isolated
layer, k is the Boltzmann constant, Ta is the absolute temperature, Iph is the photocurrent, Id is the diode
current, Ish is the shunt current, Rsh is the shunt resistance, and Rs is the series resistance. N denotes
recombination in the n–p-type semiconductor; therefore, we can guess that in some of the n-type and
p-type semiconductors of isoprene, oleic acid, and water molecules, the Ni particles recombine.

I = IS exp
( eVf

NdkTa

)
(5)
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As a result, we can explain the photovoltaic property of the MCF rubber solar cell under elongation
and compression by utilizing the equivalent electric circuit models shown in Figures 1 and 5 as follows.

The isolated layers of rubber or oleic acid among the particles and molecules are not always thin;
therefore, I is generally presented by Equation (6) from the Shockley diode equation and Ohm’s law.
As seen from the middle expression of Equation (6), the experimental data of the electric current
I includes the photocurrent Iph and built-in current, which depends on Id, and can be negative by
the quantitative balance of Iph, Id, and Ish under irradiation, as was presented in the previous two
reports [17,19]. Id implies the dark current and is relevant to Rsh. The dark current is generated by
the influx of holes and electrons, which results from the existence of the depletion layer between the
n-type and p-type semiconductors. Id is a function of the diffusion potential VD, which is presented
by the difference in electron affinity between the n-type and p-type semiconductors. The difference
in electron affinity denotes the Schottky barrier between heterogeneous materials. Therefore, by
considering, in addition to the experimental results, that I decreases with increasing cs, the potential
and electron affinity among isoprene, oleic acid, water molecules, and Ni particles are different enough
to become a part of the semiconductor. In addition, the difference in potential and electron affinity,
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or VD, changes by compression or elongation. Therefore, the photo and built-in currents change by
compression or elongation, as shown in the previous reports [17,19].

I = Iph − Id − ISh = Iph − IS

[
exp

{
e(V + RS I)

NkTa

}
− 1
]
− V + RS I

RSh
(6)

On the other hand, NR-latex particles and oleic acid coated around Fe3O4 in MCF rubber can also
be considered to have a spontaneous polarization of the dielectric. In that case, as the well-known
formula at the field of ferroelectric material, the photocurrent Iph is presented to be approximated to
J by Equation (7) as a function of glass factor k1, which is dependent on the amplitude of spontaneous
polarization, where α is the optical absorption coefficient, f is the frequency of light, and Ir is the light
intensity [21]. This formula has been used at the case of explanation of anomalous photovoltaic effect,
which is also called the bulk photovoltaic effect. As k1 is considered to be involved in the built-in
current, the relation between the photo and built-in currents is linear, which coincides with the relation
between the current at irradiation and the built-in current from the experimental data of the second
report [19], as shown in Figure 6. In the figure, each line at each amplitude of tension is the change due
to compression. As the compression increases, these currents decrease because of increased contact
between the NR-latex particles and oleic acid as the distance between them decreases.

J =
k1eαIr

2π f} (7)
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curves as shown by Figure 7, and which indicates the response time for irradiation. The response time 
is minimal enough to behave as in Figure 7a. However, wet-type solar cells, such as dye-sensitized solar 
cells, have a delay to irradiation because of the oxidation–reduction reaction. The response time t is 
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Figure 6. Relation between current density at irradiation and built-in current density under
compression and elongation under ultraviolet light for a wet-type MCF rubber solar cell electrolytically
polymerized under a magnetic field with 0.22 g of Ruthenium complexes dye and 7.4 g of KI+I2

electrolyte. The MCF rubber had 3 g of TiO2, 6 g of Ni, 4.5 g of MF, and 9 g of NR-latex. The irradiation
light was ultraviolet (40 lx). The experimental apparatus and procedure were the same as those used in
the second report [19].

On the other hand, in the case of the equivalent electric circuit from Figure 1, C R presents the time
constant, which results in the degree of the rising and falling edges of the current or voltage curves as
shown by Figure 7, and which indicates the response time for irradiation. The response time is minimal
enough to behave as in Figure 7a. However, wet-type solar cells, such as dye-sensitized solar cells,
have a delay to irradiation because of the oxidation–reduction reaction. The response time t is generally
divided into three types, as shown in Equation (8): t1 based on C and R corresponding to Figure 7b;
t2 based on the speed of carrier diffusion at deeper regions than the depletion layer corresponding to
Figure 7c; and t3 based on the speed of carriers in the inner depletion layer corresponding to Figure 7b.
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t =
√

t2
1 + t2

2 + t2
3 (8)

Regarding t, the theoretical result of the dimensionless time constant t* (=C*R*) by the tunneling
effect obtained from Equations (1) and (3) is shown by Figure 8. t* increases with increasing cs.
In contrast, the experimental result of the voltage in wet-type MCF rubber solar cells under both
elongation and compression is shown by Figure 9.
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Figure 9. Change in voltage by repetition of compression under elongation under ultraviolet light
for a wet-type MCF rubber solar cell electrolytically polymerized under a magnetic field with 0.22 g
of Ruthenium complexes dye and 7.4 g of KI+I2 electrolyte. The MCF rubber had 3 g of TiO2, 6 g of
Ni, 4.5 g of MF, and 9 g of NR-latex. The irradiation light was ultraviolet (40 lx). The experimental
apparatus and procedure were the same as those used in the second report [19]. 1© to 8© indicate each
degree of compressive strain.
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Under tensile strains of 0.025 and 0.25, the MCF rubber solar cell was gradually compressed
with increasing compression strain from 1© to 8©. The tendency as shown by Figure 7c can be seen
under smaller compressive strain, and the tendency changes to Figure 7a through Figure 7b with
increasing compressive strain. This denotes that by the compression of the characteristics of reacting
carriers of n-type and p-type semiconductors of isoprene, oleic acid, and water molecules, Ni particles
change from state t2 to states t1 and t3, and states t1 and t3 depreciate. The theoretical result of Figure 8
correspond to the change in t1 by compression. On the other hand, when the tensile strain increases,
the tendency changes from Figure 7c to Figure 7b. This indicates that by elongation, the characteristics
of the reacting carriers change from state t2 to state t1 or t3.

Finally, we investigate the charge of the MCF rubber solar cell by irradiation. The theoretical
result of C* by the tunneling effect obtained from Equations (1) and (3) is shown in Figure 10. From the
results of Figures 2, 7 and 8 under irradiation, we can also obtain the same result that C increases with
increasing compression, as shown in Figure 10.

On the other hand, as shown in Figure 7b, t changes as the light is switched on and off, because
it can be considered geometrically that the curve shown in Figures 7b,c cannot be delineated if t is a
constant value. t at b in Figure 7b is larger than t at a, t at d is larger than t at c, and t at e is larger
than t at f. State e in Figure 7b corresponds to optical charging, and the state of f corresponds to
optical discharging.
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The capacitance described above is in relation to charging and discharging by illumination. It is
effective to measure the cyclic voltammogram of the MCF rubber solar cell in order to investigate the
relation of capacitance to compression and elongation. The series of cyclic voltammogram plots in
Figure 11 shows the relation between the electric current I and voltage V measured by potentiostat
(HA-151B, Hokuto Denko Co. Ltd., Tokyo, Japan) and the I–V characteristics, at 50-mHz scan rates in
the potential domain of −1.5–1.5 V, as shown by Figure A5 in Appendix B. The same experimental
apparatus was used as the one for measuring photoelectricity under compression and elongation in the
previous second report [19]. “No-light” in the figure denotes the case without irradiation, and “light”
denotes the case with irradiation. The tensile strength to elongate the MCF rubber and compression
with strain were simultaneously applied to the MCF rubber. At small elongation or compression,
the I–V curve was nonlinear, and the area surrounded by the electric current and voltage was small.
The I–V characteristics were different from those of an ordinary solid-state, dye-sensitized solar cell
or polymer solar cell [12,13,22]. The MCF rubber solar cell is close to the I–V curve of a photodiode,
as I becomes larger at the largest V. This is a typical property of MCF rubber solar cells, and it is
suggested that it is possible to use the MCF rubber solar cell as a photodiode [23,24]. In particular,
the curve becomes linear with increasing elongation or compression due to the heterojunction structure
becoming deformed such that the distance between A− and D+ decreases. The linear tendency means
that the MCF rubber solar cell becomes conductive.
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Figure 11. The effect of tension and compression on cyclic voltammetry plots measured by potentiostat
at turning ultraviolet light on for wet-type MCF rubber solar cells electrolytically polymerized under a
magnetic field with 0.22 g of Ruthenium complexes dye and 7.4 g of KI+I2 electrolyte: (a) elongation
of 9 mm; (b) elongation of 2 mm. The MCF rubber had 3 g of TiO2, 6 g of Ni, 4.5 g of MF, and 9 g
of NR-latex. The irradiation light was ultraviolet (40 Lux). The used experimental apparatus and
procedure was the same as those used in the second report [19].

On the other hand, from Figure 11, the area of hysteresis of the I–V curve becomes larger
with increasing compressive strain, and then decreases with increasing compressive strain. The area
decreases with increasing elongation. This tendency indicates that C becomes larger as the compression
increases at small compressions, and then decreases with increasing elongation. The former tendency
is coincident with the previously described results from Figures 2, 7, 8 and 10. As shown in detail
by Figure 11, the area of hysteresis is not different between charging and discharging. This tendency
coincides with the result that C R is different between the states of charging and discharging, which can
be derived from the previously described result in Figure 7b, wherein t at e is greater than t at f.

In conclusion, from the above-mentioned results, the wet-type MCF rubber solar cell under
tension and compression can charge electricity. The voltage and current can be verified by other
experimental results of charging, as shown by Figure 12. The electricity charged in the MCF rubber
solar cell can be evaluated with the enhancement of built-in electricity (built-in voltage and built-in
current) by irradiation. From the figure, the charge in the built-in electricity increases with increasing
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compression at a small compressive strain, and then decreases as the compressive strain increases
further. This tendency coincides with the result of Figure 11. On the other hand, the charge in the
built-in electricity increases at small elongations, and then decreases at larger elongations. The former
tendency is found in the linear elastic region of the MCF rubber, and the latter at the plastic region.
The former is a typical characteristic of the MCF rubber solar cell, and the MCF rubber solar cell might
be used as an inner linear elastic region for engineering applications of H-Skin for robotics. The latter
tendency coincides with the results of Figure 11.
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Figure 12. Charge of built-in electricity under compression and elongation at turning ultraviolet light
on for a wet-type MCF rubber solar cell electrolytically polymerized under a magnetic field with
0.22 g of Ruthenium complexes dye and 7.4 g of KI+I2 electrolyte: (a) voltage; (b) current density.
The MCF rubber had 3 g of TiO2, 6 g of Ni, 4.5 g of MF, and 9 g of NR-latex. The irradiation light
was ultraviolet (40 lx). The experimental apparatus and procedure were the same as those used in the
second report [19].
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3. MCF Rubber Battery

We investigated the electric charging by irradiation on an MCF solar cell rubber. As seen from
Figure 11, the I–V characteristics at no-light can be suggested to have the same properties as those
at irradiation, which is pointed out in Section 2. Therefore, there exists the possibility of an electric
storage system in the MCF rubber under no-light. This is effective enough to be utilized for many
engineering applications of H-Skin, because the MCF rubber can have an electric charge regardless of
irradiation. In contrast to the expectation that the MCF rubber solar cell becomes mere MCF rubber
in the experimental circumstance without irradiation, MCF rubber can have an electric charge in the
case involving other agents except for sensitized dye, provided that it has an oxidation–reduction
reaction such as that in the MCF rubber solar cell. Therefore, we used various kinds of agents and their
compounds, as shown in Figure 13. The electric storage system of MCF rubber corresponds to built-in
electricity. The present MCF rubber corresponds to dry-type MCF rubber.

The electrolytically polymerized MCF rubber was around 15 mm × 19 mm × 1 mm in size
(“elec.” in the figure denotes electrolytic polymerization); a constant electric field was applied at 6 V,
and an electric current of 2.7 A was passed between stainless-steel plates with a 1-mm gap for 10 min
under atmospheric conditions, and a 188-mT magnetic field was applied across the liquid (“mag.” in the
figure denotes application of the magnetic field). The rod with a diameter of ϕ8 mm attached on a
small automatic measuring tensile testing machine (SL-6002, IMADA-SS, Co. Ltd., Toyohashi, Japan)
that was used previously [19] was touched to one side of the aluminum electrodes between which the
MCF rubber was sandwiched. The voltage and electric current between the electrodes were measured
by a digital multi-meter (PC710, Sanwa Co. Ltd., Okayama, Japan). The figure shows the changes
in voltage and electric current due to the application of step-like pressure with five repetitions from
1© to 5©. The arrows in the figure show the timing of the applied pressure. Each component of the

used MCF rubber comprised 1.5 g of Ni, 0.75 g of MF, 4.5 g of NR-latex, 0.25 g of TiO2, 0.25 g of ZnO,
0.75 g of potassium hydroxide, KOH with 1 g water, and 0.5 g of KI+I2.

First, as seen from cases of “Ni, MF, NR-latex” and “Ni, MF, NR-latex, ZnO”, “Ni, MF, NR-latex,
TiO2”, and “Ni, MF, NR-latex, KI+I2” (these cases are called “FC” for convenience), the voltage
increased temporarily, and then decreased with increasing pressure, that is, it increased at lower
pressure and decreased at higher pressure. The cause is due to the piezoelectric phenomenon that was
clarified in the case of the “Ni, MF, NR-latex, ZnO” MCF rubber in the previous study [25]. At low
pressure, the positive and negative ions approach each other such that the voltage increases. At higher
pressure, the positive and negative ions come into contact, and the Ni particles aggregate such that the
electron can pass through the MCF rubber; therefore, voltage decreases. On the other hand, in the other
cases of MCF rubber in Figure 13 (these cases are called “LC” for convenience), even if the pressure
was larger, the voltage changed according to the step-like shape of pressure. The cause was that the
oxidation–reduction reaction in LC was larger than that in FC.

Next, regarding the electric current, in the case of FC, temporary decreasing can be seen. The cause
is that the positive and negative ions come into contact and that electricity discharges. On the other
hand, in the other case of LC, it changes according to the step-like shape of pressure.

Depending on the selection of the kinds of agents, we made an MCF rubber that had a
larger amount of electricity that was comparable to an ordinary polymer battery: 1-V-order of
voltage and 1-mA-order of electric current. The present MCF rubber is very flexible and elastic
to compression and tension because of the NR-latex. The MCF rubber has such a small size and
thickness, around 15 mm × 19 mm × 1 mm, that we can realize a lightweight battery. As a result, if
we use many MCF rubbers, we can obtain a flexible and elastic battery with greater electric charging.
Therefore, we can also realize H-Skin with electric charging that does not require irradiation.
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4. Conclusions

We clarified the feasibility of the autonomous usage of elastic and compressible H-Skin without
any battery or external power generator for electric charging for situations with and without irradiation
by indwelling in the MCF rubber. By using tunneling theory and the equivalent electric circuit
on-resistance and capacitance, and by comparing with the experimental data of resistance, voltage,
and electric current at irradiation to those of the cyclic voltammogram, it was clarified that the wet-type
MCF rubber solar cell under tension and compression can charge electricity. In the case without
irradiation, the MCF rubber can also store electricity, which corresponds to the built-in electricity.
In conclusion, as for the electric charge of MCF rubber, regarding Section 2, the optimal condition was
electrolytically polymerized MCF rubber with sensitized dye and electrolyte for photovoltaics. On the
other hand, regarding Section 3, the optimal condition was KOH for battery.

Depending on the selection of agent type, we can make an MCF rubber with greater built-in
electricity and lighter weight than previously described. For example, it will be effective for
renewable-energy batteries, including those for wind and solar power, because the current battery has
serious problems due to its heavy weight and large size. In addition, the present MCF rubber is elastic
and compressible. Therefore, we can propose many engineering applications that utilize MCF rubber
in many fields. The important application of MCF rubber is electric charge restored inner an elastic,
compressible, and deformable rubber, except for sensing. For example, if the artificial skin as the husk
of a robot is installed on the robot, it is similar to human skin enough to be familiar to us, and may
become a robotics style in the future, since the artificial skin is elastic rubber enough to be deformable
for bending and compression. In addition, electricity can be charged in itself by irradiation, and so the
robot does not need any electric power supply or battery. Even if not by illumination, it does not also
need any electric power supply because of the built-in electricity as battery. Furthermore, as the rubber
has also sensing as shown by the consecutive first and second reports, the robot can be sensible to force
and temperature such as human skin. The robot might work in space as an astronaut, and it can be
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charged in itself by irradiation from the sun and manipulate any instruments by sensing. Many ideas
can be realized with many other fields as well as within robotics.
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Nomenclature

a softness parameter [N/m]
C capacitance [F]
C* dimensionless capacitance [-]
Cn* dimensionless capacitance located at n’s turn cell [-]
cs compressive strain [-]
e elementary charge [C]
eEo applied voltage [eV]
f frequency of light [1/s]
H magnetic field strength [gauss]
h Planck’s constant [Js]
I current density [A]
Id diode current [A]
Iph photocurrent [A]
Ir light intensity [cd]
IS reverse-bias saturation current [A]
Ish shunt current [A]
k Boltzmann constant [J/K]
k1 glass factor [1/m]
m mass of electron [kg]
N recombination in the n–p-type semiconductor [1/m3]
Nd diode ideality factor [-]
n pairs of regions [-]
R resistance [Ω]
R* dimensionless resistance [-]
Ra arithmetical mean deviation of the assessed profile of surface roughness [m]
Ra,E arithmetical mean deviation of the assessed profile of electric current by sensing [A]
Rs series resistance [Ω]
Rsh shunt resistance [Ω]
Ry maximum height of the assessed profile of surface roughness [m]
Ry,E maximum height of the assessed profile of electric current by sensing [A]
Rz Japanese industrial standard based on the five highest peaks and lowest valleys over the entire

sampling length of the assessed profile of surface roughness [m]
Rz,E Japanese industrial standard based on the five highest peaks and lowest valleys over the entire

sampling length of the assessed profile of electric current by sensing [A]
R∞ representative resistance [Ω]
T transmitted probability [-]
Ta absolute temperature [K]
Ti transmitted probability at i-ordered pair of regions [-]
Tout transmitted probability at the outlet of n pairs of regions [-]
t response time [s]
t* dimensionless time [-]
t1 response time based on C and R [s]
t2 response time based on the speed of carrier diffusion at deeper regions than the depletion layer [s]
t3 response time based on the speed of carriers in the inner depletion layer [s]
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V voltage [V]
VD diffusion potential [V]
Vf forward bias voltage [V]
Vi voltage drop at the thin isolated layer [V]
Vo potential energy [J]
WC compressional work energy [N/m]
α optical absorption coefficient [1/m]
∆T change in temperature of dry-type MCF rubber by touching to a heated body [K]
∆t response time of temperature at heating [s]
∆To enhancement of temperature applied by heating [K]
δ thickness of MCF rubber [m]
ε energy of the electron [J]
ε′ dielectric constant of the MCF rubber solar [-]
γ wave number [1/m]
γi wave number at i-ordered pair of regions [1/m]
h̄ Dirac’s constant (=h/2π) [Js]

Appendix A

In the basic study for the purpose of the engineering application of H-Skin, we have investigated temperature
susceptibility [26]. The MCF rubber was produced by a dry method in which the rubber is solidified in ambient
under a constant temperature. Therefore, this was named dry-type MCF rubber. The temperature susceptibility
can be evaluated by the changes in the resistance of the MCF rubber, as shown by Figure A1, in the case where
the MCF rubber touches a heated surface made of silicon oil rubber of dimensions 15 mm × 20 mm × 0.5 mm
consisting of 3 g Cu, 3 g Ni, and 4 g MF with 50 wt % Fe3O4 (HC-50, Ichinen-Chemicals Co., Ltd., Shibaura, Japan),
and 10 g silicon oil rubber (SH9550, Shin-Etsu Chemical Co. Ltd., Tokyo, Japan) solidified in the air under the
application of a magnetic field H.

On the other hand, we have challenged in sensing of many varied body’s surfaces related to shearing motion.
At first, we can evaluate the surface roughness by rubbing a finger sack on which MCF rubber is attached [27].
This method of measuring surface roughness is novel without using ordinary surface roughness meter and
effective enough to easily measure the surface roughness of large aircraft, ship, automobile, etc. By introducing
parameters Ra, Ry, Rz, etc. used ordinarily in the case of estimating surface roughness at the field of precision,
the electric current curve measured by MCF rubber is calculated by the equations of these parameters, Ra,E,
Ry,E, Rz,E, etc. Ra,E, Ry,E, Rz,E, etc. have algebraic relation to the surface roughness of the body, Ra, Ry, Rz, etc.,
as shown by Figure A2, and a function of rubbing speed and pressing force on the body so that anyone can
similarly obtain the surface roughness although rubbing speed and pressing force depend on the person’s action.
The dry-type MCF rubber was made of NR-latex with around 19 mm × 24 mm × 0.7 mm consisting of 20 g
Cu, 40 g Ni, 15 g MF with 35 wt % Fe3O4 (W-35, Ichinen-Chemicals Co., Ltd., Shibaura, Japan), 80 g NR-latex
(Rejitex Co., Ltd., Atsugi, Japan) solidified in the air under the application of a magnetic field strength of 560 mT.
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Figure A2. Relation between the parameter estimated of surface roughness of a body and the one
of electric current curve measured by dry-type MCF rubber under rubbing speed and pressing force
which is presented as “initial normal force” in the figure [27].

Second, the dry-type MCF rubber can estimate softness, such as silicon oil gel. As shown by Figure A3,
the parameters Ra,E, in addition, Ry,E, Rz,E, etc., have a function of the softness evaluated by a related to the
stiffness, softness parameter a, which depends on compressibility and obtained from the relation between the
pressing force and compressive displacement [28]. The MCF rubber used was the same as that in Figure A2.
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Figure A3. Relation between the parameter estimated of surface roughness of soft body and the
softness parameter a [28].

Third, the dry-type MCF rubber can measure the surface roughness of a varied body with paper or cloth in
Figure A4a, or skin on a finger in Figure A4b. The parameters for estimating the softness and roughness of cloth
have been generally proposed WC which is usually used in the field of sensing of its texture, as shown in Figure A4c.
The difference in softness and roughness by different kinds of cloth cannot be evaluated by compressional work
energy WC which is ordinarily used in the field of measuring softness of a body and means energy required for
compression, but by the parameters, Ra,E, Ry,E, Rz,E, etc. on MCF rubber. Regarding Figure A4b, the smoothness of
skin by cosmetics can be estimated, and the electric currents of MCF rubber by rubbing on the skin painted both with
and without makeup cream are shown in Figure A4d [28]. The MCF rubber used was the same as that in Figure A2.



Sensors 2018, 18, 1853 17 of 19
Sensors 2018, 18, x 17 of 19 

 

  
(a) (b) 

 
(c) 

 
(d) 

Figure A4. Photographs and results of measured surface roughness of varied body with softness by 
dry-type MCF rubber: (a) the photographs of cloth; (b) the photograph of finger; (c) the results in the 
case of (a); (d) the results in the case of (b) [28]. 

Appendix B 

We used the same experimental apparatus of compression and elongation as the one in the 
previous 2nd report [19]. The MCF rubber electrolytically polymerized with 0.22-g Ruthenium 
complexes dye on one side and 7.4-g KI+I2 on the other was set on a small automatic measuring tensile 
testing machine (SL-6002, IMADA-SS Co. Ltd., Toyohasi, Japan) as shown in Figure A5. A transparent 
glass (20 mm × 30 mm) coated with TiO2 was irradiated with ultraviolet light and connected to the 
cathode of the solar cell. The MCF rubber was elongated vertically by the tensile testing machine, and 
at the same time compressed by a thickness gauge transverse to the rubber. For compression, the 
irradiated glass was compressed by a cylinder with φ6.5 mm connected to the thickness gauge. 
Therefore, the irradiated area of the MCF rubber was the area that remained outside of its circular 
area. The irradiation light was ultraviolet (40 Lux). 

0

0.0005

0.001

0.0015

0.002

0.0025

0 5 10 15

El
ec

tr
ic

 cu
rr

en
t

[A
]

Time [s]

Painting with makeup cream
Painting without makeup cream

the second joint of finger

the first joint of finger

the root of nail

Figure A4. Photographs and results of measured surface roughness of varied body with softness by
dry-type MCF rubber: (a) the photographs of cloth; (b) the photograph of finger; (c) the results in the
case of (a); (d) the results in the case of (b) [28].

Appendix B

We used the same experimental apparatus of compression and elongation as the one in the previous 2nd
report [19]. The MCF rubber electrolytically polymerized with 0.22-g Ruthenium complexes dye on one side and
7.4-g KI+I2 on the other was set on a small automatic measuring tensile testing machine (SL-6002, IMADA-SS
Co. Ltd., Toyohasi, Japan) as shown in Figure A5. A transparent glass (20 mm × 30 mm) coated with TiO2 was
irradiated with ultraviolet light and connected to the cathode of the solar cell. The MCF rubber was elongated
vertically by the tensile testing machine, and at the same time compressed by a thickness gauge transverse to
the rubber. For compression, the irradiated glass was compressed by a cylinder with ϕ6.5 mm connected to
the thickness gauge. Therefore, the irradiated area of the MCF rubber was the area that remained outside of its
circular area. The irradiation light was ultraviolet (40 Lux).
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