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Abstract: A novel Molecularly Imprinted Polymer (MIP) able to bind perfluorinated compounds,
combined with a surface plasmon resonance (SPR) optical fiber platform, is presented. The new MIP
receptor has been deposited on a D-shaped plastic optical fiber (POF) covered with a photoresist buffer
layer and a thin gold film. The experimental results have shown that the developed SPR-POF-MIP
sensor makes it possible to selectively detect the above compounds. In this work, we present the
results obtained with perfluorooctanoate (PFOA) compound, and they hold true when obtained with
a perfluorinated alkylated substances (PFAs) mixture sample. The sensor’s response is the same
for PFOA, perfluorooctanesulfonate (PFOS) or PFA contaminants in the C4–C11 range. We have
also tested a sensor based on a non-imprinted polymer (NIP) on the same SPR in a D-shaped POF
platform. The limit of detection (LOD) of the developed chemical sensor was 0.13 ppb. It is similar
to the one obtained by the configuration based on a specific antibody for PFOA/PFOS exploiting
the same SPR-POF platform, already reported in literature. The advantage of an MIP receptor is that
it presents a better stability out of the native environment, very good reproducibility, low cost and,
furthermore, it can be directly deposited on the gold layer, without modifying the metal surface by
functionalizing procedures.

Keywords: surface plasmon resonance (SPR); plastic optical fiber (POF); molecularly imprinted
polymer (MIP); perfluorooctanoate (PFOA); perfluorooctanesulfonate (PFOS); perfluorinated
alkylated substances (PFAs); optical sensors

1. Introduction

PFAs have been widely used for the last four decades in many industrial sectors and their
dispersion in water has been recognized as highly dangerous for eco-systems, biodiversity and human
health. The EU directive 2013/39/UE lists PFAs among the priority substances to be completely
eliminated within the next 20 years, thus making this issue extremely urgent.

PFOA and PFOS are the most extensively investigated PFAs, because human exposure can occur
through different pathways, although dietary intake seems to be their main route of exposure [1].

These contaminants are very persistent and refractory to different biological and chemical
treatments and their presence in the environment can give rise to toxicity and bio-accumulative
effects, particularly to mammalian species.
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Immunotoxic effects of perfluorinated alkylated substances to cellular systems and animals are
widely demonstrated [2,3], and different epidemiologic research studies have shown the potential
effects of these chemical compounds on various human immune diseases.

The conventional proposed analytical methods are based on chromatographic techniques coupled
with mass spectrometry [4–8]. Furthermore, sensors based on electrochemical and colorimetric
approaches have also been described [9]. All of the mentioned methods are time-consuming, expensive
and they often require a complicated pre-treatment step. In order to beat these drawbacks, it is needed
to find a rapid, simple and sensitive method for the detection of perfluorinated alkylated substances.

In PFOA, PFOS or total PFAs detection, a very attractive perspective is the use of a platform
based on optical fibers for fast in situ and/or remote-controlled detection. For different applications,
biosensors in optical fibers allow for remote sensing and for reduced dimensions and price of the
whole sensor system [10–13]. In particular, several review papers describe plasmonic optical fiber
sensor platforms and their applications [14–19].

On this line of argument, we exploited a low cost surface plasmon resonance (SPR) sensor
platform, based on plastic optical fibers (POFs) [20], together with a novel biomimetic polymer for
the detection of PFOA/PFOS in an aqueous medium. POFs are particularly advantageous due to
their easily handling and installation procedures, large diameter of the fiber (a millimetre or more),
low-cost and simplicity in manufacturing [21–23]. In a previous work, Cennamo et al. [24] built an
SPR-POF sensor based on bio-receptors obtaining an LOD of 224 ppt. In this work, a new synthetic
receptor, specifically designed to recognise C4 to C12 PFAs, is used with the same SPR-POF platform
reaching a better LOD (130 ppt). This result could be considered of interest when compared to the
detection limit of PFAs obtained by using different approaches, as reported in Oughena et al. [25] and
Trojanowicz et al. [26] or Cennamo et al. [27].

The molecular imprinting technique is a convenient tool for the preparation of molecular-recognition
materials characterized by good chemical stability and selectivity. Molecular imprinted polymers are
biomimetic materials imprinted with a template molecule for the purpose of retaining a memory of that
specific analyte (or a specific class of molecules). MIPs exhibit many favourable aspects with respect
to bio-receptors, such as an easier and faster preparation, the possibility of application outside the
laboratory, for example under environmental conditions, a longer durability. Moreover, the advantage
of MIPs is that they can be directly deposited on a flat gold surface by a spin coater machine without
modifying the surface (functionalization and passivation), as needed for bio-receptors [24].

2. Materials and Methods

2.1. Materials

Reagents: (Vinylbenzyl)trimethylammonium chloride [CAS 26616-35-3] (VBT), 2,2-azobisiso-
butyronitrile [CAS 78-67-1] (AIBN), 1H,1H,2H,2H-perfluorodecyl acrylate [CAS 27905-45-9] (PFDA)
were obtained from Sigma–Aldrich (Saint Louis, MO, USA) and used without any further purification.
Ethylene glycol dimethacrylate [CAS 97-90-5] (EDMA) (Sigma–Aldrich) were distilled under vacuum
prior to use in order to remove stabilizers.

A certified reference material is also used to prepare the standards for dose/response curve: CRM ref n.
CPA 98FE.1.N.1.5 (CPAchem Ltd., Stara Zagora, Bulgaria) a mixture of 11 components (perfluoropentanoic
acid [CAS 2706-90-3], undecafluorohexanoic acid[CAS 307-24-4], perfluoroheptanoic acid [CAS 375-85-9],
perfluorooctanoic acid [CAS 335-67-1], perfluoro-nonanoicacid [CAS 375-95-1], perfluorodecanoic acid
[CAS 335-76-2], perfluoroundecanoic acid [CAS 2058-94-8], nonafluoro-1-butanesulfonic acid [CAS
375-73-5], perfluorooctanoate sulfonic acid [CAS 1763-23-1], heptafluorobutyric acid [CAS 375-22-4],
tricosafluorodecanoic acid [CAS 375-22-4]).

All other chemicals were of analytical reagent grade. The solvent was deionised water. Stock
solutions were prepared by weighing the solids and dissolving in ultrapure water (Milli-Q®, Merck KGaA,
Darmstadt, Germany).
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2.2. Production of MIP for PFOA and NIP

The prepolymeric mixture for MIP was prepared according to a previously optimized procedure,
based on ammonium perfluorooctanoate (FPO-NH4) as the template, VBT and PFDA as the functional
monomers, EDMA as the cross-linker and AIBN as the radicalic initiator. The reagents were mixed
at the following molar ratio 1(Template):4(VBT):5(PFDA):50(EDMA). The mixture was uniformly
dispersed by sonication (visually homogeneous milky solution). Deionised water was added to
dissolve all reagents (volume ratio H2O:EDMA = 1:17.5). Finally, the AIBN was added to the solution
in non-stoichiometric ratio. Also, a second monomeric solution was prepared. The composition
was the same as previously described but without adding any template, in order to obtain an NIP
(non-imprinted polymer).

2.3. Optical Sensor Platform

The surface plasmon resonance (SPR) sensor is based on a D–shaped POF with an optical buffer
layer (Microposit S1813, MicroChem Corp., Westborough, MA, USA) between the exposed POF core
and the thin gold film. This optical platform is realized by removing the cladding of POF (along half
circumference), spin coating the buffer layer on the exposed core and, finally, sputtering the gold film
(see Figure 1). The plasmonic sensing area is about 10 mm in length. In the visible range of interest,
the buffer layer (the photoresist Microposit S1813) presents a higher refractive index than the one of the
POF core. This optical buffer layer improves the performances of the SPR sensor [20]. The size of the
POF is 980 µm of core (PMMA) and 10 µm of cladding (fluorinated polymer), whereas the multilayer
on D-shaped POF presents a thickness of the buffer layer of about 1.5 µm and a thin gold film of 60 nm.
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As shown in Figure 1, the planar gold surface can be employed for depositing the MIP receptor
layer, as we will explain in the following section. In this case, the selective detection of the analyte
is possible. The outline of all the production steps, from the polishing step to the MIP deposition,
with the experimental setup are summarized in Figure 1.

2.4. The Experimental Equipment

The simple and low-cost experimental setup is based on a halogen lamp (HL–2000–LL,
Ocean Optics, Dunedin, FL, USA), as the light source, the SPR-POF sensor and a spectrometer
(FLAME-S-VIS-NIR-ES, Ocean Optics, Dunedin, FL, USA) connected to a PC. The wavelength emission
range of the halogen lamp goes from 360 nm to 1700 nm, whereas the spectrometer presents a detection
range from 350 nm to 1023 nm (see Figure 1).

The SPR curves, along with data values, were displayed online on the computer screen and saved
with the help of the advanced software provided by Ocean Optics. The SPR transmission spectra,
normalized to the reference spectrum, achieved with air as the surrounding medium, are obtained
using the Matlab software (MathWorks, Natick, MA, USA). The Hill fittings of the experimental values
are obtained through OriginPro software (Origin Lab. Corp., Northampton, MA, USA).

The resin block of the SPR-POF sensor is fixed on the optical table. Every time, after that the SPR
curve in air (reference spectrum) is acquired, the measurements are obtained without moving the chip.
If the chip sensor is moved, the reference spectrum must be acquired again.

2.5. Deposition of the MIP and NIP Layer

The MIP and the NIP layers were deposited as hereafter described. The planar sensing area
(the gold surface) was washed with ethanol, then dried in a thermostatic oven at 60 ◦C prior to
deposition of the polymer layers (MIP or NIP).

For both layers, MIP and NIP, 50 µL of the prepolymeric mixture were dropped over the sensing
region (SPR surface) of the chip and spun for 80 s at 1500 rpm.

For both the polymer layers, the thermal polymerization was then carried out for 16 h at 74 ◦C.
The obtained polymeric film was washed and the template molecule was extracted, leaving the

imprinting sites free for rebinding.
The washing and extraction procedures were characterized by two steps.
In the first step, the MIP and NIP layers were washed with 96% v/v ethanol in order to remove

not-polymerized monomers residue.
In a second step, the template was extracted from MIP by washing with HCl solution (2% w/w)

and 96% v/v ethanol.
The first step is conducted flushing 5 mL of ethanol on the platform and second step flushing

1.5 mL of HCl solution, 5 mL of ethanol, 1.5 mL of HCl and 5 mL of ethanol. Finally, the sensor was
flushed with deionised water and dried at room temperature.

2.6. Binding Experiments

The experimental results were collected by the SPR-POF-MIP sensor and the previously illustrated
measurement setup. After each addition of the sample (solution with different concentration of
the analyte), we have used a standard measuring protocol based on the following three steps: first,
incubation step for chemical-interaction between analytes and MIP receptor (for 10 min at room
temperature); second, washing step with water (blank); third, recording step for the spectrum,
when water (blank) is present as the bulk. This protocol is necessary in order to measure the shift of
the resonance determined by the specific binding (analyte/receptor interaction) on the sensing surface,
and not by the changes of the bulk refractive index or by non-specific binding between gold surface
and analyte.

Finally, we have obtained different results exploiting a platform based on SPR-POF-NIP sensor
and the same measurement set-up as above. In particular, we deposited the NIP layer on the same
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D-shaped POF platform. In this case, we used the same values of the PFOA concentrations and the
same three steps used in the binding experimental (SPR-POF-MIP sensor): incubation step (10 min at
room temperature); washing step (with water); recording step for the spectrum, when water is present
as the bulk.

3. Results

3.1. PFAs Detection

Figure 2 shows the transmission spectra of the SPR-POF-MIP normalized to the reference
spectrum (spectrum achieved with air as the surrounding medium), obtained by incubating solutions
at increasing concentrations of PFOA in water solution (range 0–4 ppb).
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In an SPR-POF platform when the refractive index at the gold–dielectric interface increases,
according to SPR phenomenon theory, the resonance wavelength is shifted to the right [20].

When an MIP receptor layer is present on the gold film, the penetration of the analyte in the
MIP layer produces a change (usually an increase) in the resonance wavelength due to the variation
(usually an increase) of the refractive index at the interface between the MIP layer and the gold film.

As shown in Figure 2, in this case, the resonance wavelength is shifted to smaller values by increasing
the concentration of PFOA in water solution. A shift like this means that, when the PFOA interacts with
the MIP receptor, the refractive index value of the MIP layer decreases. This phenomenon is also present
when the PFOA interacts with the antibody (bio-receptor) on the same SPR-POF platform [24].

This effect is related to the chemical composition of the perfluorinated compounds. We verified
this behaviour measuring the refractive index at high concentrations of PFOA in water solutions,
by an Abbe refractometer. We found that when the PFOA concentration greatly increases in the water,
the refractive index of the water solution slightly decreases.

Therefore, in order to exclusively measure the shift of the resonance determined by the specific
binding (analyte/MIP) on the sensing surface, and not by the changes of bulk refractive index, we used
all the three previously described steps: incubation step, washing step with water, and spectrum
recording step when the water (blank) is present as the bulk.

Exploiting the resonance wavelengths plotted in Figures 2 and 3 reports the resonance wavelength
shift, with respect to the blank (PFOA 0 ppb), versus PFOA concentration, in a semi-log scale, along
with the Hill fitting to the experimental data. Each experimental value is the average of 5 subsequent
measurements and the respective standard deviations (error bars), are shown as well.
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Figure 4 shows the dose-response curve, with the Hill fitting to the experimental data, acquired
when the PFAs compounds are present in a mix standard (a certified reference material containing 11
different PFAs (C4–C11)). As it will be shown in Discussion section, the performances obtained in the
PFOA or PFAs detection are the same. The total resonance wavelength variation (∆λmax) in Figure 4 is
a bit different with respect to that reported in Figure 3, because when the dimension/weight of the
analyte changes the refractive index variation in the MIP layer changes.
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3.2. No Binding Detection

In order to verify the non-specific binding between the sensing layer and analyte, the response
of SPR-POF-NIP sensor was tested. Figure 5 shows the SPR curves at different concentrations of
PFOA (0–4 ppb). When the PFOA concentration increases, the shift of the resonance wavelength is
not present.
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4. Discussion

4.1. Analysis of the Dose-Response Curve

The Hill fittings reported in Figures 3 and 4 are obtained through OriginPro software and the
parameters, obtained with the associated standard errors, are listed in Table 1.

The Hill’s equation, used in the fitting of data, is reported in the following:

∆λc = λc − λ0 = ∆λmax · cn

(Kn + cn)
(1)

where c is the analyte concentration, λc is the resonance wavelength at the concentration c, λ0 is the
resonance wavelength at zero concentration (blank), ∆λmax is the maximum value of ∆λc (calculated
by the saturation value minus the blank value), whereas n and K are the Hill constants and they
can also have a physical meaning, as it will be discussed below. Standardization curves like the one
reported in Figures 3 and 4 are commonly used for chemo and biosensors, and their physical meaning
can be related to the fact that the absorption takes place by combination at specific sites, when the
number of receptor sites available for the combination with the substrate is limited [28]. In that case,
the adsorption takes place according to the Langmuir absorption isotherm, as previously reported in
case of a different MIP based sensor [21]. Moreover, the parameter n in the Langmuir model is equal to
1, which has been here experimentally found.

Table 1. Hill parameters (SPR-POF-MIP sensor).

λ0 [nm] ∆λmax [nm] K n Statistics

Analyte Value Standard
Error Value Standard

Error Value Standard
Error Value Standard

Error
Reduced
Chi-Sqr

Adj.
R-Square

PFOA
(Figure 3) −0.138 0.941 3.833 0.108 0.179 0.060 1.537 0.411 1.075 0.995

PFAs
(Figure 4) −0.277 0.922 7.120 0.264 0.389 0.069 2.506 0.707 11.238 0.984

In this section, we present a comparison between the experimental results obtained in this work
and the results obtained with the same SPR D-shaped POF platform but with a bio-receptor (antibody)
for PFOA [24]. From Equation (1), it is possible to notice that, if n ≈ 1 and at low concentration, i.e.,
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at c much lower than K, the dose-response curve is linear, with sensitivity ∆λmax/K, defined as the
“sensitivity at low concentration”, as shown in Equation (2):

λc − λ0 = ∆λc =
∆λmax

K
·c (2)

From Table 1, for the SPR-POF-MIP sensor we obtained the sensitivity at low concentration and
the LOD, for both PFOA and PFAs, in water solution. Table 2 reports the obtained “sensitivity at
low concentration” and the LOD (for PFOA and PFAs detection). The parameters, obtained by the
same SPR-POF platform with an antibody for PFOA [24], are also reported in Table 2 for comparison
purposes. The LOD can be calculated as the ratio of three times the standard deviation of the blank
and the sensitivity at low concentration (∆λmax/K) [23].

Table 2. PFOA and PFAs detection in water by an SPR-POF-MIP sensor and, for comparison, PFOA
detection by [24] (an SPR-POF sensor with a bio-receptor).

Receptor Parameters Value

MIP Receptor

Sensitivity at low c of PFOA [nm/ppb] 22.14

Sensitivity at low c of PFAs [nm/ppb] 18,99

LOD [ppb]
(3 × standard deviation of blank/ sensitivity at low c of

PFOA)
0.13

LOD [ppb]
(3 × standard deviation of blank/ sensitivity at low c of PFAs) 0.15

Antibody [24]

Sensitivity at low c of PFOA [nm/ppb] 29.82

LOD [ppb]
(3 × standard deviation of blank/sensitivity at low c of PFOA) 0.24

Table 2 clearly shows that the same performance obtained with an SPR-POF platform with
a bio-receptor for PFAs is obtained by this SPR-POF-MIP sensor. As previously stated, the advantage
of MIPs is that they can be directly deposited on the gold surface, without modifying the surface.
Moreover, the MIPs are synthetical receptors presenting a number of favorable features for sensing in
comparison to bio-receptors, such as a better stability out of the native environment, reproducibility
and low cost.

4.2. Surface Characterization by SPR Approach

In optical sensors based on SPR in a D-shaper POF, as previously described, when the refractive
index at the gold–dielectric interface increases, the resonance wavelength is shifted to the right [21–23].
This can be exploited to monitor the deposition process of the receptor layer (MIP receptors or
Bio-receptors), since the presence of the receptor on the gold film produces an evident change in the
resonance wavelength due to the variation of the refractive index at the interface between dielectric
layer and the thin gold film. Figure 6 shows the resonance wavelength, when the water is present
as the bulk, in the following cases: the gold surface without a receptor layer (bare surface), the gold
surface with a bio-receptor for PFOA [24], the gold surface with an MIP receptor and, finally, the gold
surface with an NIP receptor. The experiments were performed at room temperature and each sample
was incubated 10 minutes before acquiring the signal. A shift is clearly shown in Figure 6, the refractive
index of the NIP is larger than the MIP’s one, while the MIP refractive index itself is larger than the
bio-receptor’s one.

Therefore, the immobilization of the bio-receptor or the deposition of the MIP/NIP layer on
the sensor surface (gold film) can be directly monitored by SPR measurements exploiting the same
optical platform.
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In the future, we will characterize the MIP/NIP layer by SEM; meanwhile, we have shown how
preliminary information about the MIP/NIP layer on the gold surface can be estimated by SPR curves
(by their shape and position of the dip).Sensors 2018, 18, x FOR PEER REVIEW  9 of 11 
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