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Abstract: This paper proposes an effective and efficient model for concrete crack detection.
The presented work consists of two modules: multi-view image feature extraction and multi-task
crack region detection. Specifically, multiple visual features (such as texture, edge, etc.) of image
regions are calculated, which can suppress various background noises (such as illumination,
pockmark, stripe, blurring, etc.). With the computed multiple visual features, a novel crack
region detector is advocated using a multi-task learning framework, which involves restraining
the variability for different crack region features and emphasizing the separability between crack
region features and complex background ones. Furthermore, the extreme learning machine is
utilized to construct this multi-task learning model, thereby leading to high computing efficiency
and good generalization. Experimental results of the practical concrete images demonstrate that the
developed algorithm can achieve favorable crack detection performance compared with traditional
crack detectors.

Keywords: crack damage detection; multiple visual feature extraction; multi-task learning model;
extreme learning machine

1. Introduction

With the rapid development of information technologies, image acquisition systems are used to
obtain the surface defect information of concrete structures, and recently, a number of vision-based
methods for detecting crack damage have been developed. For the crack regions, their values are
generally different from those background contents and can be considered as the separated boundary
lines in the image. Therefore, some crack detection methods based on edge analysis are proposed.

Abdelqader et al. conducted an early study on detecting concrete cracks using four edge
detection methods [1], which is the prototype of edge-based concrete crack detection. Hutchinson et al.
advocated Canny edge detection using a threshold derived from receiver operating characteristics’
analysis [2], but its performance may not be favorable with non-uniform illumination. Albert et al.
utilized Sobel and empirical mode decomposition to find cracks [3]. However, only 15 images were
utilized in their reported results, and the image spatial resolutions were also not provided. In [4],
top-hat transformation was used to detect the local regions with the thresholding operation, but these
crack damages may not be detected accurately when the images include complex noises. Cho et al.
explored the concrete crack detection model using five different edge detectors, respectively, and
compared their detection performances with different photograph distances [5]. The combination of
the Prewitt edge detector and the Otsu method was developed in [6] and has achieved some good
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detection results, which depended largely on the morphological filter for removing the background
false alarms. With the rough Canny detection results, K-means clustering technique was exploited to
find the accurate crack regions in [7]. Medina et al. further adopted the Gabor filter invariant model
for crack edge detection [8]. Kim et al. applied one hybrid image segmentation model to find the crack
regions [9]. A common problem of the three methods mentioned above is that the aided strategy may
not work well when the incipient edge detection results are not good.

Because of the non-uniform illuminations and various background clutters, the gray values of
one same crack change widely, and the corresponding detection results based on edge analysis may
be faulty. To address this issue, crack detectors based on the local analysis are presented. Specifically,
the collected image is firstly divided into many regions, and the local classifier is used to select the
crack candidate regions. Generally, this type of crack detector consists of two successive parts: feature
extraction and crack region detection. With the informative image region descriptor and the effective
pattern classification, the crack detection based on local analysis performs better than the general
edge-based crack detectors.

As for the feature extraction aspect, Oliveira et al. computed the mean and variance features of
image regions, and the crack and non-crack features were separated via the one-class classification
strategy [10]. Their adopted mean and variance region features were too simple to obtain good
detection results in complex backgrounds. Subsequently, Bray et al. further calculated the histogram
features of one image region, and the resultant crack detection performances were improved [11].
Considering the specific edge characteristic of cracks, Xu et al. computed the local statistics features
(e.g., crack proportion) with image segmentation [12]. The neighborhood information of the crack
region under different scales was exploited to construct the feature vectors in [13]. To deal with the
non-uniform illumination, the Local Binary Patterns (LBP) descriptor was adopted for the texture
characteristic extraction in [14].

Under the condition of fine concrete aggregate, a neat surface and good lighting, the feature
extraction methods mentioned above could obtain the discriminative crack features and non-crack
ones. However, influenced by weather changes and complex service environments, the limited
representation of one single type of feature might not represent the cracks and non-cracks and cannot
guarantee satisfactory crack detection results. Recently, the Deep Learning (DL) model has been used
in many image applications. Zhang et al. utilized four Convolutional Neural Networks (CNN) for
crack region feature extraction [15]. Cha et al. adopted the Rectified Linear unit (ReLu) function in the
CNN model, thereby tending to facilitate much faster computations [16]. The DL-based crack feature
extraction often makes for better crack detection results than the usual gray-level features. However,
it is well known that the DL technique for crack detection needs to iteratively train the multi-layer
network parameters, which is time consuming and possibly leads to the over-fitting of the results.

On the other hand, with the obtained image features, the crack region detection followed needs to
construct a feature classifier. Technically speaking, the trained feature classifier determines the crack
candidates from those background regions. There are already many cases of crack region classification.
Based on the Artificial Neural Network (ANN) model, Xu et al. used the Back Propagation (BP)
technique to implement the crack region detection [17]. Owing to the slow training performance of the
BP model, an improved BP algorithm with varying slopes of the activation function was presented
for crack region detection in [18]. The fully-connected neural network with the multi-layer feature
learning model was adopted in [15] and [16], which was trained via the stochastic gradient descent
method. Support Vector Machine (SVM) is a powerful classification method based on the structure risk
minimization principle. Jahanshahi et al. advocated the combination of ANN and SVM for finding the
separate hyperplane between the crack and backgrounds [19]. With the calculated wavelet features
of the image region, bridge surface crack detection based on the SVM model was proposed in [20].
To detect various crack defects, Chen et al. presented one binary tree network based on the SVM
technique [14].
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The aforementioned crack region classification methods have achieved favorable detection
performances. However, the ANN-based crack detector needs iterative parameter tuning, and the
SVM-based crack detector is faced with a quadratic programming problem. Generally, in order to
realize the precise detection of crack defects, one image may be divided into very small regions in
actual engineering. The resultant massive image region data will have a high computational burden for
these crack detection methods. More importantly, considering the complicated service surroundings
of concrete structures, the contents of crack image regions are promiscuous, and the backgrounds
contain many disturbances similar to cracks, as shown in Figure 1. As far as we know, most of the
existing crack region detection methods simply treat the crack detection task as one binary classification
problem [14–20], which does not fully consider the complexity of image regions, i.e., the variability of
crack regions and the disturbance of similar backgrounds.

Figure 1. Challenges of concrete crack defect detection in real-world environments.

Through the above analysis, we found that most of the crack detection algorithms based on local
analysis cannot achieve optimal performance in terms of accuracy and speed, which can be attributed
to the following two aspects. First, the weak feature representation is not appropriate for complex
backgrounds, and multi-layer feature extraction is not efficient and is easy to overfit. Second, to deal
with massive image region data, the traditional crack region classification is computationally expensive
and sensitive to the background clutters.

In this paper, to address the problems above, we attempt to propose a new and effective crack
detection model, by exploiting the strong feature learning of multi-view feature extraction and the
robustness of multi-task crack region detection. The main contributions are summarized as follows.

1. An efficient feature extraction method is developed for calculating the multi-view image visual
features of the crack region, which includes the texture features (i.e., local binary pattern
feature) and the edge features (i.e., histogram of oriented gradient feature). By combining these
complementary features, the image region’s representation will be enriched and the complex
noise disturbances further suppressed.

2. We present a novel crack region detection model based on the multi-task learning framework.
Different from the current crack detection approaches, the presented framework not only focuses
on the discrimination between cracks and non-cracks, but also fully considers the multiplicity for
crack region content. Moreover, an emergent learning technique, i.e., Extreme Learning Machine
(ELM), is applied to implement this multi-task framework, thus further improving the efficiency
and robustness of the proposed crack detector.

3. The incremental updating equation of the proposed crack region detector has been derived, which
makes it very flexible to classify the new crack region candidates with the available up-to-date
training image data. Using such an updating equation, the advocated crack detector will be better
suited to changing environments.
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The remainder of this paper is organized as follows. Section 2 gives an overview of the
background content of ELM, which is to implement the developed multi-task classification framework.
Section 3 presents the details of the proposed crack detection framework, including the multi-view
feature extraction, the multi-task learning classification and the online updating of the crack detector.
Experimental results and demonstrations are reported and analyzed in Section 4. Finally, conclusions
are given in Section 5.

2. Background Content

To facilitate the understanding of the implementation details of the multi-task learning model,
we briefly review the theories and concepts of ELM as follows.

The ELM model was originally presented for training the generalized Single hidden Layer
Feed-forward Neural network (SLFN) [21] and recently was extended to the multi-layer case [22].
Suppose that one SLFN with L hidden nodes can be represented as:

fL(x) = ∑L
i=1 G (wi, bi, x)γi = ∑L

i=1 hi(x)γi (1)

As shown in Equation (1) and Figure 2, wi is the input weight connecting the input x to the i-th
hidden node, and bi is the bias of i-th hidden node; G(·) is the activation function; γγγ is the output
weight of the ELM network; hi(·) is the output vector of the i-th hidden node.

Figure 2. Typical structure of an extreme learning machine framework.

Unlike the traditional neural networks, ELM theories show that the hidden neuron parameters can
be randomly assigned based on a continuous probability distribution [23]. Specifically, the parameters,
i.e., wi and bi of the activation function G (wi, bi, x) can be randomly generated without iterative
calculation. Therefore, ELM has a much faster learning speed than other learning methods. Moreover,
Huang et al. have further proven that the ELM model satisfies the universal classification capability.

Theorem I, classification capability [24]: Given any feature mapping h(x), if h(x)γγγ is dense in
C(Rd) or in C(M), where M is a compact set of Rd, then SLFN with random hidden layer mapping
h(x) can separate arbitrary disjoint regions of any shapes in Rd or M.

Equation (1) can be rewritten as fL(x) = ∑L
i=1 hi(x)γi = H(x)γγγ. Here, γγγ = [γ1, . . . , γL]

T is the
matrix of output weights, and H(x) = [h1(x), . . . , hL(x)] is the row vector representing the outputs of
L hidden nodes. With the randomly generated hidden parameters, H(x) is known to the users. Thus,
the ELM function (i.e., Equation (1)) becomes linear, and only the output weights γγγ are unknown.
Given a training dataset {X, T} =

{
xi, ti

}N
i=1, xi ∈ Rd is the i-th training data vector, and ti ∈ Rm

represents the corresponding label. The linear equation above can be written in matrix form:

Hγγγ = T (2)
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where H is the hidden layer output matrix (randomized matrix) as follows.

H =

 h(x1)
...

h(xN)

 =

 h1(x1) · · · hL(x1)
...

. . .
...

h1(xN) · · · hL(xN)

 (3)

According to the ELM learning algorithm [21], the training of the ELM model is to obtain both
the smallest norm of output weights and the smallest training error.

γ̂γγ = arg min
γγγ

{
‖γγγ‖2

2 + λ ‖T−Hγγγ‖2
2

}
(4)

where λ is a regularization parameter of the training model.
Based on Theorem I mentioned above, recent works have shown that the ELM model achieves

good generalization performances in numerous applications, such as human action recognition [25,26],
object tracking [27], scene classification [28], hyper-spectral imagery classification [29], etc. Inspired by
these, we attempt to apply ELM for efficient and robust crack region detection.

3. Proposed Method

In this section, we develop a novel crack region detection method, and the overall architecture of
the proposed framework is illustrated in Figure 3. One can see that the framework is composed of
two stages: (1) training and (2) detection. Before the training stage, by dividing the existing concrete
images, many representative crack and non-crack image regions are selected to construct the training
dataset. In the training stage, the Histogram of Oriented Gradients (HOG) and LBP features of image
regions are firstly calculated. Then, with the computed multi-view features, a novel crack region
detection method is advocated using the multi-task learning framework. For one new concrete image,
it is divided into many non-overlapping regions, and we apply the trained crack region detector to
distinguish these crack candidates from the background ones. With the results of labeling for each
testing image region, we perform the morphological image processing as the post-processing to connect
discontinuous cracks and remove isolated crack blocks. After the detection stage, some new crack and
non-crack training instances are available for incrementally updating the crack detection algorithm.

Figure 3. Flowchart of the proposed concrete crack damage detection method.

3.1. Multi-View Feature Extraction

Due to the limited representation of one single type of feature, most of the current concrete crack
detectors may not achieve favorable performances in terms of complex environments. To deal with this
representation limitation, we present an efficient scheme that combines two complementary features,
i.e., LBP and HOG features of one image region, as shown in Figures 4 and 5.

The LBP model was first advocated by Zabih and Woodfill [30]. For a given pixel p, as shown
in Figure 4a, the LBP model compares its intensity value with those of its eight neighboring pixels to
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generate a binary code. By converting the generated binary code into a decimal format, the LBP value
of p can be obtained, and different LBP values represent different textures around the p pixel. It is noted
that not all LBP values can represent a meaningful texture, so in this paper, a uniform LBP model [31] is
exploited to extract these valid binary codes, which at most have two “1 to 0” or “0 to 1” bit transitions
in the binary code. As for computing the LBP features of one predefined image region, LBP values of
these pixels in this image region are firstly calculated, and the histogram of all the pixel LBP values is
further computed. When computing the histogram, the method accumulates each valid LBP value into
a separate bin and keeps all invalid LBP values in a specific bin. Consequently, for one image region,
a uniform LBP model will have 58 valid bins and one invalid bin of one histogram. Owing to the
fact that the LBP feature captures the texture information of the crack region, which is more robust to
illumination changes than other gray-level features, it may not be adaptive to the background clutters.
To address this issue, in this work, the position information is exploited by dividing the initial image
region into non-overlapping sub-patches. As shown in Figure 4b, for one image region, using different
partitioned schemes, there are 15 different sub-patches. By concatenating the histogram entries of each
sub-patch, the final LBP feature vector is formed, and its feature dimension is 59 × 15 = 885.

Figure 4. Illustration of LBP feature extraction: (a) LBP value generation; (b) 15 different sub-patches
of the image region; (c) LBP features of each sub-patch; (d) extracted LBP feature.

Figure 5. Illustration of HOG feature extraction: (a) input image region, (b) nine-bin histogram of cell,
(c) 4 overlapping image windows, (d) HOG features of each image window, (e) extracted HOG feature.

The HOG model computes the histogram of the magnitude sum for gradient orientations in an
image region, which is widely used as an effective feature for pedestrian detection [32]. Owing to the
crack region having striped characteristics similar to pedestrians, the HOG feature is adopted as the
other complementary feature in this paper. Specifically, as shown in Figure 5a, this is implemented
by dividing one normalized image window into four small spatial regions named cells. In a cell of
C × C pixels, the direction of the gradient at each pixel is discretized into nine bins. Therefore, at each
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pixel, the gradient is a 2D vector with a real-valued magnitude and a discretized direction (i.e., nine
possible directions uniformly distributed in [0, 2π]). Then, the histogram of gradient directions over
the pixels of the cell is cumulatively computed, and the calculated nine-bin histogram entries form
the representation of each cell. Thus, for one image window, by combining these histogram entries of
four cells, we can obtain 36-dimensional region feature vectors. In order to represent more local detail
information, the sliding window technique is further utilized, and the sliding step size is C pixels, just
as illustrated in Figure 5a. Finally, for an image region of 3C × 3C pixels, it contains four overlapping
image windows, and there will be one 144-dimensional (i.e., 144 = 36 × 4) HOG feature vector.

Through the presented image feature extraction mentioned above, the LBP and HOG features
of one image region can be easily calculated. By concatenating these feature vectors directly, we can
obtain the input sample feature representation of the subsequent ELM-based crack detection model.
Compared with the DL-based feature extraction, the proposed multi-view feature extraction does not
suffer from the time-consuming feature training process and the risk of over-fitting issues. Moreover,
one type of feature captured one piece of channel information of the crack region and compensated for
the others’ representation limitation, thereby leading to more robust crack detection results.

3.2. Multi-Task Learning Classification

As discussed in the previous Section 1, because of the complicated disturbances of the
environment, it is difficult to detect the crack regions only considering the discrimination between the
cracks and non-cracks; thus, the existing crack detectors based on simple binary classification usually
perform poorly. In this section, a multi-task learning classification approach is proposed, just as shown
in Figure 6.

Figure 6. The proposed multi-task learning crack classification method.

Multi-task learning is the procedure of learning several tasks at the same time with the aim of
multiple benefits. An early overview of multi-task learning focusing on classification can be found
in [33]. Specifically, in this work, the multi-task of the presented crack detector involves three tasks.
The first task is used to recognize each single crack or non-crack training sample, which is the basic
objective for the crack region detection and is modeled as the first function ftask1(x). The second task
is presented to restrain the differences between various crack region features, which can be modeled
as the second function ftask2(xcrack1, xcrack2). Unlike the first task that only uses single crack and
non-crack samples as the training instances, the crack-crack training pairs are utilized, and the training
objective to constrain the consistent outputs of different crack samples would contribute to the crack
detection robustness. Finally, the third task is proposed to distinguish the crack candidates from those
background noises, which can be modeled as the third function ftask3(xcrack, xnoncrack). Different from
the first task, the crack and non-crack training pairs are applied. Therefore, by exploiting the opposite
mutual relationship within the training pair, the discrimination between cracks and non-cracks can be
further emphasized, thereby leading to more accurate detection performances.
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As for the multi-task learning, the three tasks mentioned above should be accomplished within
the same framework. Mathematically, we can treat the latter two functions as two different constraints,
which are trained with the first function as follows.

min ftask1(x)
s.t. ftask2(xcrack1, xcrack2)

s.t. ftask3(xcrack, xnoncrack)

(5)

Here, ftask1(x) is the basic objective function of the crack region classification task. There exist
many approaches for modeling this function ftask1(x), such as SVM, ANN, etc. However, they are
generally time-consuming, which hinders their practical use in crack detection. In this paper, we
exploit a novel and fast learning technique, namely ELM, to implement this multi-task learning process.
Specifically, the solving process of Equation (5) is as follows.

Firstly, as introduced in Section 2, the training of the ELM classification model needs to solve the
problem Equation (4), and the output weight γγγ of the ELM network is the objective to be optimized.
Therefore, the first objective function ftask1(x) can be set to be {‖γγγ‖2

2 + λ ‖T−Hγγγ‖2
2}. Here, T is the

label set of single training samples including crack and non-crack ones, and H = G(w, b, x) is the ELM
hidden output of input x.

For the latter two constraint equations, two kinds of training pairs are defined as the new training
instances. To be specific, one is the crack-crack pair Xuu = [xcrack1, xcrack2], and the other one is the
crack-background pair Xuv = [xcrack, xnoncrack]. These two sets correspond to the inputs of the latter
two constraint equations, just as shown in Equation (5). Technically, for the second task, different crack
samples should have approximate outputs of the model. With this rationale, we need to minimize the
following problem.

ftask2(xcrack1, xcrack2) = min
γγγ
‖H(xcrack1)γγγ−H(xcrack2)γγγ−Muu‖2

2

=min
γγγ
‖Huuγγγ−Muu‖2

2
(6)

Here, H(xcrack)γγγ is the output of the ELM classification network for input crack sample xcrack,
and H(xcrack) =G(w, b, xcrack) is the ELM hidden output of input xcrack. It should be noted that the
randomly generated input hidden parameters (w, b) are the same as those of the first objective function
ftask1(x). For simplicity, the hidden layer output differential value of crack-crack pairs Xuu is set to be
Huu. Moreover, Muu is the label set of the training pairs Xuu, which indicates the similar relationship
between two different crack sample features. To restrain the differences between various crack region
features, we set the training labels Muu of crack-crack pairs to zero.

Similarly, for the third task, the crack sample must have a different output from that of the
backgrounds, and the following question needs to be solved.

ftask3(xcrack, xnoncrack) = min
γγγ
‖H(xcrack)γγγ−H(xnoncrack)γγγ−Muv‖2

2

=min
γγγ
‖Huvγγγ−Muv‖2

2
(7)

Here, Huv is the hidden layer output differential value of crack-background pairs Xuv. Muv is
the label set of the training pairs Xuv, which denotes the opposite relationship between the crack
and non-crack sample features. To emphasize the discrimination between cracks and non-cracks,
the training labels Muv of crack-background pairs are set to one.

It is noteworthy that the three tasks need to be trained in the same ELM network, with the
randomly generated input hidden parameters, and the needed ELM output weights γγγ comprise the
only common objective function for all the single and pair training instances. Therefore, for the latter
two constraint functions, the smallest norm term of output weights is omitted. The optimization
problem of the presented multi-task learning model can be illustrated as follows.



Sensors 2018, 18, 1796 9 of 18


min

γγγ
‖γγγ‖2

2 + λ ‖T−Hγγγ‖2
2

s.t. ‖Muu −Huuγγγ‖2
2

s.t. ‖Muv −Huvγγγ‖2
2

(8)

By using the Lagrangian multiplier method, the problem above can be equivalent to one
unconstrained optimization problem:

min
γγγ

{
‖γγγ‖2

2 + λ ‖T−Hγγγ‖2
2 + η ‖Muu −Huuγγγ‖2

2 + κ ‖Muv −Huvγγγ‖2
2

}
(9)

Here, η and κ are the newly-added regularization parameters, which control the penalty weights
on the training errors of the latter two learning tasks. The problem Equation (9) is commonly known as
ridge regression, and we can easily compute its gradient with respect to γγγ. By setting the corresponding
gradient to zero, we can have the optimal solution as follows.

γ̂γγ = (I + λHTH + ηHT
uuHuu + κHT

uvHuv)
−1(λHTT + ηHT

uuMuu + κHT
uvMuv) (10)

where I is an identity matrix of dimension L (i.e., hidden node number of the ELM network).
Correspondingly, the final crack region classification decision function is:

f (x) = H(x)γ̂γγ (11)

3.3. Incremental Model Updating

Considering the continuity of the concrete crack detection task, there will always be new crack
and non-crack images in the application of the crack defect detection system. In order to adapt to the
changing environments, the presented model has to update the crack detector in a timely manner.
An easy way to update the model is to collect all the old and new training instances (including single
and pair training samples) for retraining the ELM network. Although this method is easy, using more
and more training data is a waste of storage and computation time.

To address this issue mentioned above, in this paper, online sequential updating technology
is utilized to update the developed crack region classified network. As for the incremental model
updating, the input hidden parameters (i.e., wi and bi) are no longer changed. Therefore, we only need
to update the output weights γγγ of the ELM network.

Suppose that we already have Z′0 single training instances and Z′′0 training pairs including
crack-crack and crack-background pairs. Their initial ELM hidden layer outputs are H0, Huu0 and Huv0.
The corresponding training labels are T0, Muu0 and Muv0. According to Equation (10), the optimal
solution of the initial crack region classification model can be calculated as:

γγγ0 = (I + λHT
0 H0 + ηHT

uu0Huu0 + κHT
uv0Huv0)

−1(λHT
0 T0 + ηHT

uu0Muu0 + κHT
uv0Muv0) (12)

For simplicity, we rewrite W0 = I + λHT
0 H0 + ηHT

uu0Huu0 + κHT
uv0Huv0 and Q0 = λHT

0 T0 +

ηHT
uu0Muu0 + κHT

uv0Muv0. Then, we can have γγγ0 = W−1
0 Q0.

Now, there are Z′1 new training instances and Z′′1 new training pairs. T1, Muu1 and Muv1

correspond to their training outputs, and we can easily compute their ELM hidden layer output
matrix: H1, Huu1 and Huv1. Then, the output weights of the model can be updated as follows.

γγγ1 = W−1
1 Q1 (13)
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Considering the old and new sets of training data, we have:

W1 = I + λ[H0, H1]
T [H0, H1] + η[Huu0, Huu1]

T [Huu0, Huu1] + κ[Huv0, Huv1]
T [Huv0, Huv1]

=W0 + λHT
1 H1 + ηHT

uu1Huu1 + κHT
uv1Huv1

(14)

Q1 = λ[H0, H1]
T [T0, T1] + η[Huu0, Huu1]

T [Muu0, Muu1] + κ[Huv0, Huv1]
T [Muv0, Muv1]

=W0γγγ0 + λHT
1 T1 + ηHT

uu1Muu1 + κHT
uv1Muv1

(15)

Substitute Equation (14) into Equation (15), we can have:

Q1 = W1γγγ0− λHT
1 H1γγγ0− ηHT

uu1Huu1γγγ0− κHT
uv1Huv1γγγ0 + λHT

1 T1 + ηHT
uu1Muu1 + κHT

uv1Muv1 (16)

Finally, by substituting Equation (16) into Equation (13), we can get the incremental
updating equation:

γγγ1 = γγγ0 + W−1
1 (λHT

1 T1 + ηHT
uu1Muu1 + κHT

uv1Muv1 − λHT
1 H1γγγ0 − ηHT

uu1Huu1γγγ0 − κHT
uv1Huv1γγγ0) (17)

From the derivations mentioned above, one can see that the presented incremental updating
of model could achieve the same learning result as the incipient training with the whole training
data including old and new samples. Therefore, it is of good practical significance to carry out the
continuous crack defect detection.

4. Performance Evaluation and Analysis

4.1. Experimental Setup

In this section, to evaluate the proposed crack detection model, we practically collected
350 concrete images by a Canon HS125 camera with a resolution of 4608× 3456 pixels. These images
contain the typical challenges of concrete crack defect detection in real-world environments, such as
illumination, pockmark, stripe, crack-like, attachment, blurring, etc.

The developed crack region detection method is compared with four representative crack
detection methods. They are referred to as the Canny-based crack detector [2], the Otsu-based
crack detector [6], the SVM-based crack detector [34] and the DL-based crack detector [15]. Specifically,
the first two methods are categorized as edge-based crack detectors, and the latter two methods
belong to the crack detections based on local analysis. It should be noted that the four compared crack
detection methods were implemented by us according to their proposed algorithm framework.

Specifically, for the Canny-based method [2], the built-in edge function of MATLAB is exploited
for processing the input concrete images, and the input threshold parameter setting is based on the
receiver operating characteristics’ analysis and Bayesian decision theory. As for the Otsu-based method
[6], the input images are firstly preprocessed with the Prewitt operator. Then, the built-in function
graythresh of MATLAB is applied for segmenting the cracks, and the post morphological processing is
further utilized for removing some background noises.

For the SVM-based classified crack detector [34], the mean and variance region features are used
as the feature representation of input image samples. The LIBSVM toolbox [35] is adopted to deal
with the binary classification problem, and the radial basis kernel function is used in the training
and cross-validation processes. The implementation of the DL-based crack detector [15] is based on
the MatConvNet [36], which is a MATLAB toolbox implementing CNNs. Specifically, the VGGNet
model is used to train the crack detector using many square image regions with the given labels,
for the classification of image regions with or without cracks. The entire DL-based crack detection
framework consists of four CNNs, four max-pooling and one fully-convolutional network. Here, the
filter sizes of the four CNNs are 4 × 4, 5 × 5, 3 × 3 and 4 × 4, respectively. Each CNN is followed by
one max-pooling operation, which can learn region features that are spatially invariant. In addition,
the fully-connected network with one softmax function is used for crack region classification.
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To be fair, all the involved crack detection methods are implemented in the same computing
platform (Intel-E5 2.40GHz CPU, GTX960M GPU, 64 GB RAM, Win7 x64 system, MATLAB 2017b).
The same training data and testing concrete images are exploited in the local region classification for
the compared crack detectors [15,34] and the presented method. To obtain a certain detection ratio of
crack defect, in this paper, the size of image regions is set to 75 × 75 pixels. In this section, two popular
evaluation criteria are used: one is the Precision Rate (PR), and the other one is the Recall rate (RE),
which are defined as follows.

PR = Test/Td, RE = Test/Tg (18)

Here, Test is the number of correctly detected crack regions, Td is the total number of detected
crack regions and Tg is the number of artificially-labeled crack regions.

4.2. Database Generation

The total number of raw concrete images is 350 (4608 × 3456 pixel resolutions), which were
taken from some experimental concrete structures (i.e., beams, deck slab, etc.) at Shijiazhuang Tiedao
University. As for the raw images’ collection, we took into account different conditions, e.g., distances,
illumination, shadows, blurring, pockmark, and so on. Among the 350 raw concrete images, 250 images
were randomly selected for training and validation processes, and the remaining 100 images were for
the testing process. As for the training database, the selected images were cropped into small image
regions of 75× 75 pixel resolution

As illustrated in Figure 7a–d, for effective crack region detection, the major axis of the crack in
one crack sample should be larger than half of the image region size, and the minor axis of the crack
should be less than half of the image region size. It is noteworthy that the partitioned images that
have cracks on the four corners of image region space are strictly discarded in the training database
generation, as shown in Figure 7e–h. To obtain more patterns of cracks or non-cracks, the selected
image regions can be rotated by 90 degrees and −90 degrees. Finally, the total number of prepared
training image regions is 44K, including 22K crack samples and 22K non-crack samples.

Figure 7. Illustration of crack selection: (a–d) are the valid instances and (e–h) are the invalid ones.

4.3. Parameter Setting

In this work, the activation function G(·) is set to be the sigmoid function. In Equation (9),
the regularization parameters λ, η, κ are fixed to 0.1, 0.05 and 0.05, respectively, based on the empirical
results. As for the second task in Figure 6, we divide the crack dataset Xu into two parts and randomly
choose 10K cracks from each subset, respectively, which are used to construct 10K crack-crack training
pairs Xuu. Similarly, for the third task in Figure 6, 10K non-crack samples are randomly selected from
the background dataset Xv and then paired with 10K crack samples for the crack-background training
instances Xuv.

The proposed model has some parameters to be tuned, i.e., the hidden neurons number L of the
ELM-based classification network and the regularization parameters (i.e., λ, η and κ) of Equation (9).
Note that L represents the Vapnik–Chervonenkis dimension of the ELM classifier. Technically speaking,
there is not a best possible way to set the value of L. Therefore, it is to be determined by trial-and-error.
Figure 8 depicts the testing accuracy curves of different parameter settings. It is noted that the
testing accuracy is computed with the testing image regions, which are selected from the 44K training
image dataset mentioned above. As shown in Figure 8, when the number L is too small, the trained
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crack detection model has a poor discriminative capability, and it cannot find the cracks from the
backgrounds. However, when the number L is too large, the resultant crack detector may be too
complicated, which makes it difficult to identify the testing image regions, and the testing accuracy
begins to decrease. One can see that the proposed crack detection can obtain the optimal results when
L is 1500.

In addition, the regularization parameters (i.e., λ, η and κ) of Equation (9) control the weights of
the three learning tasks. In the experiments, the testing accuracy results with different regularization
parameters are also illustrated in Figure 8. From the comparisons, the performance of the presented
method can achieve satisfactory results when λ = 0.1, η = κ = 0.05.

Figure 8. Performances curves of different parameters including L, λ, η and κ: (a) testing accuracy in
terms of L and λ, (b) testing accuracy in terms of L and η, (c) testing accuracy in terms of L and κ.

4.4. Qualitative Evaluation

In this subsection, Figures 9–12 show some concrete images that contain illumination changes,
background disturbances, crack-like feature, image blurring, etc. Meanwhile, the last five columns
of each figure illustrate the crack detection results of Canny [2], Otsu [6], SVM [34], DL [15] and the
presented Multi-view Multi-task crack Detector (MMD), respectively. As for the first two compared
crack detectors, the concrete images of 4608 × 3456 pixels are processed globally using Canny or Otsu
techniques, and the edge-detected or -segmented regions are treated as the crack detection results.
On the other hand, for the latter three crack detectors based on local analysis, these concrete images
of 4608 × 3456 pixels are firstly divided into 61 × 46 image regions of 75 × 75 pixels. Then, the last
three crack detection methods are applied to find the crack regions from those separate candidate
ones. In addition, by artificially labeling these divided image regions, the ground truth of concrete
images can be obtained, just as shown in the second columns of each figure. It should be noted that
the crack region detection results, the size of which is 61 × 46, are enlarged in this illustration for clear
comparison. Furthermore, the detailed performance evaluation analyses are as follows.

(1) Illumination changes:
Figure 9 shows some crack detection results for evaluating whether the proposed method is able

to tackle illumination changes. For the Canny-based method, in general, the Gaussian filter is used
to smooth the background noise. During the image filtering, local tiny cracks may be omitted, just
as shown in Figure 9 (2). In addition, the Canny method is sensitive to the background problems
(e.g., attachment in Figure 9 (3)), which cannot be removed with simple edge-based techniques.
From the detection results of Figure 9, one can see that the Otsu-based method performs worst.
The main reason is that there may be several peak values of the gray histogram with non-uniform
illuminations. Thus, the dark regions are also segmented and linked together with the true crack
regions, which cannot be eliminated via a simple post-processing strategy. By contrast, by using local
region binary classification, the SVM-based crack detector can cope with the illumination problems
and almost recognize all the crack regions. However, the SVM-based method adopted some simple
statistical region features, thereby leading to some false alarms (see the dashed ellipses in Figure 9).
Compared with SVM-based method, the DL-based model utilized multi-layer convolutional neural
networks for extracting the high-level image region feature, which can well address the background
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noise (see Figure 9 (1)). However, it may fail to recognize the total crack regions, which may be due to
the over-fitting problem.

Figure 9. Some representative crack region detection results with illumination changes. DL, Deep
Learning; MMD, Multi-view Multi-task crack Detector.

(2) Background disturbances:
Apart from the illumination issue, there are other disturbances in complex environments, such as

pockmarks, attachment, crack-like features, etc. Figure 10 presents the crack region detection results
with some background disturbances. With the image filtering technique, the Canny-based method can
cope with some tiny background noises, as shown in Figure 10 (2). However, a few blocky background
noises are still retained (see Figure 10 (1)). Because of their unknown area and shape parameters, it is
difficult to delete them via a simple post-processing operation. Owing to the pixel gray values of
certain attachments on the concrete surface being close to that of crack damage, these attachments near
the crack region are also segmented (see Figure 10 (1, 3)) by the Otsu-based method. What is more,
the shape parameters of these mistakenly segmented areas are various and cannot be removed using
post-morphological processing.

As for the SVM-based method, there are also some incorrect detection results like stripes
(see Figure 10 (4, 5)), which may be due to the following two reasons. One is that it only utilizes the
simple region statistical features, and the other one may be the simple binary classification used in the
SVM-based one. For the DL-based crack detector, the pockmark or attachment disturbances can be
recognized via the strong feature learning capability, just as shown in Figure 10 (1, 3). On the other
hand, it sometimes may be unable to recognize the whole crack regions. For example, from the results
of Figure 10 (1, 3, 5), the middle parts of the crack are falsely identified as the backgrounds, which may
be due to the over-fitting issue.

From the comparisons mentioned above, it can be seen that the proposed crack detection method
has achieved satisfactory detection results because of the following two aspects: (1) the combined
complementary image region features (i.e., LBP and HOG) have a strong discriminative capability
for dealing with the various background noises; (2) the developed multi-task learning framework
contributes to the robustness of the crack region detector when addressing the complex background
disturbances. What is noteworthy is that the advocated crack detection method cannot always acquire
the perfect crack region detection results. For instance, as illustrated in Figure 10 (3), the lower-right
crack regions (see the dashed ellipse) of the input image are not detected. From the point of view of
appearance modeling, the visual aspects of undetected tiny crack regions are very similar to those
of some crack-like feature (e.g., stripes in Figure 10 (4)). Therefore, to adapt better to complicated
surroundings, it is likely that these ambiguous potential crack regions are mistakes.



Sensors 2018, 18, 1796 14 of 18

Figure 10. Some representative crack region detection results with background disturbances.

(3) Image blurring:
There is image blurring or degradation because of the movement during the concrete image

capture process, which may cause difficulty in detecting the true crack regions. Generally, image
blurring makes the boundary lines of cracks unclear, and thus, these crack detection methods based on
edge analysis (i.e., Canny and Otsu) fail to separate the whole crack candidate regions, just as shown
in Figure 11. Compared to the SVM-based one, the DL and the proposed MMD method perform
better in dealing with the blurry image issue. However, the curved parts of the blurry image are not
well detected by the DL-based model. In this work, the MMD method exploits multi-view feature
extraction, which can provide more informative region features and contribute to more accurate crack
detection results.

Figure 11. Some representative crack region detection results with image blurring.

4.5. Self-Validation

To understand the proposed crack detector better, in this subsection, some reference methods
are presented for self-comparisons. The first one keeps the multi-task learning classification, but only
uses LBP region features, which is named the LBP Multi-task crack Detector (LMD). Compared to the
first one, the second one exploits HOG region features, which is named the HOG Multi-task crack
Detector (HMD). The third one only considers the first function ftask1(x) in the multi-task learning
framework and keeps other settings unchanged, and thus, we name it the Multi-view Task 1 crack
Detector (MT1D).

These methods were implemented over all the testing concrete images, and some representative
detection results are shown in Figure 12. From these comparisons, we can see that the proposed crack
detector achieves a significant improvement over the LMD and HMD methods. That is because the two
complementary features are more robust to the unexpected disturbances like illumination, pockmarks,
blurring, crack-like features, and so on. In addition, the developed MMD model performs better than
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the MT1D method thanks to the multi-task learning technique utilized, which contributes to finding a
better separate hyperplane between the various crack contents and the complicated backgrounds.

Figure 12. Self-comparisons with three reference crack detection methods. LMD, LBP Multi-task crack
Detector; HMD, HOG Multi-task crack Detector; MT1D, Multi-view Task 1 crack Detector.

4.6. Quantitative Comparisons

In this subsection, we measure the crack detection accuracy of the proposed method against the
other ones using two criteria, i.e., PR and RE. Here, the PR measures the ratio between the correctly
detected crack region numbers and the detected crack region ones. Obviously, the large PR value
of one crack detector indicates that it has a high confidence coefficient for the detected crack results.
Besides, the RE is the ratio between the correctly detected crack region numbers and the labeled crack
region ones, which is used to describe the rate of residual undetected crack regions. It should be noted
that the PR and RE indexes need a specific number of partitioned image regions, and thus, the Canny
and Otsu methods cannot be evaluated in this subsection.

For clear performance comparison, the average PRs and REs for all the testing concrete images
are shown in Table 1. From the experimental results, we can see that the DL and the proposed MMD
method have a larger average PR value than the SVM-based one. The possible reason is that the
DL-based one uses the deep feature learning framework, and the MMD model utilizes the multi-view
feature extraction, which can address the likely background disturbances well. However, the DL-based
method has a smaller average RE value than the proposed model, which may be attributed to the
over-fitting problem.

Furthermore, to verify the performance of the developed incremental updating crack detection
method named as the IMMDmodel, it is assumed that the crack detector is incrementally trained with
the two partitioned training data. To be specific, one half of 44K training samples is firstly applied to
train the initial crack region detector via Equation (12). Then, the other half of the 44K training data is
utilized to update the crack detector using Equation (17). In these experiments, the resultant crack
detection model is tested with the same testing concrete images, and the average PRs and REs are also
shown in Table 1. From the comparisons with the MMD method, one can see that the IMMD model has
achieved similar detection performances, which validates the detection accuracy of the incremental
updating model. Besides, Table 2 shows the average time of two successive training processes. It is
obvious that the IMMD method is more efficient than the MMD model using half of the training data.
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Table 1. Average Precision Rate (PR) and Recall rate (RE) values. The best results are shown in
bold font.

Method SVM DL MMD IMMD

PR 78.6 83.7 92.3 91.9
RE 79.5 76.2 89.7 89.8

4.7. Comparison of Training Efficiency

One insight of the proposed method is the application of ELM in the multi-task learning
classification. As mentioned above, compared with other traditional learning methods (neural network
or SVM), ELM can achieve better generalization performance with much faster learning speed, which
contributes to the training efficiency of the MMD crack detector. In this work, owing to the edge-based
crack detectors having no need for the training process, we only discuss the crack detection algorithms
based on local classification. Specifically, we compared the SVM-based crack detector [34], the DL-based
crack detector [15] and the MMD method in terms of the training efficiency aspect.

Table 2 shows the training time of each crack detection in dealing with the same amount of image
region data. Moreover, the code implementation software also has an effect on the training efficiency.
Although all the compared methods were implemented in MATLAB, there are still some differences in
carrying out the specific crack detection, which are listed at the bottom of Table 2.

Table 2. Training time and implementation of the crack detection. Training time, seconds.

Method SVM DL MMD IMMD

Training time 213.2 912 29.1 16.9
Implementation MATLAB + C MATLAB + GPU MATLAB MATLAB

From the comparisons, it is obvious that the proposed MMD model is the most efficient crack
detection method, which is thanks to the ELM’s fast training mechanism. In contrast, the SVM-based
one needs an iterative calculation to find the optimal binary decision function. Even though the
implementation of the SVM-based method utilizes the fast C-mex function, it is still less efficient in
handling the large amount of image region data. Among these methods, the DL-based one is the only
crack detector that requires a multi-layer feature pre-training task, thereby making the total training
process very slow. To improve the calculation speed, graphics processing unit (GPU) acceleration must
be introduced, but this is still the least efficient training model.

5. Conclusions

In this paper, a novel concrete crack detection method based on a multi-view and multi-task
learning model has been presented. First, multiple visual feature extraction has been developed to
compute the texture and edge features of the image region. We have shown that these complementary
features can enrich the image region’s representation, thereby facilitating the crack detection
performance. Second, we present a new multi-task learning classification framework, which not
only emphasizes the discrimination between cracks and non-cracks, but also fully considers restraining
the variability for different crack regions. Moreover, the efficient ELM technique is utilized to establish
this multi-task classification model, thereby contributing to the training efficiency and robustness of
the proposed crack detector. Finally, we have designed the online sequential updating of the crack
detector, which could be more suited to changeable environments. Finally, numerous experiments
were conducted to compare the proposed crack detection method with other detection methods. Both
quantitative and qualitative evaluations further demonstrated the effectiveness and robustness of the
proposed method.
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