

Sensors 2018, 18, 1844; doi:10.3390/s18061844 www.mdpi.com/journal/sensors

Article

A Correlation Driven Approach with Edge Services

for Predictive Industrial Maintenance

Meiling Zhu 1,2,3,* and Chen Liu 2,3

1 School of Computer Science and Technology, Tianjin University, Tianjin 300350, China
2 Beijing Key Laboratory on Integration and Analysis of Large-Scale Stream Data,

North China University of Technology, Beijing 100144, China; liuchen@ncut.edu.cn
3 Institute of Data Engineering, North China University of Technology, Beijing 100144, China

* Correspondence: meilingzhu2006@126.com

Received: 29 April 2018; Accepted: 31 May 2018; Published: 5 June 2018

Abstract: Predictive industrial maintenance promotes proactive scheduling of maintenance to

minimize unexpected device anomalies/faults. Almost all current predictive industrial maintenance

techniques construct a model based on prior knowledge or data at build-time. However,

anomalies/faults will propagate among sensors and devices along correlations hidden among

sensors. These correlations can facilitate maintenance. This paper makes an attempt on predicting

the anomaly/fault propagation to perform predictive industrial maintenance by considering the

correlations among faults. The main challenge is that an anomaly/fault may propagate in multiple

ways owing to various correlations. This is called as the uncertainty of anomaly/fault propagation.

This present paper proposes a correlation-based event routing approach for predictive industrial

maintenance by improving our previous works. Our previous works mapped physical sensors into

a soft-ware-defined abstraction, called proactive data service. In the service model, anomalies/faults

are encapsulated into events. We also proposed a service hyperlink model to encapsulate the

correlations among anomalies/faults. This paper maps the anomalies/faults propagation into event

routing and proposes a heuristic algorithm based on service hyperlinks to route events among

services. The experiment results show that, our approach can reach 100% precision and 88.89% recall

at most.

Keywords: sensor data; event correlations; proactive data service; service hyperlink; edge

computing

1. Introduction

Predictive industrial maintenance aims at enabling proactive scheduling of maintenance, and

thus minimizing unexpected device faults. Nowadays, predictive industrial maintenance is well

studied when data deviate from normal behavior within individual sensors in recent years [1].

However, a fault is not always isolated. Due to the obscure physical interactions, trivial anomalies

will propagate among different sensors and devices, and gradually deteriorate into a severe fault [2].

Mining such propagation paths is an effective method for predictive industrial maintenance.

We will examine a typical scenario below. In a coal power plant, there are hundreds of devices

running continuously and thousands of sensors have been deployed. From individual sensors, anomalies,

i.e., values deviating from normal behaviors, can be regarded as events [3]. Such events correlate with

each other in multiple ways across sensors and devices. These correlations uncover possible propagation

paths of anomalies among different devices. They are very helpful in explaining the root cause of an

observable anomaly/fault and perform predictive industrial maintenance proactively.

Sensors 2018, 18, 1844 2 of 22

For clarity, we list all abbreviations used in this scenario in Table 1. Figure 1 illustrates partial

propagation paths starting from the L-CF. We find three observations from this scenario.

Table 1. Abbreviations.

 Abbreviation Explanation

device

CFD coal feeder

CM coal mill

PAF primary air fan

sensor/service

AP active power

BT bear temperature

CAVD cold air valve degree

CF coal feed

DPGB differential pressure of grinding bowl

DPSF differential pressure of strainer filter

E electricity

HAVD hot air valve degree

IAP inlet air pressure

IPAP inlet primary air pressure

IPAT inlet primary air temperature

IPAV inlet primary air volume

OTT oil tank temperature

UL unit load

V vibration

anomaly/fault/event type

CB coal blockage

CI coal interruption

H-CAVD over high cold air valve degree

H-DPSF over high differential pressure of strainer filter

H-HAVD over high hot air valve degree

H-IPAT over high inlet primary air temperature

H-V over high vibration

L-AP over low active power

L-BT over low bear temperature

L-CF over low coal feed

L-DPGB over low differential pressure of grinding bowl

L-E over low electricity

L-HAVD over low hot air valve degree

L-IAP over low inlet air pressure

L-IPAP over low inlet primary air pressure

L-IPAT over low inlet primary air temperature

L-IPAV over low inlet primary air volume

L-OTT over low oil tank temperature

L-UL over low unit load

The first observation is that anomalies/faults are correlated with each other and evolve into a

severer one along these correlations. Taking the case on the right-hand side of Figure 1 as an example,

an L-CF is usually followed by an L-AP. In other words, an L-CF and an L-AP always occur together

in order within [9min, 11min]. We regard the L-CF as the cause of the occurrence of L-AP. Along the

causal relationship, an L-CF propagates into an L-AP from the CF sensor to the AP sensor.

Secondly, an anomaly/fault can be affected by others in two ways. Sometimes, an anomaly/fault

can be caused by the co-occurrence of several anomalies/faults. As shown in the left case of Figure 1,

an L-HAVD and an H-CAVD leads to an L-UL. The absence of any of them will not cause an L-UL.

Sensors 2018, 18, 1844 3 of 22

Besides, an anomaly/fault can be caused separately by several anomalies/faults. For example, the

occurrence of any anomaly/fault in L-E, an L-AP, and an L-HVAD may cause the L-DPGB. The two

ways of causing an anomaly/fault should be considered during anomaly/fault propagation.

The third observation from the scenario is that an anomaly/fault may propagate in multiple ways

owing to different correlations. Due to space limitation, Figure 1 only shows the partial propagation

paths starting from the L-CF. An L-CF can propagate into different faults, such as a CI fault and a CB

fault, which are both a severe fault on a coal mill device. This is called as the uncertainty of

anomaly/fault propagation.

The observations show that causal relationships among anomalies/faults provide us lots of clues

for depicting propagation paths. Thus, the first issue is to mine these correlations for laying

foundation for depicting the propagation paths. The uncertainty of anomaly/fault propagation is

another problem we have to deal with in making predictive industrial maintenance.

0

100

200

300

400

500

600

2014-09-03
11:21:00

2014-09-03
15:21:00

2014-09-03
19:21:00

2014-09-03
23:21:00

2014-09-04
03:21:00

2014-09-04
07:21:00

2014-09-04
11:21:00

#1 Active Power on Coal Mill Device

-10

0

10

20

30

40

50

60

2014-09-03
11:21:00

2014-09-03
15:21:00

2014-09-03
19:21:00

2014-09-03
23:21:00

2014-09-04
03:21:00

2014-09-04
07:21:00

2014-09-04
11:21:00

Coal Feed on Coal Feeder Device
an L-CF on CFD

an L-DPGB on
CM

a CB on CM

an L-E on CM

an L-AP on CM

an L-HAVD on CM

an over low coal
feed anomaly

an over low active
power anomaly

11 minutes

9 minutes

an over low coal
feed anomaly

an over low active
power anomaly

an L-IPAV on
PAF

LEGEND:

event correlation
an anomaly/fault

an L-CF on CFD

an L-UL

a CI on CM

an L-HAVD
on CM

an L-E on CM

an H-IPAT on CM

an H-CAVD
on CM

an H-V on CM

Figure 1. Partial anomaly propagation under correlations among sensors and devices in a coal power plant.

Based on these observations, this paper tries to perform industrial maintenance proactively by

predicting the anomalies/faults propagation by using the correlations. Our previous works laid

foundation of this attempt.

In our previous works, we proposed a service-based framework to dynamically correlating the

sensor data and generating higher-level events between sensors and applications [4–6]. We mapped

physical sensors into a software-defined abstraction deployed in the cloud, called proactive data

service. A proactive data service takes data from sensors and events from other services as inputs and

transforms them into new events based on user-defined operations. Also, we proposed a new

abstraction, called service hyperlink, to encapsulate relationships between the services. With service

hyperlinks, a service can dynamically route an event to the other services at runtime. Our previous

works enables us to depict the anomaly/fault propagation as the event routing among services.

However, our previous works cannot be easily put in to practice. Firstly, public cloud

infrastructure is not suitable for a power plant since its data can reveal many significant factors such

as national economic situation and energy consumption. On the other hand, a power plant is

deployed with more than ten thousand sensors. A private cloud has a limitation of scale and

scalability to handle such amount of data. Edge computing paradigm provides a good opportunity

to handle the problem.

Secondly, our previous works paid more attention on measuring the strength of positive

relationship between two sensors from a statistical perspective. However, the above observations

show that the casual relationships among anomalies/faults can help a lot to propagate anomalies and

faults, which is that an anomaly/fault always happens following some other ones while the

corresponding sensors may be not correlated at all.

The present paper tries to propose a heuristic approach to route events among services via

service hyperlinks by improving our previous works. It uses the event routing path to predict the

anomalies/faults propagation among sensors and perform predictive industrial maintenance. To

reach this goal, its main contributions include: (1) It tries to refine our proactive data service model

Sensors 2018, 18, 1844 4 of 22

to fit edge computing paradigm. In this way, our approach can be applied in information-sensitive

industrial enterprises; (2) It focus on a new kind of causal relationship among anomalies and faults

and transform the correlation mining problem into a time-constrained frequent co-occurrence pattern

mining problem. We propose an effective algorithm to mine the correlations and encapsulate them

into service hyperlinks; (3) This paper develops a heuristic event routing approach to handle the

uncertainty issue. (4) We try validate the completeness of our approach by model checking

techniques, i.e., whether any anomaly/fault propagation path which exists in an industrial system

can be captured by the graph. Besides, we do rich experiments to verify our approach based on a real

dataset and several synthetic datasets in a coal power plant.

2. Related Works

2.1. Predictive Industrial Maintenance

Predictive industrial maintenance is a hot topic in mechanical engineering. Professor Legutko,

S. and his team considered that predictive maintenance provided new opportunities to reduce the

operational cost on equipment replacements and increase enterprises’ economy [7–9]. Recent

predictive maintenance techniques can be classified into three categories, model-based approaches,

data-driven approaches, and hybrid approaches [10–19].

Model-based approaches usually build models on training datasets based on prior knowledge

and verify the model on testing datasets. Vianna, W.O.L. et.al. proposed a method to identify

degradation and their future estimates and then integrate their results into a maintenance planning

optimization algorithm for aeronautical redundant systems based on extended Kalman filter [10].

Jung, D. et al. propose a new analytical framework and a new data analytic engine supporting

Remaining Usefulness Lifetime (RUL) estimation. Their analysis algorithm exploited the new feature

generation scheme to build reliable models over meaningful feature domain. It can be used to identify

different equipment classes with completely different ageing model [11]. Simões, A. et al. describes

two algorithms that can help to increase the quality of assessment of engine states and the efficiency

of maintenance planning based on a hidden Markov model [12]. Wang, J. et al. presented a general

classification-based failure prediction method. Their parameterized model systematically defined

four categories of features to cover all possibly useful features, and then used feature selection to

identify the most important features for model construction [13].

On the other hand, data-driven approaches take no account of prior knowledge and build

models based on data completely. Patil, R.B. et al. presented an overall methodology of predicting

failure of these devices by using data-driven approach based on machine learning, for reducing

machine downtime, improving customer satisfaction and cost savings for original equipment

manufacturers [14]. Sipos, R. et al. presented a data-driven approach based on multiple-instance

learning for predicting equipment failures. The approach mined equipment event logs usually not

designed for predicting failures but contain rich operational information [15]. Susto, G.A. et al.

presented an adaptive flexible maintenance scheduling decision support system. The proposed

system employed Machine Learning and regularized regression methods to refine remaining useful

life estimates [16]. Some researches focused on detect anomalies from individual sensors by data-

driven techniques to address predictive industrial maintenance. Sammouri, W. et al. proposed a

methodology for the prediction of infrequent target events in temporal sequences. They transformed

data sequences into a data matrix and decreased the number of attributes by removing less significant

and contributive attribute. Then, they applied pattern recognition classifiers to predict the occurrence

of infrequent target events [17]. Bezerra, C.G. et al. proposed a comparative analysis of three recently

introduced outlier detection methods for fault detection applications [18].

Some researches combine the data-driven techniques with model-based approaches. They used

these techniques to learn parameters of models and update models with the movement of time.

Baptista, M. et al. proposed a framework that can predict when a component/system will be at risk

of failure in the future, and therefore, advise when maintenance actions should be taken. Authors

employed an auto-regressive moving average (ARMA) model along with data-driven techniques to

Sensors 2018, 18, 1844 5 of 22

facilitate the prediction [19]. Liao, W. et al. developed a hybrid machine prognostics approach to

predict machine’s health condition and describe machine degradation. Based on machine’s

prognostics information, a predictive maintenance model was well constructed to decide machine’s

optimal maintenance threshold and maintenance cycles [20].

All these predictive industrial maintenance approaches lay foundation of our work. However,

almost all these techniques construct a model based on prior knowledge or data in the build-time.

Neither of them considers the changing of the internal relationships among anomalies/faults. This

paper makes an attempt on predictive industrial maintenance from the novel perspective.

2.2. Edge Computing

Edge computing aims at bringing back partial computation load from the cloud to the edge

devices. Edge can be regarded as any computing resources along the path between data sources and

data center. Smart phones can be the edges between body sensors and cloud. Researchers propose a

system which is named MAUI [21]. The system decides at runtime which methods should be

remotely executed in a smart phone to achieve the best energy savings while minimizing the changes

required to applications. Smart gateway is another choice as an edge between home sensors and

cloud in a smart home scenario. In literature [22], authors propose a system, which abstracts

connected entities as services and allows applications to orchestrate these services with end-to-end

QoS requirements. They illustrate the system by a health smart home use-case. In the case, a gateway

is an edge node and maintains services. A laptop can also be an edge node sometimes. Researchers

present Vigil, a real-time distributed wireless surveillance system supporting real-time tracking and

surveillance in enterprise campuses, retail stores, and across smart cities. Vigil utilizes laptops as

edge computing nodes between cameras and cloud to save wireless capacity [23]. Besides, some

people place edge comping nodes on the cloud. In literature [24], authors virtualize a physical sensor

as a virtual sensor on the cloud and automatically provisioning the virtual sensors on demand. In our

research, we borrow ideas from Vigil [23] and utilize laptops as edge computing nodes. Each

computing node can maintain multiple proactive data services and transmit generated event streams

to the data center.

2.3. Service Relationship

Service relationship has attracted much attention in the field of service computing. Dong et al.

tried to capture the temporal dependencies based on the amounts of calls to different services [25].

Hashmi et al. proposed a framework for web service negotiation management based on dependency

modeling for different QoS parameters among multiple services [26]. Wang et al. considered that a

dependency is a relation between services wherein a change to one of the services implies a potential

change to the others [27]. They utilized a service dependency matrix to solve the service replacement

problem.

However, most of the existing work only considers input/output dependency, pre/post

condition dependency, correlations among services and so on. Neither of them takes the dependency

of the involved data/events.

2.4. Event Relationship

2.4.1. Event Correlation

Existing studies of event correlation are the foundation of our work. Event correlation discovery

is a hot topic [28–35]. It can be used in various areas like process discovery [28–31], anomaly detection

[32,33], healthcare monitoring [34,35] and so on. In the field of business process discovery, event

correlation challenge is well known as the difficulty to relate events that belong to the same case.

Pourmirza et al. proposed a technique called correlation miner, to facilitate discovery of business

process models when events are not associated with a case identifier [28,29]. Cheng et al. proposed a

new algorithm called RF-GraP, which provides a more efficient way to discover correlation over

distributed systems [30]. Reguieg et al. regarded event correlation as correlation condition, which is

Sensors 2018, 18, 1844 6 of 22

a predicate over the attributes of events that can verify which sets of events belong to the same

instance of a process [31]. Some studies used event correlation to detect anomalies. Friedberg et al.

proposed a novel anomaly detection approach. It keeps track of system events, their dependencies

and occurrences, and thus learns the normal system behavior over time and reports all actions that

differ from the created system model [32]. Fu et al. focused on temporal correlation and spatial

correlation among failure events. They developed a model to quantify the temporal correlation and

characterize spatial correlation. Failure events are clustered by correlations to predict their future

occurrences [33]. Other works applied event correlation in healthcare monitoring. Forkan et al.

concentrated on vital signs, which are used to monitor a patient’s physio-logical functions of health. The

authors proposed a probabilistic model to make predictions of future clinical events of an unknown

patient in real-time using the learned temporal correlations of multiple vital signs from many similar

patients [34,35].

2.4.2. Event Dependency

Recently, some researchers focus on event dependencies. Song et al. mined activity

dependencies (i.e., control dependency and data dependency) to discover process instances when

event logs cannot meet the completeness criteria [36]. In that paper, the control dependency indicates

the execution order and the data dependency indicates the input/output dependency in service

dependency. A dependency graph is utilized to mine process instances. However, the authors do not

consider the dependency among events. Plantevit et al. presented a new approach to mine temporal

dependencies between streams of interval-based events [37]. Two events have a temporal

dependency if the intervals of one are repeatedly followed by the appearance of the intervals of the

other, in a certain time delay.

3. Proactive Data Service Model

3.1. Preliminaries

This paper aims at proposing a correlation-based event routing approach to predict

anomalies/faults propagation among sensors at the software layer. However, most of current physical

sensors produce sensor data. They do not afford configurability and programmability so that cannot

generate and route events. Therefore, we need an abstraction of these sensors at the software layer.

Our previous works [4–6] proposed a proactive data service model, which is the abstraction and lays

foundation for this paper.

Although lots of studies have focused on how to encapsulate sensor data into services, the

service models intrinsically follow the “request-and-response” manner [38–44]. We previously

proposed a novel type of service abstraction, called proactive data service, with which we hope to

find a more automatic and quick way for handling sensor data and events from other services while

maintaining the common data service capabilities. A proactive data service can autonomously

respond to all events it receives. Relationships among services are encapsulated into service

hyperlinks to facilitate the event routing among services: When an event generated from a service, it

will be routed into other services via hyperlinks. The services receiving the event will be stimulated

to respond to it in the same manner.

In our previous works, when building a service, a user customizes its functionality by

customizing the input sensor data as well as operations. Event handler invokes operations for

different inputs. Event definition is responsible for defining output event type and format. In this

way, each service processes its inputs and generates high-level events. A created service can be

encapsulated into a Restful-like API so that other services or applications can use it conveniently. As

mentioned above, service hyperlink is an important component for routing generated events.

Sensors 2018, 18, 1844 7 of 22

3.2. Proactive Data Service Model Refinement

Our proactive data service model was proposed to encapsulate sensor data generated in

industrial environments. The formal definition of sensor data is presented below.

Definition 1. (Sensor Data): A piece of sensor data is a 3-tuple: d = (timestamp, sensorid, value), in which

timestamp is the generation time of d; sensorid represents the sensor generates d; value is the value of d.

Example (Sensor Data): A piece of sensor data d = (2014-09-03 11:21:00, A6, 31.356) represents

that the CF sensor (id: A6) generates a value of 31.356 at 2014-09-03 11:21:00.

A time-ordered list of sensor data generated from a same sensor forms a sensor data sequence.

Figure 1 shows two examples of sensor data sequence, including a CF sensor sequence, and an AP

sensor sequence.

We next discuss how to refine the service model. Placing all proactive services in the cloud to

serve real industrial applications in information-sensitive enterprises is impractical. A public cloud

is not suitable for information-sensitive enterprises because of data privacy. On the other hand, a

privacy cloud cannot afford complete functionalities due to its limited resources and capacities. Edge

computing paradigm provides a good opportunity to handle the issue. To fit edge computing

paradigm, we try to place our proactive data service in edge nodes to bring back partial computation

load from the cloud. Such service is called as an edge proactive data service or an edge service for

short. The limitation of edge nodes limits the functionality of an edge service. Therefore, each edge

service is refined to encapsulate sensor data from one sensor. It is responsible for detecting sensor

data deviating from most one by user-defined operations, i.e., anomalies, and encapsulating them as

events. These events are more valuable than sensor data but much fewer than sensor data. To avoid

complex computation, an edge service receives no event from other services, and thus its event

handler is not in use. Other components, including event definition and service hyperlink, retain in

edge services. Besides, the edge service can also be encapsulated into a Restful-like API.

Our approach is proposed to depict anomalies/faults propagation. Thus, edge services detect

anomalies and send them to the cloud is reasonable. This can also avoid sending redundant sensor data

so that can relieve the transmission load of the network and the computation pressure in the cloud.

There are many traditional techniques and algorithms can be borrowed to detect anomalies, such

as range-based approaches, outlier detection approaches and discord discovery approaches. A range-

based algorithm customizes value bounders for individual sensors based on inspectors’ experiences,

sensor/device instructions and so on. Outliers are widely known as the values which sufficiently

deviate from the most ones. A discord is the subsequence which are most dissimilar with others in a

sequence. There are many excellent works with open source code on these topics (An open source of

an outlier detection software: https://elki-project.github.io/; an open source of a discord discovering

technique: http://www.cs.ucr.edu/~eamonn/MatrixProfile.html.). With these techniques, an edge

service can detect anomalies from individual sensors. These anomalies can be regarded as events by

many studies [3]. This paper follows them and considers them as service events.

Definition 2. (Service Event): A service event, which also refers to a service event instance or an instance, is

a 4-tuple: e = (timestamp, eventid, serviceid, type), in which timestamp is the generation time of e; eventid is

the unique identifier of e; serviceid is the unique identifier of the service generating e; and type is the type of e.

Example (Service Event): The L-CF in Figure 1 can be expressed as a service event e = (2014-09-

04 02:24:00, 11686, S6, L-CF). It represents an over low coal feed service event (id: 11686) occurring at

2014-09-04 02:24:00, which is generated by the CF service (id: S6).

A service event sequence is a time-ordered list of service events generated by a same service.

Here is an example of a service event sequence in Figure 1: E = 〈(2014-09-03 12:00:00, 11685, S6, L-CF),

(2014-09-04 02:24:00, 11686, S6, L-CF)〉.

To depict anomaly/fault propagation, we also need the details of each fault in an industrial

system. These can be extracted from maintenance records.

Sensors 2018, 18, 1844 8 of 22

Definition 3. (Maintenance Record): A maintenance record is a 4-tuple r = (rid, start_time, end_time,

fault_desc), where rid is the record id, start_time and end_time is the starting time and ending time of this

fault, and fault_desc is the text for fault description.

Example (Maintenance Record): For example, there is a maintenance record r = (116,928, coal

blockage, 2014-09-04 04:21:00, over low inlet primary air volume in #2 coal mill: coal blockage in #2

coal mill). The over low inlet primary air volume is the sign of coal blockage fault.

This paper tries to use event routing among services to depict anomalies/faults propagation. The

cloud needs to undertake this task based on our previous works. Therefore, we also preserve some

proactive data services in the cloud, which is called as cloud proactive data service or cloud service for

short. Different from edge services, each cloud service encapsulates a fault in an industrial system. In

this way these cloud services can provide an opportunity to depict the anomalies/faults propagation.

A fault can be identified by a non-empty set of anomalies. Existing techniques such as association

rules can help to do this [45]. These anomalies are generated from edge services. Consequently, a

service should take the anomalies, i.e., service events from the corresponding edge services as its

inputs for identifying the fault this cloud service encapsulates. It also receives service events from

other cloud services for routing events. The event handler is indispensable for our cloud services.

Other components are the same with edge services. Based on the above analysis, we give the formal

definition of the refined proactive data service.

Definition 4. (Proactive Data Service): A proactive data service is defined as an 8-tuple: si = (uri, APIs,

input_channels, event_handler, operations, event_definition, output_channel, service_hyperlinks). uri is the

unique identifier; APIs is a set of RESTful-like APIs; input_channels represents a set of channels receiving

different kinds of inputs; event_handler invokes different operations for different input service events;

operations is a set of operations used for processing the inputs; event_definition is responsible for defining out-

put service event type and format; output_channel represents the channel for outputting service events

generated by operations; service_hyperlinks is essentially a routing table, which can point out the target services

of each output service event. Proactive data service can be categorized into two types:

• edge service: the service model for encapsulating sensor data from one sensor, where event_handler = ϕ,

and input_channels is used for receiving sensor data.

• cloud service: the service model for encapsulating a fault, where input_channels s used for receiving service

events.

Our refined service model decouples the sensor data from analysis. The edge services

encapsulate sensor data and can customize valuable service events for tasks in the cloud. This simple

functionality in edge nodes is for relieving the load of the network and cloud. In predictive industrial

maintenance, the two kinds of services provide a richer layered view of the anomaly/fault

propagation. The cloud services show the faults interactions macroscopically. The edge services

present the root causes of a fault. A user can switch between the two layers conveniently.

4. Service Hyperlink Model

Based on the scenario at the beginning, the causal relationships among anomalies/faults play an

important role in anomalies/faults propagation. As a result, our service hyperlink is an abstraction of

causal relationships among service events. It reflects the causes of each service event. The causes and

this event forms a pattern. Formally, let E = {E1, …, Ek} be k service event sequences, Et be a set of

service event types in E1, …, Ek, and there exists eit ∈ Et, E-t = Et−{eit}, 〈E-t, {eit}〉 becomes a time-

constrained frequent co-occurrence pattern, short for TFCP, if the following conditions are satisfied:

(1) instances of Et occur together f(〈E-t,{ eit}〉) times, f(〈E-t,{eit}〉)≥δco, where δco is a times threshold; (2)

instance of eit has the largest timestamp in each occurrence of Et. In a TFCP 〈E-t, {eit}〉, E-t is called as

antecedent, and eit is called as consequent. Figure 1 implies an example of a TFCP: 〈{L-CF}, {L-AP}〉.

Sensors 2018, 18, 1844 9 of 22

Obviously, there is a causal relationship between the E-t and eit in a TFCP. Many studies measure

the relationship by the conditional probability p(eit|E-t) = f(〈E-t,{eit}〉)/f(E-t), where f(〈E-t,{eit}〉) and f(E-t)

are the occurrence times of 〈E-t,{eit}〉 and E-t respectively [46].

Besides, anomaly/fault propagation always occurs within a time interval. As shown in Figure 1,

an L-CF anomaly propagates into an L-AP anomaly in 9 to 11 min. The time interval is also an

important information to depict the propagation and should be considered in the definition of service

event correlation. According to the service event correlation, we can refine service hyperlink.

Definition 5. (Service Event Correlation): Let E-t be a set of service event types and eit be another type, there

is a service event correlation between E-t and eit if and only if 〈E-t,{eit}〉 is a TFCP. The service event correlation

is denoted as γ(E-t, eit) = (E-t, eit, Tint, p), where E-t is the causes, eit is the effect, Tint = [tmin, tmax] is the propagation

time interval, and p is the conditional probability.

Example (Service Event Correlation): Figure 1 shows a service event correlation ({L-CF}, {L-AP},

[9min, 11min], 1.0). It means that an L-CF anomaly is followed by an L-AP anomaly in 9 to 11 min

with 100% chance.

Definition 6. (Service Hyperlink): Let γ(E-t, eit) be a service event correlation, where E-t are contained by a set

S of proactive data services, eit is contained by a service si. Given a probability threshold δp, if p ≥ δp, there is a

service hyperlink L(S, si) = (S, si, γ(E-t, eit), δp), where S is a set of source services, si is the target service.

Service hyperlinks encapsulate valuable service event correlations, i.e., the ones with high

enough probability.

5. Service Hyperlink Generation

5.1. Problem Analysis

This section discusses how to generate service hyperlinks. Service events are generated and

sorted by time into service event sequences. From these sequences, we mine service event correlations

and encapsulate them into service hyperlinks.

Based on definition 5, the service event correlation γ(E-t, eit) is measured by a conditional

probability. To calculate the probability, we have to count the occurrence times f(〈E-t,{eit}〉) of 〈E-t,{eit}〉

in an event sequence set. Besides, the co-occurrence time interval of 〈E-t,{eit}〉 needs to be recorded as

propagation time interval of the service hyperlink. Thus, the task of mining service event correlations

is easily transformed into mining TFCPs with recording co-occurrence time interval.

The challenge of TFCP mining is that a TFCP 〈E-t,{eit}〉 consists of two event type groups, where

intra-group’s instances (instances of E-t) are unordered and inter-group’s instances are time-ordered

(instances of E-t occur earlier than instance of eit). Traditional frequent co-occurrence pattern mining

algorithms cannot directly handle the challenge. They only focused on the occurrence frequency of a

group of unordered objects [47,48]. But they still give an inspiration to us for developing an effective

algorithm to mine TFCPs.

5.2. Service Event Correlation Generating

5.2.1. Frequent Co-occurrence Pattern Mining

This section reminds the concept of traditional frequent co-occurrence pattern and the

techniques of mining such patterns.

We list some related concepts. A group of objects O = {o1, o2, …, ok} from a sequence Ei is a co-

occurrence pattern, if max{T(O)}-min{T(O)}, where T(O) = {to1, to2, …, tok}, toj is the occurrence time of oj

(j = 1, 2, …, k) in Ei, and ∆t is a predefined time threshold. The co-occurrence pattern O becomes a

frequent co-occurrence pattern, if it occurs in no less than δ sequences.

Sensors 2018, 18, 1844 10 of 22

Researchers tried to generate all co-occurrence patterns and count them to discover frequent

ones [47,48].

5.2.2. TFCP Mining

Our task is to mine all TFCPs whose occurrence times are no less than δco. All TFCPs can be

grouped by its consequent, i.e., R = ⋃R(et), where R is the complete set of TFCPs, R(et) = {〈E-t,{eit}〉| eit

= et∧〈E-t,{eit}〉 is a TFCP}. Each group can be mined separately in the service event sequence set E = {E1,

E2, …, Ek}. Such divide and conquer strategy has been widely used in frequent pattern mining

problem [49].

Firstly, we generate potential consequents by computing the occurrence times of each event type

in a service event sequence set E = {E1, …, Ek} by f(et) = ∑ini, where ni is the occurrence times of et in

sequence Ei. Service event types whose occurrence times are no less than δco are selected as potential

consequents, which is denoted as Ccq.

For each service event type et in Ccq, we generate the corresponding TFCP set R(et) separately.

Every type ejt (ejt ≠ et) in Ccq will be selected to generate a potential TFCP 〈{ejt},{et}〉. Then we test

whether 〈{ejt},{et}〉 is a TFCP with consequent et by judging whether f(〈{ejt},{et}〉) ≥ δco. During this

process, we record the co-occurrence time interval. After generating a valid TFCP, we extend it by

adding a third type ekt ∈ Ccq (ekt ≠ ejt, ekt ≠ et) into the antecedent. We test whether 〈{ejt, ekt},{et}〉 is a

TFCP with consequent et in the same manner. The extension is repeated until there is no new valid

TFCP. There is a skill during the extensions to avoid generating repeated TFCPs, i.e., all types are

added in lexicographical order. It indicates that we only add a larger service event type to a validated

TFCP. Thus, we can easily mine the service event correlations in generated TFCPs.

5.2.3. Service Hyperlink Generating

A service event correlation will be encapsulated into a service hyperlink if p ≥ δp, where δp is a

probability threshold. Details of service event correlation encapsulation can be found in our previous

works [5,6].

6. Our Predictive Industrial Maintenance Approach

6.1. The Framework of Our Approach

Based on the refined proactive data service and service hyperlink, we propose a service

hyperlink-based approach to route service events among services for predictive industrial

maintenance. Figure 2 presents the framework. Our approach plugs the gap between sensors and

applications. Edge services at the edge side abstract sensors at the software layer. Edge services can

provide a unified interface for heterogeneous sensor data and make sensor data accessible easily.

They enhance the flexibility and reusability of sensor data sources. Besides, an edge service is preset

with anomaly detection operations to make simple analysis on input sensor data. It encapsulates

detected anomalies into service events and send them into the cloud instead of sensor data. In the

cloud, our event routing approach facilitate service events route among cloud services and

applications. Once a service event is generated, our approach will compute the most probable

destination it may reach and the most probable path to the destination. The service event will be

routed in this way. And if the probability exceeds a threshold, the service will also send this event to

applications for planning predictive maintenance.

Sensors 2018, 18, 1844 11 of 22

edge node
(industrial PC)

edge node
(micro data center)

applications

(predictive industrial

maintenance)

device
(coal mill)

edge node
(laptop computer)

edge services

edge services

edge services sensorssensors

sensors

users

device
(primary air fan)

device
(generator)

router

maintenance log

log analysis

fault information
and identification

ro
u

te
r

device
(boiler)

edge node
(gateway)

edge services

sensors

inspectors

ro
u

te
r

... ...

..
. ...

encapsulate each sensor
into a edge service

fault
anomaly

service
hyplinks

customize a cloud
service automatically

customize a cloud
service manually

service
hyplinks

eventsevents

events

events

map each fault into
a cloud service

events

legend

data flow

sensor

edge service

cloud service

event

cloud services

...

Figure 2. The framework of our approach.

6.2. Proactive Data Service Graph Generating

To route service events among services, we first need to generate a graph formed by proactive

data services and service hyperlinks. This graph is proposed as a way to describe the anomalies,

faults, and their consequences over time. It is a directed graph model where its node represents an

edge/cloud service, which generates service events. A node corresponding to a cloud service is

categorized into two types to reflect the two ways of causing a fault mentioned in our scenario. An

edge is the service hyperlink encapsulating causal relationships between service events. Each edge is

labeled with propagation time interval. The graph is formally defined as follows. Figure 3 illustrates

an example of a Proactive Data Service Graph (PDSG) following Figure 1.

Definition 7. (Proactive Data Service Graph, PDSG): A PDSG is a directed graph G = 〈V, E〉, where:

• V = A∪F, F is the complete set of edge proactive data services, and F is the complete set of cloud proactive

data services. Each node v ∈ F should be AND type or OR type. AND type implies that the fault

represented by v occurs if all anomalies and faults pointing to v occur; OR type implies that the fault

represented by v occurs if any anomaly or fault pointing to v occurs.

• E ⊆ V × F is a non-empty edge set. Each edge e ∈ E is labelled with a propagation time interval Tint.

Number of generated service hyperlinks can help to determine the AND/OR type of a node. We

denote SHL(α) = {L(S,si)|eit = α} be all service hyperlinks whose effect event is α. Thus, these service

hyperlinks have same target service, which is written sα. If |SHL(α)| > 1, the cloud service sα is defined

as an OR node. Otherwise, sα is defined as an AND node.

L-CF

L-E

L-HAVD

L-AP L-DPGB L-IPAV CB

services OR node AND node

LEGEND

[9min,11min] [7min,12min] [18min,24min] [19min,31min]

 H-CAVD

L-UL

H-IPAT

H-V

CI

[5m
in,9m

in]

[5min,9min]

[27m
in,39m

in]

s1 s4

s7 s9

s12

s3
s6

s8
s11

s10

s2 s5

Figure 3. An example of Proactive Data Service Graph (PDSG).

Sensors 2018, 18, 1844 12 of 22

6.3. Event Routing on Proactive Data Service Graph

In a PDSG, services are connected with each other intricately. The destination of a service event

is uncertain during its routing. This paper uses a heuristic approach to handle the problem.

Firstly, as the destination of a service event is uncertain, we try to find all its possible destinations

and compute the most probable one it may reach in the future as its destination. In a PDSG, a service

si can reach a service sj, i.e., sj is reachable from si, if there exists a sequence of adjacent services (i.e., a

path) which starts from si and ends with sj. Based on the definition of PDSG, all services reachable

from a given service si are cloud services. Therefore, when a service si generates a service event, all

reachable services may be the destinations of this service event. However, the number of these

destinations may be too large. For example, as Figure 3 shows, an L-CF service event from s1 may be

routed to each rest service on the graph. Finding the routing path to all potential destinations are too

expensive. Furthermore, it may cause repeat maintenance plans. For instance, an L-IPAV and a CB

fault are generated by service s9 and s12 on one path. If people predict that a CB fault is going to

happen, they will certainly realize that an L-IPAV will happen before the CB fault. But if the L-IPAV

is stopped, the CB will not happen. Therefore, there is no need to plan the maintenance twice for the

two faults respectively. Consequently, a candidate destination set is needed to be selected from all

potential destinations. Herein, a candidate destination set can be regarded as these reachable services

which are not on the path to other reachable services. The formal definition is shown below.

Definition 8. (Candidate Destination): Given a service si on a PDSG, a reachable service sj becomes a candidate

destination of the service events generated by si if there is no reachable service sj’ (sj’ ≠ sj), which sj is on a path

from si to sj’.

The candidate destination set of a service is the all reachable services from this service, whose out-

degree is 0. The main task of getting si’s candidate destination set is to generate all reachable services of

si. This can be achieved as follows: Each graph has a reachable matrix to reflect its reachability. A PDSG

corresponds to a reachable matrix Mn*n, where n is the service number on the PDSG, and the element

M[i, j] at the ith line jth column is 1, if si reaches sj; otherwise, M[i, j] = 0. The candidate destination set

of an arbitrary service si can be expressed as CDS(si) = {sj|M[i,j] = 1 ∧ dout(sj) = 0}, where dout(sj) is the out-

degree of sj.

A service si may reach a candidate destination via multiple paths. It has to route a service event

on the most probable path to this candidate destination. It means, a service should select the target

service pointing by its hyperlinks which will most probably route the service event into the candidate

destination. We develop a heuristic approach based on A* algorithm to help a service make a selection

automatically. Our approach considers the heuristic that estimates the most probable path to each

candidate destination, which means to maximize f = g + h, g is the probability from service si to an

arbitrary service, h is the probability from the arbitrary service to a candidate destination. In this

paper, the occurrence of a service event is only related to its casual service events’ occurrence. Under

this case, we can calculate h by multiply the probabilities on a path from the arbitrary service to the

candidate destination.

The above algorithm can route a generated service event to the most probable destination along

the most probable path. To avoid an endless routing of a service event, we have to discuss when a

routing path should be terminated. From the algorithm, we get that a path is terminated if any service

except for the candidate destination on this path has no target services. Besides, a routing path will

also be terminated when the effect event does not occur during the time interval labelled on the

corresponding edge. There are two cases: If the effect event does not occur at all, the path is stopped;

If it occurs beyond the time interval, the effect event is considered as a new service event need to be

routed. This event and its service are input into our algorithm to select target services for routing.

Based on the event routing approach presented above, we put forward a novel predictive

industrial maintenance approach. Figure 4 illustrates the workflow of our approach. When an

edge/cloud service si generates a service event, it will compute its candidate destination set CDS(si) =

{d1, d2, …, dn}. For each candidate destination dj, service si computes the probability from itself to dj. If

Sensors 2018, 18, 1844 13 of 22

the probability is no less than a predefined probability threshold, si will make a warning to the staff

for making maintenance plan of the related fault. Whether the probability exceeds the threshold or

not, service si will select the target service for the most probable path from si to dj for routing the

generated service event. After this, the process is over. Any service generating a service event will

start a new process same with this one.

a service S
generates a

service event

whether the
probability exceeds the

threshold

calculate
candidate

destinations:
{D1, D2, ,

Dn}, i=1

warn the staff
to make

maintenance
plan

yes

start
no

overwhether i n
compute the
probability
from S to Di

select target
service for Di

i=i+1

no

yes

Figure 4. Workflow of our predictive industrial maintenance approach.

7. Proactive Data Service Graph Validation

This section validates the completeness of the approach by model checking techniques. We

firstly introduce the symbolic transition system to model an industrial system.

A symbolic transition system can be a formal description of industrial systems. It is used for

modeling the system state behaviors, i.e., how a system goes from state to state. A symbolic transition

system S can be defined as a three tuple S = 〈X, I, T〉, where X is a non-empty set of system state variables,

I is the initial states of S, and T is the transition relation between states and next states. Domain of a

variable x ∈ X is denoted as D(x). A state s of S is an assignment to the state variables X. All possible

states of S are denoted as P(S). There is a variable τ∈X with D(τ) = R+ (the set of non-negative real

numbers) representing the timestamp of each state, i.e., an assignment to X - {τ}. Thus, a trace π of S is

an infinite time-ordered sequence of states denoted as π = s0, s1, …, si, …, where s0 ⊨ I, and ∀k ≥ 0, (sk,

sk+1) ⊨ T. ⊨ is the satisfaction relation representing a variable assignment satisfies a formula, i.e., the

formula is true under the variable assignment. The kth state of a trace π is written π[k].

Based on the above concepts, an industrial system can be described as a symbolic transition

system. In order to interpret how the states of this system change over time, metric temporal logic is

introduced below.

Metric temporal logic (MTL) is a timed extension of linear temporal logic (LTL). Given a set APs

of atomic propositions, the formulae of MTL are built on APs by Boolean connectives and temporal

operators as φ::= ⊥ | ⊤ |p|¬φ|φ∧ϕ|φ∨ϕ|φUIϕ|φSIϕ|♢Iφ| ◻ Iφ, where ⊥ represents false, ⊤

represents true, and p∈APs. UI, SI, ♢I and ◻I are temporal operators, in which I is an interval as [a, b],

[a, b), (a, b], (a, b), a, b∈R+∪{+∞}. UI is a time-constrained until operator, and φUIϕ means φ will be true

lasting a time interval no longer than I until a time when ϕ is true. SI is a time-constrained since

operator, and φSIϕ means φ has been true lasting a time interval no longer than I since a time when

ϕ was true. ♢I is a time-constrained eventually operator, and ♢Iφ means φ will be true at some future

time, where the time interval during which φ is not true, is no longer than I. ◻I is a time-constrained

always operator, and ◻Iφ means φ will be true lasting a time interval no longer than I in the future.

Given a symbolic transition system S, π is a trace of S. The kth state of π, π[k], satisfies an MTL

formula φ can be categorized as follows. Figure 5 illustrates the last four expressions.

• π[k] ⊨ p, if and only if p is an atomic proposition which is true under π[k].

• π[k] ⊨ ¬φ, if and only if not π[k] ⊨ p.

• π[k] ⊨ φ∧ϕ, if and only if π[k] ⊨ φ and π[k] ⊨ ϕ.

• π[k] ⊨ φ∨ϕ, if and only if π[k] ⊨ φ or π[k] ⊨ ϕ.

• π[k] ⊨ φUIϕ, if and only if ∃i > k, π[i] ⊨ ϕ, τi-τk ∈ I, ∀k ≤ j < i, π[j] ⊨ φ.

• π[k] ⊨ φSIϕ, if and only if ∃i < k, π[i] ⊨ ϕ, τk-τi ∈ I, ∀i < j ≤ k, π[j] ⊨ φ.

• π[k] ⊨ ♢Iφ, if and only if ∃i < k, π[k] ⊨ φ, τk-τi ∈ I, ∀i ≤ j < k, π[j] ⊨ ¬φ.

Sensors 2018, 18, 1844 14 of 22

• π[k] ⊨ ◻Iφ, if and only if ∃i < k, π[i] ⊨ ¬φ, τk-τi ∈ I, ∀i < j ≤ k, π[j] ⊨ φ.

τk τiτi - τk I

ϕφφφφφ

τi τkτk - τi I

φφφφφϕ

τi τkτk - τi I

φ¬φ¬φ¬φ¬φ¬φ

τi τkτk - τi I

φφφφφ¬φ

π[k] φUIϕ

π[k] φSIϕ

π[k] Iφ

π[k] Iφ

Figure 5. Illustration of π[k] Satisfying Some Metric Temporal Logic (MTL) Formulae.

To map an industrial system trace into an event routing path on a PDSG, we define a PDSG as a

description of industrial systems.

Definition 9. (Proactive Data Service System, PDSS): Given a PDSG, a PDSS is a three-tuple SG = 〈XG,

IG, TG〉, where XG = ES∪CS∪{τ}, ∀xg∈XG, D(xg) = {⊥, ⊤}, and ES, CS are the edge and cloud services on the

PDSG respectively; IG = X∧(τ = 0); TG = ∧(xg∈ES∪CS)(xg→xg’)∧(τ≤τ’)∧((∨(xg∈ES∪CS)(xg ≠ xg’))→(τ = τ’)), xg’ is the

next state of xg.

The definition of TG reflects the assumption that a state can last for a period but change instantly.

To describe system state behaviors, a state variable xg∈ES of a PDSS will be expressed as a set of

predicates. These predicates are generated according to the preset operations in each edge service.

For example, BT sensor data can be expressed as {dBT.value ≤ 20, 20 < dBT.value < 80, dBT.value ≥ 80}. It is

because the preset operations (Some classification-based outlier detection method will classify the

data and consider the classes with small data as outliers.) classify the input sensor data into three

classes, in which data d satisfying d.value ≤ 20 and d.value ≥ 80 are outliers. Formally, each state

variable x ∈ X in an industrial system model S is mapped into a state variable xg in a PDSS. It is

expressed by a non-empty set px of predicates. The mapping function is denoted as M. In this way,

an assignment to a state variable can be expressed as a proposition. Therefore, system states and

traces of S can be expressed as MTL formulae. Herein, a trace π of S is mapped into a routing path of

a PDSS, which is denoted as π’.

Next, we discuss how to judge π’ satisfies the constraints of the corresponding PDSG. The main

constraints are the two types of each cloud service and the time interval on edges pointing to the service.

A routing path π’ of a PDSS satisfies an OR node, if and only if any state π’[k] of π’ holds the

following conditions: (1) If π’[k] satisfies an OR node for, then a consecutive set of states π’[j], π’[j + 1],

…, and π’[k] satisfied for, and there is a time interval left adjacent to π’[j], states in which satisfied at

least one node v, where (v, for) is an edge pointing to for; (2) Any node n satisfying condition 1) also

satisfies that its corresponding interval does not exceed the propagation time interval Tint labelled on

the edge (v, for).

Similarly, a routing path π’ of a PDSS satisfies an AND node, if and only if any state π’[k] of π

holds the following conditions: (1) If π’[k] satisfies an AND node fand, then a consecutive set of states

π’[j], π’[j + 1], …, and π’[k] satisfied fand, and for each node v pointing to fand there is a time interval I(v) left

adjacent to π’[j], states in which satisfied v; (2) For any node v satisfying condition (1), its corresponding

interval I(v) does not exceed the propagation time interval Tint labelled on the edge (v, fand).

Figure 6 illustrates the conditions for satisfying an OR node and an AND node. These time-

constrained conditions can be described by MTL formulae with temporal operators.

Sensors 2018, 18, 1844 15 of 22

τi+1 τk

τj-1 - τi Tp

forforfornnn

OR node – n is one of the node pointing to for

AND node - n1 ... nl are all node pointing to fand

... τj-1 τj ...

n

τi

...

τi+1 ...

τj-1 - τi Tp

fandfandn1n1n1 ... nln1 n2

... τj-2 τj-1 τj

n1

τi

... fand...

τk

τk+1

Figure 6. Conditions for a trace π’ of a PDSS to satisfying an OR/AND node on a PDSG.

If a routing path π’ of a PDSS satisfies all OR and AND nodes on the corresponding PDSG, π’

satisfies the PDSG. All system traces of S are mapped into paths Π’ in the PDSS. If each event routing

path in Π’ satisfies the PDSG, we suggest that any system state behavior which exists in the industrial

system can be captured by the graph.

8. Results

8.1. Experiment Setup

Datasets: The following experiments use a real sensor dataset from a coal power plant. The

dataset contains sensor data from 2014-10-01 00:00:00 to 2015-04-30 23:59:59. Totally 182 sensors

deployed on 5 interactive devices are involved. Each sensor generates one piece of data per second.

We divide the set into two parts. The training set is from 2014-10-01 00:00:00 to 2015-03-31 23:59:59.

The testing set is from 2015-04-01 00:00:00 to 2015-04-30 23:59:59.

The first part of our experiments is to test the effectiveness of our approach. We observe the

variation of the service event correlation number and service hyper-link number under the rise of

dataset scale. We also analyze that how the dataset scale affects the effectiveness of our approach.

The maintenance records of this plant from 2014-10-01 00:00:00 to 2015-04-30 23:59:59 are used to

verify the effectiveness. There are 48 and 9 maintenance records during the time range of the training

set and the testing set respectively. Notably, we only consider the records with faults occurring both

in training set and testing set. On the other hand, we compare the effects on early warnings of

maintenance between our approaches and three typical approaches. The second part of our

experiments is to test the performance of our approach under edge computing paradigm and cloud

computing paradigm.

Baselines: We select one predictive industrial maintenance solution used in practice and two

typical data-driven anomaly detection approaches as our baselines. The solution is the range-based

approach, which customizes value bounders for individual sensors based on inspectors’ experiences,

sensor/device instructions. The other two approaches are COF outlier detection approach [50] and

Matrix Profile discord discovery approach [51]. As Related Works Section summarizes, such

approaches can be applied in predictive industrial maintenance from the perspective of individual

sensors. We do not choose any model-based approaches as we have no enough prior knowledge

about a real power plant.

Environments: The experiments are done on a PC with four Intel Core i5-2400 CPUs 3.10 G Hz

and 4.00 GB RAM. The operating system is Windows 7 Ultimate. All the algorithms are implemented

in Java with JDK 1.8.0.

Sensors 2018, 18, 1844 16 of 22

8.2. Effectiveness

8.2.1. Effects of Our Approach

Variation of Correlation Number and Hyperlink Number

Our training set spans six months, including October, November, December 2014 and January,

February and March 2015. This part of experiments tries to verify how the correlation number and

hyperlink number changes on a 1-month (October 2014), 2-month (October and November 2014), …,

6-month (the whole training set) dataset. This experiment encapsulates the service event correlations

with no less than 0.8 probability (i.e., δp = 0.8) into service hyperlinks. We record the results and draw

them in Figure 7.

Figure 7. Variation of correlation number and hyperlink number on different datasets with p ≥ 0.8.

As shown in Figure 7, in most cases, both of the correlation number and the hyperlink number

increase with the rise of input dataset scale. On the other hand, there is an exception for the 6-month

dataset. The number drops. It partially reveals that the number will not increase without limit. We

will conduct in-depth research in our future work. Besides, the service hyperlink number is close to

the service event correlation number except on the 1-month dataset. It is because a smaller dataset

contains many occasional service event correlations.

Effectiveness of Our Approach

In this experiment, sensor data in the testing set are input into corresponding service in form of

stream. By a sliding window, each service detects service events from each sensor data sequence in

the current sliding window. A service judges whether it should make a warning of maintenance and

selects which target service it should route the generated service event into. After all streams

simulated from the testing set are processed, we count the warning results to analyze the

effectiveness. Details of the process can be found in section 6.

To measure the effectiveness, we use the following indicators. Precision is the number of correct

results divided by the number of all results. Recall is the number of correct results divided by the

number of results that should have been returned.

Final results are drawn in Figure 8. As shown in Figure 8, our precision and recall both show a

growing trend with the rise of dataset scale. It is because our approach makes more correct warnings

on a larger dataset. But the results’ number of our approach increases firstly and then drops. At first,

a small dataset (1-month and 2-month dataset) contains a few faults so that our approach makes a

few warnings of maintenance. Thus, on 3-month and 4-month dataset, our approach makes more

warnings since the datasets contain more faults. However, when the dataset becomes larger, more

service hyperlinks are generated. It can help reduce false positives. Consequently, on the 5-month

and 6-month dataset, our approach outputs less but correct results. It causes that the precision is

higher than the recall on the last two datasets.

Sensors 2018, 18, 1844 17 of 22

Figure 8. The precision and recall of our approach on different datasets.

Actually, we also compare the effects of our approach with edge computing paradigm and cloud

computing paradigm. The results show that the paradigm doesn’t have obvious impacts on the effects

of predictive industrial maintenance.

This part of experiments (Section 8.2.1) shows that, larger scale of dataset will generate much

more service hyperlinks. And more service hyperlinks lead to more precision and recall. However,

obviously, huge service hyperlinks will improve the complexity of our event routing algorithm. In

our future work, we plan to research that whether we can sacrifice tolerable effectiveness to abandon

some service hyperlinks.

8.2.2. Comparative Effects of Different Approaches

In this part, we make warnings of maintenance by our approach and other three typical

approaches.

To make predictive industrial maintenance, we mine the association rules [45] between

anomalies and recorded faults in maintenance records. The anomalies associated with the recorded

faults are listed in Table 2.

Once the associated anomalies are detected by the range-based approach, outlier detection

approach or discord discovery approach, they will make a warning of maintenance for the

corresponding fault. Based on this, we compare the warning time between our approach and the

other approaches. Warning time is the difference between the timestamp an approach makes a

warning of maintenance for a fault and the starting time of this fault.

Table 3 presents the final results. As this table shows, our approach makes warnings earliest in the

four approaches for each fault. Generally, the shortest warning time appears in the range-based

approach. The reason is that a range is usually a threshold for a significant fault in a device. If sensor

data exceed a range, the fault does probably happen immediately. Besides, some faults are formed by

several anomalies without exceeding the range. Thus, it failed to make early warnings for most times.

Table 2. Faults and its associated events.

Fault Type Associated Anomalies Conf 1

L-IPAV fault on a PAF device

AE1 2 L-IPAT, L-HAVD, L-IPAP. 100.00%

AE2 L-E on CM. 100.00%

AE3 L-IPAT, L-IPAP. 80.00%

L-IPAP fault on a PAF device AE1 H-CAVD, L-OTT. 86.96%

CB fault on a CM device
AE1 H-HAVD, L-IAP. 100.00%

AE2 L-IPAT. 88.89%

H-DPSF fault on a CM device AE1 L-BT on PAF. 100.00%
1 ‘Conf’ is the confidence of an association rule; 2 ‘AEi’ is the ith set of associated events of a fault.

It is possible not to be able to make a warning of maintenance by the outlier detection approach

and dis-cord discovery approach either. We look into the middle results to analyze the reasons.

Sensors 2018, 18, 1844 18 of 22

Sometimes sensor data ascend/descend gradually. The outlier detection approach cannot detect such

abnormal behaviors. On the other hand, if a sensor data sequence has similar subsequences, such as

sudden drop, the discord discovery approach will not identify such subsequences as the most

dissimilar ones.

Table 3 presents that sometimes the outlier detection approach and discord discovery approach

have same warning time. The reason is that the two approaches can detect same faults sometimes.

For example, the two approaches can both identify the over low coal feed fault in Figure 1.

Table 3. Warning time of different approaches (unit: min).

Fault Type

Approaches

L-IPAV L-IPAP CB L-DPSF

AE1 AE2 AE3 AE1 AE1 AE2 AE1

Our Approach 70 58 82 152 63 96 132

Range-based Approach - 1 12 9 - 15 2 -

Outlier Detection Approach 18 21 - 31 23 19 33

Discord Discovery Approach - 21 19 31 35 26 34

1 ‘-’ represents this approach cannot make a warning.

Besides, the discord discovery approach tends to have a longer warning time than the outlier

detection approach. It is because that this approach may discover a subsequence, which contains an

outlier. In this case, it will make a warning ahead of the outlier detection approach.

Based on the comparative analysis, our correlation driven event routing approach cannot only

predict warnings more effectively than the typical approaches, but also predict them more earlier.

Thus, our approach can make maintenance plans more effectively and earlier to avoid loss. It verifies

that our approach has some practical significance. However, owing to the lack of prior knowledge,

we do not test any model-based approaches on our power plant dataset. In this case, we cannot

compare our approach with model-based approaches. In our future work, we will learn more prior

knowledge from inspectors’ experiences and investigate more predictive maintenance approaches

designed for power plants and reproduce them for comparing with ours. We will further improve

our approach based on the comparative analysis.

8.3. Efficiency

We further test our approach’s performance under edge computing paradigm and cloud

computing paradigm [5,6] with different data source numbers, i.e., number of physical sensors. We

use the following indicator.

Definition 10. (Average Latency): Let ti is the time our algorithm consumes to route the ith output service

event. Let N be the current size of all output service events, the average latency of an approach can be defined

as tlat = ∑iti/N.

In this part, we experiment with the five synthetic datasets containing 2000, 4000, …, 10,000 data

sources respectively. Herein, each dataset with k data sources is simulated to be k streams with one

records per second. The results are shown in Figure 9. As this figure shows, the average latency

increases linearly with the growth of data source number under edge computing paradigm. On the

other hand, the average latency increases exponentially under cloud computing paradigm. It verifies

that the approach in this paper can effectively reduce the average latency when routing service events

for predictive industrial maintenance.

Sensors 2018, 18, 1844 19 of 22

Figure 9. Average latency under edge computing and cloud computing on different synthetic datasets.

9. Conclusions

Predictive industrial maintenance is a hot topic in mechanical engineering. Existing predictive

industrial maintenance techniques usually construct a model based on prior knowledge or data in

the build-time. This paper makes an attempt on predicting anomalies/faults propagation by using the

correlations among anomalies/faults. We map the anomalies/faults propagation into event routing

among services via service hyperlink based on our previous work and propose a correlation driven

event routing algorithm to perform predictive industrial maintenance. To reach our goal, we have to

generate service hyperlinks firstly. This paper proposes an effective algorithm to discover causal

relationships among anomalies/faults and encapsulate them into service hyperlinks. Based on the

generated service hyperlinks, a heuristic event routing approach is proposed to handle the

uncertainty problem. We also verify the completeness of our approach by model checking techniques

to guarantee the effectiveness of our approach in theory. Besides, we refine our proactive data service

model to enable our approach to be applied in information-sensitive industrial enterprises in practice.

Experiment results show that our approach can reach 100% precision and 88.89% recall at most.

However, the large scale of service hyperlinks can improve the effectiveness of our event routing

algorithm and reduce the efficiency. Our future work will try to balance the effectiveness and

efficiency, which means sacrifice tolerable effectiveness to improve efficiency. On the other hand,

learn more prior knowledge to reproduce some model-based predictive industrial maintenance

approaches. In this way, we can future improve our approach based on the comparative analysis.

Author Contributions: Conceptualization, M.Z. and C.L.; Methodology, M.Z.; Software, M.Z.; Validation, M.Z.

and C.L.; Data Curation, M.Z.; Writing-Original Draft Preparation, M.Z.; Writing-Review & Editing, C.L.;

Funding Acquisition, C.L.

Funding: This research was funded by National Natural Science Foundation of China (Grant No. 61672042),

Models and Methodology of Data Services Facilitating Dynamic Correlation of Big Stream Data; Beijing Natural

Science Foundation (Grant No.4172018).

Acknowledgments: This work was supported by Building Stream Data Services for Spatio-Temporal Pattern

Discovery in Cloud Computing Environment; The Program for Youth Backbone Individual, supported by

Beijing Municipal Party Committee Organization Department, Research of Instant Fusion of Multi-Source and

Large-scale Sensor Data.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Qiu, H.; Liu, Y.; Subrahmanya, N.A.; Li, W. Granger Causality for Time-Series Anomaly Detection. In

Proceedings of the 12th IEEE International Conference on Data Mining (ICDM 2012), Brussels, Belgium, 10

December–13 December 2012; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA,

2012; pp. 1074–1079, doi:10.1109/ICDM.2012.73.

Sensors 2018, 18, 1844 20 of 22

2. Yan, Y.; Luh, P.B.; Pattipati, K.R. Fault Diagnosis of HVAC Air-Handling Systems Considering Fault

Propagation Impacts among Components. IEEE Trans. Autom. Sci. Eng. 2017, 14, 705–717,

doi:10.1109/TASE.2017.2669892.

3. Ye, R.; Li, X. Collective Representation for Abnormal Event Detection. J. Comput. Sci. Technol. 2017, 32, 470–479,

doi:10.1007/s11390-017-1737-8.

4. Han, Y.; Wang. G.; Yu, J.; Liu, C.; Zhang, Z.; Zhu, M. A Service-based Approach to Traffic Sensor Data

Integration and Analysis to Support Community-Wide Green Commute in China. IEEE Trans. Intell. Transp.

Syst. 2016, 17, 2648–2657, doi:10.1109/TITS.2015.2498178.

5. Han, Y.; Liu, C.; Su, S.; Zhu, M.; Zhang, Z.; Zhang, S. A Proactive Service Model Facilitating Stream Data

Fusion and Correlation. Int. J. Web Serv. Res. 2017, 14, 1–16, doi:10.4018/IJWSR.2017070101.

6. Zhu, M.; Liu, C.; Wang, J.; Su, S.; Han, Y. An Approach to Modeling and Discovering Event Correlation for

Service Collaboration. In Proceedings of the 15th International Conference on Service Oriented Computing

(ICSOC 2017), Malaga, Spain, 13–16 November 2017; Springer: Berlin, Germany, 2017; pp. 191–205,

doi:10.1007/978-3-319-69035-3_13.

7. Legutko, S. Development Trends in Machines Operation Maintenance. Maint. Reliab. 2009, 42, 8–16.

8. Królczyk, G.; Legutko, S.; Królczyk, J.; Tama, E. Materials Flow Analysis in the Production Process—Case

Study. Appl. Mech. Mater. 2014, 474, 97–102, doi:10.4028/www.scientific.net/AMM.474.97.

9. Krolczyk, J.B.; Krolczyk, G.M.; Legutko, S.; Napiorkowski, J.; Hloch, S.; Foltys, J.; Tama, E. Material Flow

Optimization—A Case Study in Automotive Industry. Tech. Gaz. 2015, 22, 1447–1456, doi:10.17559/TV-

20141114195649.

10. Vianna, W.O.L.; Yoneyama, T. Predictive Maintenance Optimization for Aircraft Redundant Systems

Subjected to Multiple Wear Profiles. IEEE Syst. J. 2018, 12, 1170–1181, doi:10.1109/JSYST.2017.2667232.

11. Jung, D.; Zhang, Z.; Winslett, M. Vibration Analysis for IoT Enabled Predictive Maintenance. In

Proceedings of the 33rd IEEE International Conference on Data Engineering (ICDE 2017), San Diego, CA,

United states, 19–22 April 2017; IEEE Computer Society: Piscataway, NJ, USA, 2012; pp. 1271–1282,

doi:10.1109/ICDE.2017.170.

12. Simões, A.; Viegas, J.M.; Farinha, J.T.; Fonseca, I. The State of the Art of Hidden Markov Models for

Predictive Maintenance of Diesel Engines. Qual. Reliab. Eng. Int. 2017, 33, 2765–2779, doi:10.1002/qre.2130.

13. Wang, J.; Li, C.; Han, S.; Sarkar, S.; Zhou, X. Predictive Maintenance Based on Event-Log Analysis a Case

Study. IBM J. Res. Dev. 2017, 61, 121–132, doi:10.1147/JRD.2017.2648298.

14. Patil, R.B.; Patil, M.A.; Ravi, V.; Naik, S. Predictive Modeling for Corrective Maintenance of Imaging

Devices from Machine Logs. In Proceedings of the 39th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society (EMBC 2017), Jeju Island, Korea, 11–15 July 2017; Institute of

Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2017; pp. 1676–1679,

doi:10.1109/EMBC.2017.8037163.

15. Sipos, R.; Fradkin, D.; Moerchen, F.; Wang, Z. Log-based Predictive Maintenance. In Proceedings of the

20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD 2014),

New York, NY, USA, 24–27 August 2014; Association for Computing Machinery: New York, NY, USA,

2014; pp. 1867–1876, doi:10.1145/2623330.2623340.

16. Susto, G.A.; Wan, J.; Pampuri, S.; Zanon, M.; Johnston, A.B.; O’Hara, P.G.; McLoone, S. An Adaptive

Machine Learning Decision System for Flexible Predictive Maintenance. In Proceedings of the 10th IEEE

International Conference on Automation Science and Engineering (CASE 2014), Taipei, Taiwan, 18–22

August 2014; IEEE Computer Society: Piscataway, NJ, USA, 2014; pp. 806–811,

doi:10.1109/CoASE.2014.6899418.

17. Sammouri, W.; Côme, E.; Oukhellou, L.; Aknin, P.; Fonlladosa, C.-E. Pattern Recognition Approach for the

Prediction of Infrequent Target Events in Floating Train Data Sequences within a Predictive Maintenance

Framework. In Proceedings of the 17th IEEE International Conference on Intelligent Transportation

Systems (ITSC 2014), Qingdao, China, 8–11 October 2014; Institute of Electrical and Electronics Engineers

Inc.: Piscataway, NJ, USA, 2014; pp. 918–923, doi:10.1109/ITSC.2014.6957806.

18. Bezerra, C.G.; Costa, B.S.J.; Guedes, L.A.; Angelov, P.P. A Comparative Study of Autonomous Learning

Outlier Detection Methods Applied to Fault Detection. In Proceedings of the 16th IEEE International

Conference on Fuzzy Systems (FUZZ-IEEE 2015), Istanbul, Turkey, 2–5 August 2015; Institute of Electrical

and Electronics Engineers Inc.: Piscataway, USA, 2015; pp. 1–7, doi:10.1109/FUZZ-IEEE.2015.7337939.

Sensors 2018, 18, 1844 21 of 22

19. Baptista, M.; Sankararaman, S.; de Medeiros, I.P.; Nascimento, C.; Prendinger, H.; Henriques, E.M.P.

Forecasting Fault Events for Predictive Maintenance Using Data-Driven Techniques and ARMA Modeling.

Comput. Ind. Eng. 2018, 115, 41–53, doi:10.1016/j.cie.2017.10.033.

20. Liao, W.; Wang, Y. Data-Driven Machinery Prognostics Approach Using in a Predictive Maintenance

Model. J. Comput. 2013, 8, 225–231, doi:10.4304/jcp.8.1.225-231.

21. Cuervoy, E.; Balasubramanian, A.; Cho, D.; Wolman, A.; Saroiu, S.; Chandra, R.; Bahlx, P. Maui: Making

Smartphones Last Longer with Code Offload. In Proceedings of the 8th International Conference on Mobile

Systems, Applications, and Services (MobiSys 2010), San Francisco, CA, USA 15–18 June 2010; Association

for Computing Machinery: New York, NY, USA, 2010; pp. 49–62, doi:10.1145/1814433.1814441.

22. Gupta, H.; Nath, S.B.; Chakraborty, S.; Ghosh, S.K. SDFog: A Software Defined Computing Architecture

for QoS Aware Service Orchestration over Edge Devices. arXiv 2016, arXiv:1609.01190v1.

23. Zhang, T.; Chowdhery, A.; Bahl, P.; Jamieson, K.; Banerjee, S. The Design and Implementation of a Wireless

Video Surveillance System. In Proceedings of the 21st Annual International Conference on Mobile

Computing and Networking (MobiCom 2015), Paris, France, 7–11 September 2015; Association for

Computing Machinery: New York, NY, USA, 2015; pp. 426–438, doi:10.1145/2789168.2790123.

24. Yuriyama, M.; Kushida, T. Sensor-Cloud Infrastructure-Physical Sensor Management with Virtualized

Sensors on Cloud Computing. In Proceedings of the 13th International Conference on Network-Based

Information Systems (NBiS 2010), Gifu, Japan, 14–16 September 2010; IEEE Computer Society: Piscataway,

NJ, USA, 2010; pp. 1–8, doi:10.1109/NBiS.2010.32.

25. Dong, F.; Wu, K.; Srinivasan, V.; Wang, J. Copula Analysis of Latent Dependency Structure for

Collaborative Auto-scaling of Cloud Services. In Proceedings of the 25th International Conference on

Computer Communication and Networks (ICCCN 2016), Waikoloa, HI, USA, 1–4 August 2016; IEEE

Computer Society: Piscataway, NJ, USA, 2016; pp. 1–8, doi:10.1109/ICCCN.2016.7568503.

26. Hashmi, K.; Malik, Z.; Najmi, E.; Alhosban, A.; Medjahed, B. A Web Service Negotiation Management and

QoS Dependency Modeling Framework. ACM Trans. Manag. Inf. Syst. 2016, 7, 1–33, doi:10.1145/2893187.

27. Wang, R.; Peng, Q.; Hu, X. Software Architecture Construction and Collaboration Based on Service

Dependency. In Proceedings of the 2015 IEEE 19th International Conference on Computer Supported

Cooperative Work in Design (CSCWD 2015), Calabria, Italy, 6–8 May 2015; Institute of Electrical and

Electronics Engineers Inc.: Piscataway, NJ, USA, 2015; pp. 91–96, doi:10.1109/CSCWD.2015.7230939.

28. Pourmirza, S.; Dijkman, R.; Grefen, P. Correlation Miner: Mining Business Process Models and Event

Correlations without Case Identifiers. Int. J. Coop. Inf. Syst. 2017, 26, 1–32, doi:10.1142/S0218843017420023.

29. Pourmirza, S.; Dijkman, R.; Grefen, P. Correlation Mining: Mining Process Orchestrations without Case

Identifiers. In Proceedings of the 13th International Conference on Service Oriented Computing (ICSOC

2015), Goa, India, 16–19 November 2016; Springer: Berlin, Germany, 2016; pp. 237–252, doi:10.1007/978-3-

662-48616-0_15.

30. Cheng, L.; Van Dongen, B.F.; Van Der Aalst, W.M.P. Efficient Event Correlation over Distributed Systems.

In Proceedings of the 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

(CCGRID 2017), Madrid, Spain, 14–17 May 2017; Institute of Electrical and Electronics Engineers Inc.:

Piscataway, NJ, USA, 2017; pp. 1–10, doi:10.1109/CCGRID.2017.94.

31. Reguieg, H.; Benatallah, B.; Nezhad, H.R.M.; Toumani, F. Event Correlation Analytics: Scaling Process

Mining Using Mapreduce-Aware Event Correlation Discovery Techniques. IEEE Trans. Serv. Comput. 2015,

8, 847–860, doi:10.1109/TSC.2015.2476463.

32. Friedberg, I.; Skopik, F.; Settanni, G.; Fiedler, R. Combating Advanced Persistent Threats: From Network

Event Correlation to Incident Detection. Comput. Secur. 2015, 48, 35–57, doi:10.1016/j.cose.2014.09.006.

33. Fu, S.; Xu, C. Quantifying event correlations for proactive failure management in networked computing

systems. J. Parallel Distrib. Comput. 2010, 70, 1100–1109, doi:10.1016/j.jpdc.2010.06.010.

34. Forkan, A.R.M.; Khalil, I. PEACE-Home: Probabilistic Estimation of Abnormal Clinical Events Using Vital

Sign Correlations for Reliable Home-Based Monitoring. Pervasive Mob. Comput. 2017, 38, 296–311,

doi:10.1016/j.pmcj.2016.12.009.

35. Forkan, A.R.M.; Khalil, I. A Probabilistic Model for Early Prediction of Abnormal Clinical Events Using

Vital Sign Correlations in Home-Based Monitoring. In Proceedings of the 14th IEEE International

Conference on Pervasive Computing and Communications (PerCom 2016), Sydney, Australia, 14–19 March

2016; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016; pp. 1–9,

doi:10.1109/PERCOM.2016.7456519.

Sensors 2018, 18, 1844 22 of 22

36. Song, W.; Jacobsen, H.A.; Ye, C.; Ma, X. Process Discovery from Dependence-Complete Event Logs. IEEE

Trans. Serv. Comput. 2016, 9, 714–727, doi:10.1109/TSC.2015.2426181.

37. Plantevit, M.; Robardet, C.; Scuturici, V.M. Graph Dependency Construction Based on Interval-Event

Dependencies Detection in Data Streams. Intell. Data Anal. 2016, 20, 223–256, doi:10.3233/IDA-160803.

38. Kansal, A.; Nath, S.; Liu, J.; Zhao, F. SenseWeb: An Infrastructure for Shared Sensing. IEEE Multimedia 2007,

14, 8–13, doi:10.1109/MMUL.2007.82.

39. Aberer, K.; Hauswirth, M.; Salehi, A. Infrastructure for Data Processing in Large-scale Interconnected

Sensor Networks. In Proceedings of the International Conference on Mobile Data Management (MDM

2007), Mannheim, Germany, 7–11 May 2007; Institute of Electrical and Electronics Engineers Inc.:

Piscataway, NJ, USA, 2007; pp. 198–205, doi:10.1109/MDM.2007.36.

40. Xu, B.; Xu, L.; Cai, H.; Xie, C.; Hu, J.; Bu, F. Ubiquitous Data Accessing Method in IoT-based Information

System for Emergency Medical Services. IEEE Trans. Ind. Inform. 2014, 10, 1578–1586,

doi:10.1109/TII.2014.2306382.

41. Perera, C.; Talagala, D.; Liu, C.; Estrella, J. Energy-efficient Location and Activity-aware On-demand

Mobile Distributed Sensing Platform for Sensing as a Service in IoT Clouds. IEEE Trans. Comput. Soc. Syst.

2015, 2, 171–181, doi:10.1109/TCSS.2016.2515844.

42. Potocnik, M.; Juric, M. Towards Complex Event Aware Services as Part of SOA. IEEE Trans. Serv. Comput.

2014, 7, 486–500, doi:10.1109/TSC.2013.7.

43. Bucchiarone, A.; De Sanctis, M.; Marconi, A.; Pistore, M.; Traverso, P. Design for Adaptation of Distributed

Service-based Systems. In Proceedings of the 13th International Conference on Service-Oriented

Computing (ICSOC 2015), Goa, India, 16–19 November 2015; Springer: Berlin, Germany, 2015; pp. 383–393,

doi:10.1007/978-3-662-48616-0_27.

44. Cheng, B.; Zhu, D.; Zhao, S.; Chen, J. Situation-aware IoT Service Coordination Using the Event-driven

SOA Paradigm. IEEE Trans. Netw. Serv. Manag. 2016, 13, 349–361, doi:10.1109/TNSM.2016.2541171.

45. Brauckhoff, D.; Dimitropoulos, X.; Wagner, A.; Salamatian, K. Anomaly Extraction in Backbone Networks

Using Association Rules. IEEE/ACM Trans. Netw. 2012, 20, 1788–1799, doi:10.1109/TNET.2012.2187306.

46. Asghar, N. Automatic Extraction of Causal Relations from Natural Language Texts: A Comprehensive

Survey. arXiv 2016, arXiv:1605.07895.

47. Yagci, A.M.; Aytekin, T.; Gurgen, F.S. Scalable and Adaptive Collaborative Filtering by Mining Frequent

Item Co-Occurrences in a User Feedback Stream. Eng. Appl. Artif. Intell. 2017, 58, 171–184,

doi:10.1016/j.engappai.2016.10.011.

48. Yu, Z.; Yu, X.; Liu, Y.; Li, W.; Pei, J. Mining Frequent Co-Occurrence Patterns Across Multiple Data Streams.

In Proceedings of the 18th International Conference on Extending Database Technology (EDBT 2015),

Brussels, Belgium, 23–27 March 2015; OpenProceedings.org, University of Konstanz, University Library:

Konstanz, Germany, 2015; pp. 73–84, doi:10.5441/002/edbt.2015.08.

49. Mooney, C.H.; Roddick, J.F. Sequential Pattern Mining - Approaches and Algorithms. ACM Comput. Surv.

2013, 45, 1–39, doi:10.1145/2431211.2431218.

50. Tang, J.; Chen, Z.; Fu, A.W.-C.; Cheung, D.W. Enhancing Effectiveness of Outlier Detections for Low

Density Patterns. In Proceedings of the 6th Pacific-Asia Conference on Knowledge Discovery and Data

Mining (PAKDD 2002), Taipei, Taiwan, 6–8 May 2002; Springer: Berlin, Germany, 2002; pp. 535–548,

doi:10.1007/3-540-47887-6_53.

51. Yeh, C.-C. M.; Zhu, Y.; Ulanova, L.; Begum, N.; Ding, Y.; Dau, H.A.; Zimmerman, Z.; Silva, D.F.; Mueen,

A.; Keogh, E. Time Series Joins, Motifs, Discords and Shapelets: A Unifying View That Exploits the Matrix

Profile. Data Min. Knowl. Discov. 2018, 32, 83–123, doi:10.1007/s10618-017-0519-9.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

