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Abstract: As the demand for food grows continuously, intelligent agriculture has drawn much
attention due to its capability of producing great quantities of food efficiently. The main purpose
of intelligent agriculture is to plan agricultural missions properly and use limited resources
reasonably with minor human intervention. This paper proposes a Precision Farming System
(PFS) as a Multi-Agent System (MAS). Components of PFS are treated as agents with different
functionalities. These agents could form several coalitions to complete the complex agricultural
missions cooperatively. In PFS, mission planning should consider several criteria, like expected
benefit, energy consumption or equipment loss. Hence, mission planning could be treated as
a Multi-objective Optimization Problem (MOP). In order to solve MOP, an improved algorithm,
MP-PSOGA, is proposed, taking advantages of the Genetic Algorithms and Particle Swarm
Optimization. A simulation, called precise pesticide spraying mission, is performed to verify the
feasibility of the proposed approach. Simulation results illustrate that the proposed approach works
properly. This approach enables the PFS to plan missions and allocate scarce resources efficiently.
The theoretical analysis and simulation is a good foundation for the future study. Once the proposed
approach is applied to a real scenario, it is expected to bring significant economic improvement.

Keywords: precision farming system; multi-agent system; agent coalition; multi-objective
optimization; mission planning approach

1. Introduction

World population as of 2018 has become more than 7 billion and is estimated to reach 11.2 billion
by 2100. Such a high population requires large quantities of food for survival. However, conventional
agriculture is unlikely to fulfill the demand for food in the future [1], because it will requires massive
human labor and more time to produce the necessary amount of food. Furthermore, conventional
agriculture wastes too much resources, such as water and pesticides, due to their imprecise use.
Under this circumstance, intelligent agriculture is put forward to improve the traditional one [2–4].
The concept “precision farming” as a branch of intelligent agriculture has drawn much attention
recently. A Precision Farming System (PFS), on the basis of “4S” (RS, GIS, DSS and GPS), has the
capability of regularly performing a set of agricultural operations in a specific area at a specific time [5].
Generally, the precision farming system obtains the environmental data through Remote Sensing
(RS) [6,7] to monitor the nutritional status of crops and moisture of soil. Then, the PFS analyses the
obtained information by the Geographic Information System (GIS) [8]. Afterwards, the PFS relies
on the Decision Support System (DSS) to make a detailed operation plan to distribute agricultural
missions [9–11]. Lastly, the PFS uses the Global Positioning System (GPS) to guide the agricultural
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machinery to perform precise operations [12,13]. With the help of PFS, large quantities of food may be
produced in a shorter period. Also, limited resources can be allocated in a more reasonable way [14].

Research activities on intelligent agriculture have been continuously conducted in these two
last decades. Modern science has been introduced to improve the agricultural approaches [15–19].
Researchers especially focus on the domains of monitoring, control, logistics and prediction.
Monitoring objectives include air condition [20], soil [21], water [22], plant [23] and livestock [24].
Control objectives include fertilizer and pesticide [25], illumination [26] and access [27]. Meanwhile,
the agricultural logistics is improved by introducing technologies, like Wireless Sensor Networks
(WSN) and Radio Frequency Identification (RFID) [28]. Forecasting of agricultural products and
farming lands are also taken into account [29].

In PFS, the decision support system plays a significant role, because it is responsible for the
mission planning process. Mission planning is an organization process of defining the operation
strategy and making decisions on placing a certain amount of resources to complete agricultural
missions. It may also refer to a control mechanism for guiding the implementation orders [30]. When
multiple machineries or robots work cooperatively in order to complete a complex mission, the mission
planning problem must always be considered. Since a mission is usually too difficult for a single
machine to complete it, then the mission has to be divided and assigned to certain pieces of equipment.
Consequently, a feasible mission plan must be generated. Branko et al. [31] came up with the idea to
generate mission plans for underwater robotics by using a genetic planner. Their research is done in
correlation with the Smart and Networking Underwater Robots in Cooperation Meshes (SWARMs)
project and focuses on the underwater mission planning for different robots, like Unmanned Aerial
Vehicles (UAVs) and Remotely Operated Vehicles (ROVs). As stated in their paper, though the genetic
planner is designed for underwater missions, the planning approach is universal and not domain
dependent. Inspired and learned from the contributions of SWARMs project, the mission planning
approach for underwater environment could also be applicable to intelligent agriculture. Since various
agricultural machineries are deployed in the farming fields, how to coordinate them and generate
feasible plans for agricultural missions urgently needs to be solved. For agricultural applications,
UAVs are usually involved in monitoring purposes, or refitted as flying pesticide sprayers. In this
paper, we have studied how to coordinate multiple UAVs to complete agricultural missions. For an
agricultural mission, there are several feasible planning strategies. However, each strategy may
achieve different economy benefits and consume different resources. Ma [32] studied the dynamic
task allocation and presented a simple example of mission planning, illustrating that expected benefit
and consumed resources may vary from different mission planning strategies. Generally, the mission
planning strategies for agricultural missions should consider two main objectives: expected benefit
and cost [33].

The sub-objectives of the expected benefit include:

• Efficiency: This sub-objective indicates that UAVs could complete the assigned mission within a
given time interval.

• Probability of handling with the mission: This sub-objective indicates that a UAV’s capability of
completing the assigned mission.

• Economy benefit: This sub-objective indicates the obtained benefit after completing the
assigned mission.

Meanwhile, the sub-objectives of cost include:

• Energy consumption: During the mission execution, UAVs have to consume fuel, battery or any
other energy resources to perform operations. This sub-objective indicates the consumption rate
for UAVs per hour.

• Equipment loss: During the mission execution, UAVs definitely cause equipment loss due to
mechanical wear; tire and engine wear of the vehicles must be especially taken into account. This
sub-objective indicates the loss rate per hour.
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• Malfunction risk: During the mission execution, UAVs may suffer from mechanical malfunction,
especially for the old UAVs. Meanwhile, UAVs may perform operations under bad environment.
For example, UAVs are more likely to crash during rainy days. Hence, this sub-objective indicates
the risk level for the UAVs

Therefore, the agricultural mission planning could be regarded as a Multi-objective Optimization
Problem (MOP), also known as multi-objective programming problem. The MOP is concerned
with mathematical computations and studies the approach to optimize multiple objective functions
simultaneously in a given time interval, in order to fulfill the requirement of several criteria. Usually,
the objective functions are in conflict with each other and have their influence on certain criteria. It is
impossible to find a solution to achieve the best performance of each objective function at the same
time. In the precision farming system, the optimal mission planning strategy should achieve the
balance of benefit and cost.

Research works on multi-objective optimization problem in intelligent agriculture are mainly
focused on constructing agricultural models and developing optimization algorithms [34,35]. Groot
et al. proposed the FarmDESIGN model, a bio-economical farm model to evaluate the productive,
economic and environmental farm performance. A large set of Pareto optimal alternative farm
configurations are generated by running a multi-objective optimization algorithm [36]. Cardoso
et al. proposed a multi-objective numerical solution in biological pest control for soybean crops.
Their proposal took into consideration the cost of application of the control action and the cost of
economic damage. To solve the multi-objective optimization problem, an evolutionary algorithm,
called NSGA-II, was introduced [37]. Galan-Martin et al. presented a novel systematic method for
agriculture planning to allocate rain fed and irrigated cropping areas. This method is able to enhance
food availability and reduce the environmental impact of agricultural. The allocation problem is
regarded as a multi-objective optimization problem. The Pareto optimal solution set is generated by
running optimization algorithm [38].

In this paper, a precision farming system is proposed and treated as a Multi-Agent System (MAS)
with an improved federal architecture. Within the PFS, multiple UAVs are treated as autonomous
agents and supposed to complete the agricultural missions cooperatively. Meanwhile, the mission
planning problem in the PFS is considered as a multi-objective optimization problem. Agent candidates
who fulfill the mission requirement will then negotiate with the control terminal through a mission
auction. The biddings from agent candidates are calculated by an improved optimization algorithm,
MP-PSOGA. This improved algorithm takes advantages of the Particle Swarm Optimization and
Genetic Algorithms. The output of MP-PSOGA is the Pareto optimal solution set, representing the
optimal mission planning strategies for the established agricultural missions.

To implement the precision farming system and mission planning approach, the main objectives
of this work are listed as follows:

• Agent definition: Treat UAVs as autonomous agents. Build corresponding agent models
and define relevant parameters. The proposed models are implemented in the Python
programming language.

• Precision farming system architecture proposal: Build the precision farming system as a multi-agent
system. The PFS should have an improved federal architecture, taking advantages of
absolute-centralized architecture and standard federal architecture.

• Multi-objective optimization mapping: Treat mission planning problem as a multi-objective
optimization problem. The relevant optimization objectives should be defined in mathematical
equations, considering both the benefit and cost.

• MP-PSOGA implementation: Combine the Particle Swarm Optimization and Genetic Algorithms.
The main body of MP-PSOGA is based on Particle Swarm Optimization, embedded with crossover
and mutation operators from the Genetic Algorithms.
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• Negotiation mechanism design: After a mission is established, all the agent candidates are competing
for taking over the mission through an auction. Each agent candidate places the bid on its
most-wanted task, and then, the auction holder will calculate the comprehensive benefit by
running MP-PSOGA. After the calculation, the mission will be assigned to the most appropriate
agents and these agents will form an agent coalition to carry on the mission cooperatively. Thus,
the mission planning strategies for agricultural missions are generated.

• Simulation validation: The proposed precision farming system and mission planning approach are
validated through simulations. A mission called precise pesticide spraying is established and
executed by several Unmanned Aerial Vehicles cooperatively.

The paper is organized as follows: in the next section, the architecture of precision farming
system is presented, along with definition of agent (UAV) models. In Section 3, we describe the
detailed mission planning approach, including the optimization objectives, proposed MP-PSOGA and
negotiation mechanism. In Section 4, the simulation and result is explained. The result is analyzed in
order to illustrate that the mission planning strategy, generated by proposed approach, could achieve
the optimal performance than other alternative strategies. Lastly, we conclude all the contributions
and discuss the future work in Section 5.

2. Precision Farming System Architecture

Generally, a precision farming system consists of four main modules; including Remote Sensing
(RS), Geographic Information System (GIS), Decision Support System (DSS) and Global Positioning
System (GPS). RS is used to collect environmental data for the purpose of monitoring the nutritional
status of crops and soil [39]. GIS is used to analyze the collected information, including filtering
the useful information from all the data set [40]. DSS is a module that supports organizational
decision-making activities for agricultural missions. It is used to make a detailed operation
plan for agricultural machineries [41]. GPS is usually employed for guidance of the agricultural
machineries [42]. The main concern of our work focuses on the decision support system, which
involves the mission planning process.

The PFS is required to solve complex agricultural missions. Usually, a complex mission is too
difficult for a single UAV to complete. For example, a mission called precise pesticide spraying has
been established (as shown in Figure 1). The target fields are marked in red and need certain quantities
of specific pesticide. It is assumed that only one UAV, equipped with a pesticide sprayer and a pesticide
tank, is carrying on such mission. However, the UAV has to fly over the target field to spray the
pesticide and fly back to the station for reloading more pesticide, because of the limitation imposed
by the maximum capacity. Obviously, a single UAV can hardly complete the mission. Meanwhile,
the UAV will consume energy at a fast pace, cause high equipment loss and take high flying risk.
Consequently, this is definitely not the ideal plan for the precise pesticide spraying mission.

However, if there are several UAVs carrying out complex agricultural missions cooperatively, the
efficiency could be greatly increased and the cost could be decreased at the same time [43]. All the UAVs
in precision farming system are regarded as agents. The agents have characteristics like autonomy,
reactivity, pro-activeness and social ability. Autonomy implies that an agent can take actions without
external interferences and it has the ability to control its behavior and internal status. Reactivity means
that an agent can give certain feedbacks after perceiving the environment. Pro-activity represents that
an agent would not only respond to the external environment, but also take direct actions according to
its objectives. Social ability describes how an agent can communicate with each other or with human
beings. Thus, the agents could construct a multi-agent system and work cooperatively. Complex
agricultural missions could be divided into several simple tasks. These tasks will then be assigned to
the most appropriate UAVs. Each UAV will fly over to the assigned target fields and spray the pesticide.
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Regarding the definition, multi-agent system is a computerized system, consisting of multiple
autonomous or semi-autonomous intelligent agents within a certain environment. Through the
communication and interaction of these intelligent agents, the multi-agent system [44] has the capability
of solving complex problems that a single agent cannot solve, such as mission planning problem in
precision farming system. What is more, a multi-agent system has the following characteristics [45].

• Collaboration: The agents in multi-agent system are supposed to work with each other
cooperatively and solve complex problems that an individual agent cannot handle.

• Parallelism: The agents in multi-agent system are able to work in parallel, which increases the
efficiency of solving the problems.

• Robustness: The multi-agent system does not rely on a single agent and will not be paralyzed
because of one failure from an individual agent.

• Extension: Extra agents could be added into the multi-agent system and useless agents could
be removed from the network. These characteristics increase the reusability and scalability of
the system.

• Distribution: The data and resources of the multi-agent system are separately stored in each agent.
Meanwhile, each agent could be deployed in different physical locations. Agents may share
data and resources via specified communication approach, like Agent Communication Language
(ACL). The most popular ACLs are Knowledge Query Manipulation Language (KQML) and FIPA
Agent Communication Language (FIPA-ACL). Meanwhile, some researchers have made great
contributions to develop agent-based simulator for testing communication protocols in precision
farming systems [46].

Due to their characteristics and merits, multi-agent systems have been applied to many areas,
such as industry, military, finance, agriculture, etc. In our proposal, the multi-agent system is applied
to intelligent agriculture.

2.1. An Improved Federal Architecture

The core of a multi-agent system is to merge all the agents’ capabilities. When several agents act
as a complete system, the performance of this system is far beyond that of these agents. The framework
of a multi-agent system represents the relationship of the agents. Meanwhile, the framework also
indicates the distribution solution, information storage or sharing method. A standard framework for
multi-agent systems is shown in Figure 2. In this framework, each agent has its own affecting area that
may be overlapped. The overlapped areas reflect the relation of agents’ activities, so it is necessary to
establish a certain architecture for the purpose of coordinating these agents [47].
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Several standard architectures are widely used in the multi-agent system, including the
absolute-centralized, absolute-distributed and federal architectures. Additionally, the federal
architecture is also known as region architecture. In this paper, we propose an improved federal
architecture, taking advantages of absolute-centralized and federal architectures. The mentioned two
standard architectures are shown in Figure 3.
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In an absolute-centralized architecture, there is only one master agent, with absolute authority,
managing the belonging slave agents. The master agent is responsible to data transmission,
communication channel, decision-making, etc. The slave agents are supposed to follow the commands
and perform required operations. This architecture could decrease the complexity of the system and
reduce communication cost. However, its main drawback is that the master agent must have a strong
capability, because it is impossible for the master agent to maintain the whole system when there are
too many slave agents or the activities of slave agents are too complex. Hence, the absolute-centralized
architecture is not applicable to a dynamic and large-scale system, such as precision farming system.

In a federal architecture, the multi-agent system is composed of several federations (regions). Each
federation is composed of one facilitator and several normal agents. The facilitators are responsible to
communications between each federation. The normal agents are responsible to follow the commands
and perform required operations. The merits of such architecture is high flexibility and easy scalability.
However, federal architecture lacks of a decision-making terminal.

Hence, in our proposal, we took the advantages of absolute-centralized and federal architectures
and merged these two architectures into an improved federal architecture, shown in Figure 4.

Sensors 2018, 18, x FOR PEER REVIEW  7 of 31 

In an absolute-centralized architecture, there is only one master agent, with absolute authority, 

managing the belonging slave agents. The master agent is responsible to data transmission, 

communication channel, decision-making, etc. The slave agents are supposed to follow the 

commands and perform required operations. This architecture could decrease the complexity of the 

system and reduce communication cost. However, its main drawback is that the master agent must 

have a strong capability, because it is impossible for the master agent to maintain the whole system 

when there are too many slave agents or the activities of slave agents are too complex. Hence, the 

absolute-centralized architecture is not applicable to a dynamic and large-scale system, such as 

precision farming system. 

In a federal architecture, the multi-agent system is composed of several federations (regions). 

Each federation is composed of one facilitator and several normal agents. The facilitators are 

responsible to communications between each federation. The normal agents are responsible to follow 

the commands and perform required operations. The merits of such architecture is high flexibility 

and easy scalability. However, federal architecture lacks of a decision-making terminal. 

Hence, in our proposal, we took the advantages of absolute-centralized and federal architectures 

and merged these two architectures into an improved federal architecture, shown in Figure 4. 

 

Figure 4. An improved architecture for precision farming system. 

The improved federal architecture has a three-level hierarchy, including one captain-agent, 

several sub-captain agents and normal agents. The captain agent has the highest priority. Its 

responsibility is to establish agricultural missions and manage belonging federations. The sub-

captain agents, as facilitators in the federations, are responsible to manage communication and 

transmit assigned tasks to normal agents. The normal agents only have to follow the commands to 

perform required operations and report real-time status to the sub-captain agent. Additionally, 

normal agents in different federations cannot communicate with each other directly, the 

communication has to go through the sub-captain agents. With the improved federal architecture, 

the precision farming system has the merits of high flexibility, high intelligence, easy scalability and 

low communication cost. The detail of these three agents will be explained in the next sub-section. 

2.2. Agents in Precision Farming System 

As is mentioned in Section 2.1, three kinds of agents are introduced to the precision farming 

system. Generally, the captain agent is the control center or control terminal, managed by famers or 

agricultural experts. The sub-captain agent is a movable or fixed communication base. The normal 

agent is common agricultural machinery, such as a harvester, a UAV, unmanned ground vehicle, and 

etc. In our case, the normal agents are UAVs. The hierarchy of all three agents is shown in Figure 5.  

Figure 4. An improved architecture for precision farming system.

The improved federal architecture has a three-level hierarchy, including one captain-agent, several
sub-captain agents and normal agents. The captain agent has the highest priority. Its responsibility
is to establish agricultural missions and manage belonging federations. The sub-captain agents,
as facilitators in the federations, are responsible to manage communication and transmit assigned
tasks to normal agents. The normal agents only have to follow the commands to perform required
operations and report real-time status to the sub-captain agent. Additionally, normal agents in different
federations cannot communicate with each other directly, the communication has to go through the
sub-captain agents. With the improved federal architecture, the precision farming system has the
merits of high flexibility, high intelligence, easy scalability and low communication cost. The detail of
these three agents will be explained in the next sub-section.

2.2. Agents in Precision Farming System

As is mentioned in Section 2.1, three kinds of agents are introduced to the precision farming
system. Generally, the captain agent is the control center or control terminal, managed by famers or
agricultural experts. The sub-captain agent is a movable or fixed communication base. The normal
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agent is common agricultural machinery, such as a harvester, a UAV, unmanned ground vehicle, and
etc. In our case, the normal agents are UAVs. The hierarchy of all three agents is shown in Figure 5.Sensors 2018, 18, x FOR PEER REVIEW  8 of 31 
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2.3. Model Definition

To implement the precision farming system, we defined two basic models, including a general
target model and a UAV model. The general target model refers to a target farming field, and the UAV
model refers to an agricultural machinery responsible for executing assigned tasks. This sub-section
explains the detail of these two models.

• General target model

The target in precision farming system may refer to a specific farming area or livestock. For now,
we only concerns the static targets, farming areas, in our case. The target model is implemented in
Python code and its attributes are stored in an array, called “Target_msg”. Since we are not focusing
on planning the flying route of UAV in the target area, the target area is simply presented as a point by
coordinate (x, y). The detail of the array is listed in Table 1.

Table 1. Attributes of target model.

Position in the Array Content

[0:1] Target_position
[2] Required_resource
[3] Required_priority
[4] Target_condition

In the above table, the attribute of “Target_position” represents the location of the target,
“Required _resource” represent the demand for certain quantities of resources and “Required_priority”
represents the implementation order of the target. The target with higher priority will be handled in
the first place. Additionally, the target model has an attribute called “Target_condition”, representing
that whether the target is handled completely or not.

• UAV model

UAV is regarded as normal agents in the precision farming system. The UAV model is
implemented in Python code as well and the attributes are stored in an array, called “UAV_msg”. The
detail of the array is listed in Table 2.
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Table 2. Attributes of UAV model.

Position in the Array Content

[0:1] UAV_position
[2] Phi
[3] Velocity
[4] R_min
[5] Detect_scope
[6] Loaded_resource
[7] Remaining_energy
[8] Energy_consumption_rate
[9] Equipment_Status
[10] Equipment_loss_rate

In the above table, the attribute of “UAV_position” represents the current position of UAV,
“Phi” represents the current heading angle, “Velocity” represents the flying speed of UAV, “R_min”
represents the minimum turning radius of UAV, “Detect_scope” represents the range that a UAV could
detect, “Loaded_resource” represents the loading capacity, “Remaining_energy” represents the excess
of energy, “Energy_consumption_rate” represents the consumption rate per hour, “Equipment status”
represents the status of equipment and “Equipment_loss_rate” represents wear rate per hour [48].
Additionally, it is worthy considering that UAVs may fly out of the range of the farming land. If this
happens, the UAVs have to handle the border problem and fly back to the farming land. Hence, the
status of a UAV is shown in Figure 6.
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In Figure 6, the first status is called “Not being activated”, representing that the UAV does not
receive any commands and is not being used right now. The second status is called “Executing the
mission”, representing that the UAV is being activated and receives a command. The third status is
called “Handling the border”, representing that the UAV may fly out of the range very soon. The UAV
has to adjust its flying route by calculating the turning radius. After handling the border problem, the
UAV will turn its status back to the previous one. For further implementation, more attributes could
be introduced into the general target and the UAV model. For now, we have just proposed the simple
models for the purpose of implementing the precision farming system.

3. Multi-Objective Optimization Problem in Precision Farming System

A Multi-objective Optimization Problem (MOP), also known as multi-objective programming
problem, is concerned with mathematical computations. MOP studies the approaches of optimizing
multiple objective functions simultaneously in a given time interval, in order to fulfill the requirement
of several criteria [49,50]. It is important to mention that these multiple objectives of MOP have certain
constraints and are always conflict with each other.

The multi-agent system has been studied by lots of researchers, so various approaches have been
developed in order to solve the MOP. Generally, there are two types of approaches. The first one
is based on linear objectives optimization. This approach turns the multiple objectives into a single
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objective by the linear weighted sum equation. However, this approach could not achieve a precise
result when the system is dynamic and in large scale. Furthermore, this approach only figures out a
single result, which is a valid solution among the non-inferior set. The second approach is to compute
the solutions in parallel based on the computation intelligence. In computation intelligence, the most
popular algorithms are Genetic Algorithms (GAs) and Particle Swarm Optimization (PSO). These two
algorithms are studied in this paper and combined into an improved algorithm, MP-PSOGA.

3.1. Problem Statement

The mission planning problem in SWARMs project [31] is treated as a multi-objective optimization
problem and it considers two optimization objectives, including completion time of the mission and
energy consumption of robots. However, it is not thoughtful enough to only consider these two
objectives. Extra optimization objectives should be added in order to generate the optimal mission plan.

Mission planning in precision farming system is a multi-objective optimization problem too.
The completion of the agricultural mission is evaluated by several criteria, including the completion
time, achieved benefit, energy consumption and equipment loss. However, these criteria are expected to
be always contradicting in their objectives. For example, if a farmer wants to complete the agricultural
mission in a short time, though the completion time is decreased, the energy consumption and
equipment loss of agricultural machineries may be increased. Or the farmer wants to complete the
mission with low energy consumption, the completion time has to be increased. Hence, the evaluation
criteria in precision farming system are treated as optimization objectives.

3.2. Optimization Objectives

In the precision farming system, the completion time and expected benefit are treated as the
beneficial objective. The equipment loss and energy consumption are treated as the cost objective.
In order to define these two objective functions, a target allocation matrix is given in advance.
Assuming that the number of UAVs is N = {V1, V2, V3, . . . , VN}, and the number of targets is
M = {T1, T2, T3, . . . , TM}. The target allocation matrix, XN∗M, is defined as follows:

xij =

{
1, Tj is assigned to Vi
0, Tj is assigned to Vi

(1)

In the above equation, i = 1, 2, 3, . . . , N and j = 1, 2, 3, . . . , M. The target allocation matrix
represents whether a UAV is assigned with a target or not.

During the mission planning process, multiple targets may be assigned to a single UAV, and a
single target may be assigned to multiple UAVs as well. For the purpose of balancing the payload, two
constraints should be established as follows:{

∑N
i=1 xij ≤ Nmax

∑M
j=1 xij ≤ Mmax

(2)

In the above equation, the parameter of Nmax represents the maximum number of the UAVs in a
single target, and Mmax represents the maximum number of the target that is assigned to a single UAV.
Meanwhile, for the stability of the precision farming system, the threshold should be established as
follows:  ∑N

i=1

∣∣∣ 1
N ∑N

i=1 ∑M
j=1 Xij −∑M

j=1 Xij

∣∣∣ ≤ α

∑M
j=1

∣∣∣ 1
M ∑N

i=1 ∑M
j=1 Xij −∑N

i=1 Xij

∣∣∣ ≤ β
(3)

In the above equation, the parameters of α and β represent the thresholds of the precision farming
system. The thresholds could be set by the agricultural expert or the user.
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3.2.1. Beneficial Objective

Before deciding to accept or refuse the assigned mission, the UAVs have to calculate the economic
benefit. If the calculation result is greater than the expected benefit, the UAV shall consider to join the
corresponding coalition to carry on the mission. Otherwise, the UAV may refuse to join the coalition.
Hence, the beneficial objective function is defined like this:

B(X) =
M

∑
j=1

πj ∗ Pj (4)

In the above equation, the parameter of πj is the probability function of handling with the target,
Tj, and Pj is the target priority. The probability function of handling the target, πj, is defined as:

πj = 1−
M

∏
i=1

(
1− xij ∗ Pobij

)
(5)

In the above equation, the parameter of Pobij is the efficiency function, representing the efficiency
of UAV to handle the target.

In the beneficial objective function, the target priority, Pj, is considered. This parameter represents
the implementation order by the UAVs. The target with a higher priority will be implemented first.

3.2.2. Cost Objective

When the UAVs are performing required operations, they have to consume a certain amount of
energy, such as fuel or electricity from a battery. Meanwhile, the UAV has certain mechanical loss due to
the equipment wear. Furthermore, the value of UAV itself should be taken into consideration, because
it is not absolutely safe during the mission execution. There is a probability that the agricultural
equipment becomes damaged (for example, if a UAV is hit accidently by a bird and then crashed).

The value of UAV is decided by the value of its equipment, like sensors, cameras, actuators and
etc. Hence, the cost objective function is defined as follows:

C(X) =
M

∑
i=1

γi + ρi ∗Vi (6)

In the above equation, γi is the cost probability function of UAV, ρi is the damage probability
function and Vi is the value of UAV itself. The cost probability function is defined as follows:

γi =
M

∑
j=1

Li
(
Tj
)
∗ xij (7)

In the above equation, Li
(
Tj
)

is the cost function. It considers the energy consumption and
equipment loss during the mission execution. The retail of this function is described as follows:

Li
(
Tj
)
= f(CostengCons

ij , CostequLoss
ij ) (8)

In the cost function, the parameter of CostengCons
ij represents the energy consumption of the

UAV and CostequLoss
ij represents the equipment loss. In addition, the cost function could be modified

according to extra criteria.

3.3. Proposed MP-PSOGA

As mentioned at the beginning of Section 3, Particle Swarm Optimization and Genetic Algorithms
are used to solve the multi-objective optimization problem. However, these two common algorithms
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have their own advantages and disadvantages. In precision farming system, the optimization objectives
have been defined. The next step is to develop an improved algorithm to solve the mission planning
problem. In this paper, we combined the Particle Swarm Optimization and Genetic Algorithms
into MP-PSOGA.

3.3.1. Feasibility of Combining Particle Swarm Optimization and Genetic Algorithms

The Genetic Algorithms are based on biological natural selection and random searching of genetic
mechanism. Differing from the traditional searching algorithms, the Genetic Algorithms start the
searching process from a randomly-generated initial set, called population. In the population, each
individual is one solution, called chromosome. A chromosome is a chain of characters, such as
binary string. The process, which describes the evolutionary of the chromosomes, is called heredity.
During each iteration. The fitness function is calculated to evaluate the performance of the current
chromosomes. For the next iteration, a new generation of the chromosomes is born, called offspring.
The new chromosomes are generated by the process of crossover and mutation from the previous
chromosomes. In the new population, the chromosomes are selected according to the fitness function,
which means that some bad chromosomes will be eliminated. The chromosomes with higher fitness
value have a greater chance of the selection. The number of the population remains at a constant
number after the process of the crossover or the mutation. Lastly, the population will converge on
the optimal chromosomes after several iterations. This population is called the Pareto optimal or
the Pareto sub-optimal. The flow chart of Genetic Algorithms are shown in Figure 7a. The Genetic
Algorithms are used in the SWARMs project and it is able to generate mission plans successfully.
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The Particle Swarm Optimization is inspired by the behavior of foraging. The swarm consists of
plenty of particles. The PSO relies on the communication of these particles in order to revolutionize
together. These particles have the capability of recording their own best known positions, and
comparing the local best positions with the global best position. After finding a better position, a
particle would adjust its route and gather towards to the global best position. In multi-objective
optimization problem, a global best position represents the optimal value of the fitness function, and
this optimal value is the Pareto optimal solution. The flow chart of Particle Swarm Optimization is
shown in Figure 7b.

Before combining the Particle Swarm Optimization and Genetic Algorithms, it is essential
to analyze these two algorithms [51–54]. These two algorithms have their own advantages and
disadvantages. The advantages of Genetic Algorithms could be summarized as the following:
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1) The Genetic Algorithms do not require a precise mathematical model, because GAs do not need
to know the detail of the optimization problem. The characteristics of evolution allow GAs to
deal with the objective functions and constraints in any format.

2) The traditional optimization method always compares two neighbor values in order to achieve
the solution convergence. However, the genetic operators of GAs search in all the dimensions for
the global optimal solution.

3) Within the Genetic Algorithms, several generations could be constructed at the same time, which
means that the computation process could be distributed and ran in parallel. Furthermore, since
several generations could be constructed, it is possible to extend GAs and combine it with other
optimization algorithms for the purpose of improving the performance.

The disadvantages of Genetic Algorithms are:

1) The encoding process of Genetic Algorithms are complex. Meanwhile, the result has to be
decoded for readability after the computation.

2) The crossover and mutation probabilities have great influence on the performance of Genetic
Algorithms. Generally, these probabilities are set according to the experts’ experience.
However, this could lead to longer computation time for finding the Pareto optimal in specific
application background.

3) The performance of Genetic Algorithms relies on the initial population. If the population is
generated in bad quality, it may lead to longer time for crossover and mutation process to
generate qualified chromosomes.

The advantages of Particle Swarm Optimization could be summarized as:

1) The performance of Particle Swarm Optimization does not rely on the initial population. No
matter how many particles in the initial swarm, the performance of PSO remains steady.

2) The particles have a memory storage where stores historical local best position. Furthermore,
the particles could learn from the experience and adjust the searching strategy for a quicker
convergence to the Pareto optimal.

3) The encoding process for Particle Swarm Optimization is much easier than that of Genetic
Algorithms. The particles in the swarm only need to control their velocity and flying direction
during the searching process. This method is based on the velocity-movement model.

The disadvantages of Particle Swarm Optimization could be summarized as follows:

1) The search process may be easily trapped at a local best position and stop searching the global best
position. This is due to inappropriate settings of parameters in the velocity updating equation.

2) The convergence speed is slow in the later stage and quality of the convergence lacks of precision.
3) The Particle Swarm Optimization requires a precise mathematical model, which means that PSO

needs to understand the detail of the optimization problem. Each parameter should be exactly
corresponding to the objectives of the problem.

After analyzing the advantages and disadvantages of PSO and GAs, the common grounds and
differences of both algorithms are concluded. In both algorithms, the initial population is generated
randomly. Then, the candidate solutions are evaluated by the fitness function. Meanwhile, the
termination condition is almost the same. Regarding the differences of these two algorithms, comparing
with GAs, PSO has a different method of sharing information. In PSO, all the particles are gathering
towards to the global best position. The local best positions are only stored by the particle itself and will
not be shared with other particles. However, in GAs, the chromosomes are willing to share information
with each other, not only the useful fragments, but also the useless fragments.

In this paper, we proposed an improved optimization algorithm, MP-PSOGA, by combining PSO
and GAs. The MP-PSOGA takes advantages of both algorithms and requires a shorter computation
time for convergence. The detail of MP-PSOGA is explained in the following section.
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3.3.2. Dynamic Parameters in MP-PSOGA

In order to combine Particle Swarm Optimization and Genetic Algorithms, several parameters
should be defined in advance, including weight and learning factors in velocity updating equation,
crossover and mutation probabilities in genetic operators. Differing from the previous work [55], some
researchers treat the parameters of decision-making process as fixed values or pre-set intervals, in our
work, we treat the parameters with dynamic updating mechanism. With the help of such dynamic
updating mechanism, the MP-PSOGA could achieve better performance.

Firstly, the parameter of weight in velocity updating equation has great influence on the searching
capability of the particles and the convergence speed. A higher weight has the advantage of increasing
the capability of searching the global best position. However, it may decrease the capability of searching
the local best position. A lower weight has the merit of finding a precise optimal position, but it may
cost longer computation time and decrease the convergence speed. Hence, it is necessary to use a
dynamic weight in order to achieve a balance between the searching capability and the convergence
speed. The dynamic weight updating equation is defined as follows:

W =

{
Wmin − (Wmax−Wmin)∗( f− fmin)

favg− fmin

Wmax, f > favg
, f ≤ favg (9)

In Equation (9), Wmax is the maximum value of the weight and Wmin is the minimum value of the
weight. Normally, Wmax is set at 0.9 and Wmin is set at 0.4. The parameter of f represents the current
fitness value. The parameters of favg and fmin represent the current average fitness value and the
minimum fitness value respectively.

Secondly, the learning factors, C1 and C2, have influence on the movement trajectory of the
particles. If C1 and C2 choose the inappropriate values, the particles may wander in a local area and
converge to a small value. Therefore, choosing appropriate values for the learning factors helps PSO to
achieve a better convergence precision and increase the searching capability. The proposed dynamic
learning factor updating equation is defined as follows:{

C1 = C1,s +
C1,e−C1,s

tmax
∗ t

C2 = C2,s +
C2,e−C2,s

tmax
∗ t

(10)

In Equation (10), the parameters of C1, s and C2,s represent the initial value of the learning factors.
The parameters of C1,e and C2,e represent the value in current iteration. The parameter of t represents
the current iteration round and tmax represents the maximum iteration round. Normally, C1,s and C2,s
are set at 2.5, and C1,e and C2,e are set at 0.5.

Thirdly, the crossover and mutation are the key processes of generating new child solutions in
Genetic Algorithms. These two operators are introduced into Particle Swarm Optimization in order
to avoid early convergence and help the particles to jump out of the local best positions. However,
fixed crossover and mutation probabilities may not ensure finding the global optimal solution. Hence,
dynamic crossover and mutation probability updating equations are defined as follows:

Pc =

 Pc1 −
(Pc1−Pc2)∗( f ′− favg)

fmax− favg
, f ′ ≥ favg

Pc1 , f ′ < favg
(11)

Pm =

 Pm1 −
(Pc1−Pc2)∗( f ′− favg)

fmax− favg
, f ≥ favg

Pm1 , f < favg
(12)

In Equations (11) and (12), the parameters of Pc1 and Pm1 represent the maximum values of
crossover and mutation probabilities. The parameters of fmax and favg represent the maximum fitness
value and average fitness value respectively. The parameters of f ′ and f represent the fitness value of
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local best solution and current solution respectively. Normally, Pc1 is set at 0.9, Pc2 is set at 0.6, Pm1 is
set at 0.1 and Pm2 is set at 0.001.

3.3.3. Principle of MP-PSOGA

The main body of MP-PSOGA is based on Particle Swarm Optimization, embedded with crossover
and mutation operators from Genetic Algorithms. The flow chart of MP-PSOGA is shown in Figure 8.
As shown, MP-PSOGA firstly initializes the parameters, including weight, learning factors, crossover
and mutation probabilities. Secondly, the particles are initialized and encoded with a starting position,
velocity and heading direction. Thirdly, the fitness value of all the particles are calculated for evaluation.
The global best position and local best positions are chosen based on the evaluation. Fourthly,
each particle updates their position and parameters of MP-PSOGA is updated as well according
to Equations (9)–(12). Fifthly, several particles with bad fitness values are selected for crossover and
mutation processes. Newly-generated particles are re-evaluated. The particles keep updating their
positions as the iteration keeps going, until the termination condition is met. The termination condition
usually is to reach the maximum iteration number or the Pareto optimal is found.
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During the iteration, some particles, with bad fitness value, cannot find the global optimal. These
particles are marked in black circle in Figure 9 [56].

In Figure 9, these bad particles may take a long time to find the global optimal or even cannot
find the global optimal. In order to improve these particles, the crossover and mutation operators from
Genetic Algorithms are introduced.

Regarding the crossover operator, several pairs of bad particles are selected to exchange their
historical flying data. In order to explain the detail of crossover operator, an example is shown in
Figure 10.
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In Figure 10, “Particle_1” and “Particle_2” are selected, assuming that these two particles have
bad fitness value. The crossover operator indicates that these two particles should exchange the second
and third historical flying data. After the crossover process, two new particles, “Particle_1*” and
“Particle_2*”, are generated. Since these two particles already know that the exchanged positions
are not the global optimal ones, they will not waste time to flying to such positions. Instead, they
will search for other unknown positions instead. The crossover operator enables to increase the
convergence speed of MP-PSOGA.

Regarding the mutation operator, several particles, with bad fitness value, are selected and
removed from the swarm. In MP-PSOGA, the particles with last five worst fitness value are selected
and removed. However, the number of particles should remain unchanged in order to keep the
stability of the swarm. So, five newly-generated particles are added into the swarm, replacing the
removed bad particles. Additionally, the new particles are randomly generated with initialized
position, velocity and heading directions. The detail of mutation operator may refer to Section 4 of
Branko et al. paper [31]. Four kinds of mutations are introduced, including the swap mutation, replace
mutation, shrink mutation and growth mutation. The crossover and mutation process is performed
once in each iteration. These two operators enable the MP-PSOGA to increase the evolution speed and
avoid precocity.

3.4. Mission Planning Approach

The purpose of the proposed mission planning approach is to distribute the established mission
to the most appropriate agents. By this approach, the precision farming system could achieve the
maximum economic benefit with reasonable resources. The mission planning strategy is generated by
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MP-PSOGA. However, before a mission is distributed, several operations should be processed before
assigning this mission to UAVs, including mission decomposition, task priority sorting, negotiation
process and etc.

3.4.1. Mission Decomposition

An agricultural mission is usually too complex for the UAVs. At this time, this mission has to
be decompiled. The decomposition process aims to decomposing one mission to several minor tasks,
which could be operated in parallel. These tasks are not conflict with each other. There are two general
methods of decomposing the mission, centralized and distributed decomposition [57,58].

The centralized decomposition is usually implemented by pre-allocation or Trader allocation. The
approach of pre-allocation decomposes the mission according to fixed principles defined by the users.
The approach of Trader allocation decomposes the mission according to the capability list of the agents.
However, these two approaches are lack of flexibility and cannot adapt to the dynamic environment.
Hence, the centralized decomposition is not applicable to the precision farming system.

The distributed decomposition is usually implemented by contract net protocol (CNP) or
acquaintance coalition network (ACN). CNP decomposes the tasks through communication within the
multi-agent system. ACN decomposes the mission by searching capability matrix.

In precision farming system, it is assumed that a mission called pesticide spraying is established.
The mission requires six unmanned aerial vehicles to spray pesticide over four specific farming
fields. Each UAV is able to load certain quantities of pesticide and each farming field requires certain
quantities of pesticide. Hence, the mission is decomposed into four tasks, “Spraying pesticide over
field 1”, “Spraying pesticide over field 2” and so on. According to CAN, part of the capability matrix
is given in Figure 11.Sensors 2018, 18, x FOR PEER REVIEW  17 of 31 
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Figure 11. Part of the capability matrix of agent candidate.

As is shown in Figure 11, the acquaintance of UAV A is UAV B, C and D, the acquaintance of UAV
B is UAV A, C and E, the acquaintance of UAV D is UAV B, C and F, the acquaintance of UAV F is UAV
A, C and E. Meanwhile, the value of one represents that the corresponding UAV is able to carry on the
pesticide spraying task in field 1, the value of zero represents that the corresponding UAV is unable to
carry on such task. As is mentioned before, one task could be took over by several agents, and one
agent could take over several tasks. So, the result of mission decomposition and one possible mission
planning strategy is shown in Figure 12.
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The above figure illustrates that field 1 is took over by UAV B and D, field 2 is took over by
UAV C and D, field 3 is took over by UAV E, and field 4 is took over by UAV A and F. The mission
decomposition process is able to decrease the complexity of computing the Pareto optimal in the later
stage, because the MP-PSOGA only needs to compute the Pareto optimal for each task.

3.4.2. Task Priority Sorting

In most task priority sorting cases, several approaches are used, such as earliest deadline first
(EDF) and least slack first (LSF) [59,60]. Generally, the task priority is decided by several parameters,
including deadline, spare time, task importance and etc.

However, to keep it simple in the precision farming system, the task priority is sorted by the
number of the token that a task has. The task is defined through the general target model. In Section 2.3,
the general target model has the attribute, “Required_priority”. The target with more tokens has the
higher priority and will be handled first. Additionally, if one UAV chooses to carry on two or more
tasks, the UAV will handle the task with more tokens first.

3.4.3. Negotiation Process

The communications in multi-agent system enables the agents to negotiate with each other.
The capability of negotiation is one of the key characteristics of the intelligent agents. Nowadays,
several approaches are used in the negotiation process, such as auction mechanism, cooperative game
theory, non-cooperative game theory and etc. In our work, we used the auction mechanism in the
negotiation process.

The auction mechanism is widely used in multi-agent system for task assignment and resource
allocation. In precision farming system, the general procedure of the auction mechanism is stated
following several steps: the captain agent, as the auctioneer, announces that the task auction begins
and generates the auction order for the task according the task priority. The auction order of agents is
generated randomly. In the first round of auction, each qualified agent takes turns to place the bid
on the task with highest priority. In the second round, qualified agents take turns to place the bid
on the next task. After all the rounds are finished, the auctioneer will calculate the comprehensive
benefit and generate the most appropriate agent coalitions for tasks. If the termination condition is
not met, the auctioneer will hold the second auction and generate a new mission planning strategy.
The newly-generated strategy is compared with the strategy, which is generated in the last auction. If
the newly-generated strategy dominates the previous one, it will replace the previous strategy and be
applied to the precision farming system.

During the negotiation process, the bids from agents should follow the beneficial and cost objective
function, which are defined in Section 3.2. The pseudo code of the negotiation process is shown below:
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Algorithm: Negotiation process

Begin
target_List = targets_Msg(coordinates, needed_resource, priority, . . . );
agent_List = agent_Msg(coordinates, phi, v, . . . );
while (the Pareto optimal is not found or the deadline is not reached):

round = 0;
For i in range (0, N):

For j in range (0, M):
Agent[i] computes B(X)[j] and C(X)[j];
Agent[i] generates mwt_List[i], the most-wanted target list;

End for;
End for;
bidding_List = random_List();
For i in bidding_List:

Agent[i] places the bid;
Agent[i] broadcasts its selection;
if (k > i):

Agent[k] updates [B(X), C(X)] by new = (1 − Pij) * [B(X), C(X)];
End if;

End for;
For j in range target_List:;

auction_Host calculates [B(X), C(X)];
End for;

auctioneer accepts the bids and generates the solution;
End while;
End.

In each iteration, a feasible strategy is generated. The current-round strategy is compared with
the one from last-round. If the current strategy dominates the previous one, the precision farming
system will adapt the current strategy, otherwise, the strategy will remain as the previous one. In this
paper, the negotiation result is mainly decided by the auctioneer, not the agent candidates, because it
is difficult to distribute the calculations into multiple agents, considering the communication cost.

Additionally, if an agent has remaining resources after placing the bid on the first target, it could
place a new bid on the second target as well.

The final mission planning strategy represents the Pareto optimal one and will be adapted by
the precision farming system. The UAVs in PFS will then follow the generated strategy to form the
federations. Along with the control terminal (control unit), each component of the multi-agent system
is constructed.

3.4.4. Task Execution

After the processes of mission decomposition, task priority sorting and negotiation, the established
mission is decomposed to several tasks. These tasks are assigned to the most appropriate agents
according to the negotiation result. As one task is assigned to multiple agents, an agent coalition for
the task could be formed, aiming to enabling the agents to carry on the task cooperatively. As soon
as an agent receives the command to carry on the task, its status shall turn to type 2 “Executing the
mission”, according to Section 2.3. Meanwhile, the agent should plan the flying path to the target.
Figure 13 displays how the agent is adjusting its heading directions.
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In Figure 13, the agent calculates the minimum turning radius based on the current heading
direction and target position. The time for adjusting the heading direction is also considered, since the
arrival time to the target is one of the evaluation criteria. During the process of executing the task, if
the agent is about to fly beyond the border, it should turn its status to type 3 “Handling the border”.
Until the completion of handling the border, its status will turn back to type 2 “Executing the mission”
and continuing to carry on the task.

3.4.5. Mission Re-Planning

The precision farming system is considered as a dynamic system because of three main factors:
new missions are established, UAVs lose the capability of carrying on the current mission, and the
meteorological environment is changed.

• New missions are established.

The users of precision farming system have the permissions to establish new missions. For
example, the UAVs are carrying on a pesticide spraying mission. In this mission, there are four fields
needed to be sprayed. During the run time, the user adds two extra fields into the pesticide spraying
mission, so there are six fields needed to be sprayed now. Another option is that the user considers
that one of the fields does not need to be sprayed, so this field is removed from the task list; hence
there are only three fields to be sprayed now. Any one of these situations will change the mission
planning strategy and lead to a mission re-planning process.

• UAVs lose the capability of continuing the on-going mission.

Here, it is assumed that several UAVs are carrying on a monitoring mission in the farming land.
Suddenly, one of the machineries has a malfunction problem and is unable to carry on the mission
anymore. Under such circumstance, the monitoring mission is impossible to be performed according
to the original mission planning strategy, because losing one of the pieces of equipment may lead to an
incapacitating lack of resources. Hence, the mission planning strategy has to be re-generated.

• The meteorological environment is changed.

When the UAVs are carrying out a mission, the meteorological environment may change. The
meteorological environment has a great influence on the efficiency of machinery. Under a bad weather
situation, the completion time of the established mission may be delayed. Meanwhile, in order to
avoid the risk of working in bad meteorological environment, UAVs have to accelerate the pace in
order to complete the mission in a shorter time. Hence, several requirement of the mission is changed,
leading to a mission re-planning process.

In Figure 14, the flow chart of the precision farming system with the mission re-planning process
is shown. The precision farming system checks the dynamic changes during the run time. If the
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situation is changed and a mission re-planning process is required, the system will start a new auction
and generate an appropriate mission planning strategy to replace the old one. Once the system starts
the auction, the rest of procedures remains unchanged: agent candidates places the bids, the auctioneer
calculates the comprehensive benefit and generate the mission planning strategy, selected agents
execute the command to complete the mission and so on.
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4. Simulation and Results

In the simulation, a mission called “pesticide spraying” is established and carried on by six
unmanned aerial vehicles cooperatively. Each UAV is equipped with a pesticide tank and a spray
nozzle. The mission planning strategy is generated by running MP-PSOGA. The simulation result is
analyzed by comparing the Pareto optimal and alternative strategies.

4.1. Simulation Statement

The simulation is designed to carry on a pesticide spraying mission in the precision farming
system. The total coverage of the faming field is 2000 × 2000 m2, representing by the coordinate
(−1000, 1000) in x axis and (−1000, 1000) in y axis respectively. Four types of pesticide are considered
in this simulation: P1, P2, and P3. Three fields in the farming land are needed to be sprayed. Each field
requires certain quantities of different pesticide. The three fields are marked as target and have their
own positions, represented by coordinates (x, y). The detail of these three fields and required resources
are listed in Table 3.

Table 3. Detail of fields and required resources.

Field Number Pesticide Type Pesticide Quantity Time Requirement Position Priority

1
P1 3

Within 1 h (−350, −200) 3P2 5
P3 4

2
P1 3

Within 2 h (−600, 500) 2P2 1
P3 2

3
P1 0

Within 1.5 h (0, 100) 1P2 0
P3 1



Sensors 2018, 18, 1795 22 of 32

As it is shown in Table 3, three fields are specified and their positions are given. Pesticide types
and quantities for each field are specified as well. For example, the first field requires 3 units of
pesticide P1, 5 units of pesticide P2 and 4 units of pesticide P3. The spraying task for field 1 should be
complete within an hour. The position of the first field is (−350, −200). The number of tokens for the
first field is 3. So does the rest of the field.

In the simulation, six unmanned aerial vehicles are supposed to complete such pesticide spraying
mission cooperatively. Each UAV has an initial position, velocity, heading directions and so on.
Meanwhile, each UAV is able to load certain quantities of different pesticide. The loading detail of
these six UAVs is listed in Table 4.

Table 4. Loading detail of six UAVs.

UAV Number Pesticide Type Pesticide Quantity Position

1
P1 2

(−100, −190)P2 2
P3 3

2
P1 2

(150, −150)P2 0
P3 1

3
P1 1

(900, 700)P2 3
P3 2

4
P1 1

(−800, 800)P2 2
P3 1

5
P1 1

(−900, −600)P2 2
P3 0

6
P1 1

(30, 850)P2 1
P3 3

As depicted in Table 4, the first UAV loads two units of pesticide P1, two units of pesticide P2 and
three units of pesticide P3. The second UAV loads two units of pesticide P1 and one unit of pesticide P3.
So do the rest of the UAVs. The initial positions of these six UAVs are indicated in Table 4 as well. The
initial positions of targets and UAVs are shown in Figure 15. The targets are marked in blue triangles
and UAVs are marked in red circles.Sensors 2018, 18, x FOR PEER REVIEW  22 of 31 
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Obviously, an individual UAV is unable to spray the required quantity of pesticide over all three
fields. Hence, a mission planning strategy is generated for each field by running MP-PSOGA. The
selected agents will form the agent coalition in order to complete the task cooperatively.

4.2. Parameter Setting

After presenting the information of targets and UAVs, here comes the parameter setting for
MP-PSOGA. As is stated in Section 3.2.2, the involving parameters include weight (W), learning
factors (C1 and C2), crossover probability (Pc) and mutation probability (Pm). The initial setting for the
parameters is listed in Table 5.

Table 5. The initial setting for parameters of MP-PSOGA.

W C1 C2 Pc Pm

0.9 2.5 2.5 0.9 0.1

Apart from above mentioned parameters, the size of population is 40 and maximum iteration
number is 50. The iteration may stop when the Pareto optimal is found. Otherwise, the output should
be the generated strategy in the last iteration.

The simulation is performed on a Lenovo ThinkPad S2 laptop equipped with an Intel(R) Core(TM)
i5-6200U CPU @ 2.30GHz and 8 GB RAM, running the 64-bit Windows 10 operating system. The
Python programming language version used is “Python 3.6.3”.

4.3. Result

As it is mentioned in Section 3.4.1, each UAV has its own capability matrix. In this simulation, the
acquaintances of each UAV are the two closest-numbered UAVs. For example, the acquaintances of
UAV 1 are UAV 2 and 3, the acquaintances of UAV 2 are UAV 1 and 3, and the acquaintances of UAV 3
are UAV 2 and 4. It happens the same with all the other UAVs. Based on needed resources of each
target fields, the initialized capability matrixes of all the UAVs are shown in Figure 16.Sensors 2018, 18, x FOR PEER REVIEW  23 of 31 
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Figure 16. Initialized capability matrixes of all six UAVs.

In Figure 16, value 0 represents that the corresponding UAV is not taking over the target and
value 1 represents that the corresponding UAV is taking over the target. Each row of the matrix
indicates the capability of one UAV, along with the capability of its acquaintances. Each column of the
matrix indicates the task candidates. In Figure 17, this is the capability matrix of UAV 3, along with its
acquaintances, UAV 2 and 4. All three of these UAVs are capable of taking over target 3.
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Figure 17. Explanation of capability matrix.

The format of such capability matrix is explained as follows:
As mentioned in Section 3.4.3, after placing the bids to the tasks, the auction host will calculate

the comprehensive benefit and decide the task candidates. Meanwhile, the capability matrixes of each
UAV will change correspondingly. When the auction for all the tasks is finished, the final capability
matrixes indicate the Pareto optimal strategy for the mission.

In this simulation, part of the capability matrixes changes is shown in the following figure. As
shown in Figure 18, the capability matrixes of each UAV change according to the negotiation results.
It must be noted that the last two stages illustrate the same capability matrixes, because the Pareto
optimal strategy is found at the end of negotiation process. To clearly present the generated Pareto
optimal strategy for the pesticide spraying mission, the strategy is drawn in Figure 19.
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Figure 19. The simulation result: (a) overall view of the strategy; (b) the strategy for the first target;
(c) the strategy for the second target; (d) the strategy for the third target.

As shown in Figure 19a–d, the first target is assigned to the agent coalition with UAV 1 and 3, the
second target is assigned to the agent coalition with UAV 4, 5 and 6, and the third target is assigned to
UAV 2. According to Figure 19a, the six UAVs are forming improved federal architectures mentioned
in Section 2.1. The construction of proposed improved federal architectures is shown in Figure 20.
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As is shown in Figure 20, the control terminal is acting as captain agent and is responsible for
managing among federations, generating mission planning strategies for agricultural missions and
assigning the tasks to UAVs. The communication bases are acting as sub-captain agents and are
responsible for transferring the messages between UAVs and the control terminal. The UAVs are acting
as normal agents in the proposed improved federal architecture and are used to execute assigned
tasks. In conclusion, the construction of an improved federal architecture is successful and meets our
expectations. It must be noted that this paper does not consider the detail of communication between
each agents. Thus, the communication process is assumed to be fully functional. Within the range of
each federation there is always a communication base, responsible for receiving and sending messages
between UAVs and the control terminal.
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For the purpose of illustrating how the generated Pareto optimal dominates other alternative
strategies, we selected several evaluation criteria for the comparison, including energy consumption,
equipment loss and arrival time to the target. The alternative strategies are selected from the Pareto
optimal strategy set. The Pareto optimal and alternative strategies are listed in Table 6.

Table 6. The Pareto optimal and alternative strategies.

Strategy Target 1 Target 2 Target 3

Pareto optimal Coalition (UAV 1 and 3) Coalition (UAV 4, 5 and 6) UAV 2
Alternative strategy 1 Coalition (UAV 1 and 3) Coalition (UAV 2 and 6) UAV 4
Alternative strategy 2 Coalition (UAV 3, 5 and 6) Coalition (UAV 1 and 2) UAV 4

In Table 6, two alternative strategies are presented. In alternative strategy 1, the first target is
assigned to the coalition with UAV 1 and 3, the second target is assigned to the coalition with UVA 2
and 6, and the third target is assigned to UAV 4. The UAV 5 is not selected to carry on the mission.
In alternative strategy 2, the first target is assigned to the coalition with UAV 3, 5 and 6, the second
target is assigned to the coalition with UAV 1 and 2, and the third target is assigned to UAV 4. The
evaluation for these three strategies is listed in Table 7.

Table 7. The evaluation for Pareto optimal and alternative solutions.

Strategy Energy Consumption Equipment Loss Arrival Time (Second)

Pareto optimal 646.78 6.89% 51.61
Alternative strategy 1 816.70 11.58% 65.35
Alternative strategy 2 927.74 15.77% 63.47

As is shown in Table 7, the Pareto optimal achieves the minimum energy consumption at 646.78,
the minimum equipment loss at 6.89% and the shortest arrival time to the targets at 51.61 s. These
numbers illustrate that the Pareto optimal dominates the alternative strategies.

The simulation also compares the proposed MP-PSOGA with the originals PSO and GAs. The
principles of these two original algorithms are already explained in Section 3.3.1. It must be born
in mind that the original PSO and GAs do not have a dynamic parameters updating mechanism. It
means that the parameters of these two original algorithms are fixed values. The population size of
all three algorithms is set at 40 and the iteration number is set at 50. For original PSO, the weight is
set at 0.9 and learning factors are set at 2.5. For original GAs, the crossover rate is set at 0.9 and the
mutation rate is set at 0.1. All three algorithms are compared under the same simulation case, which is
mentioned in Section 4.1.

In this simulation, the changes of fitness values are compared. The lower the fitness value is, the
more accurate the solution is. The comparison result is shown in Figure 21.

In Figure 21, it is clearly indicated that the fitness value of MP-PSOGA is smaller than that
of the original PSO and GAs during the iteration, which means that the mission planning strategy
generated by MP-PSOGA is better and more accurate. Meanwhile, Figure 21 also indicates that the
convergence of MP-PSOGA is quicker than that of the original PSO and GAs, because MP-PSOGA
generates the solution in a short time (the iteration number is smaller). In conclusion, the proposed
mission planning approach based on MP-PSOGA dominates the original PSO and GAs. After verifying
through simulations, it is concluded that the proposed mission planning approach is feasible for the
precision of the farming system.
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5. Conclusions and Future Work

The main focus of our work is on the mission planning approach for the precision farming system,
along with the detailed procedures of implementation. The conclusion of our contribution and future
work are summarized in this section.

5.1. Conclusions

Our contributions regarding the mission planning approach for the precision farming system can
be described as:

• After studying the definitions and characteristics of agents and multi-agent system, the
architecture of precision farming system is proposed. The precision farming system, treated as a
multi-agent system, has an improved federal architecture with three types of agents, including
the captain agent, sub-captain agents and normal agents. The captain agent is responsible to
coordinate the whole precision farming system and establish new missions. The sub-captain
agent is acting as the facilitator in the federation and is responsible to the communication. The
normal agent is the task executor and has the duty of completing the assigned tasks. With
such architecture, the precision farming system has the advantages of easy management, low
communication cost, high intelligence, high flexibility, easy scalability and etc.

• A general target model and UAV model is proposed in this paper. Both models are implemented
by the programming language Python. Relevant parameters are defined as well. Meanwhile, the
functions of each model are defined in detail for the further use in the simulation. Especially in
the UAV model, we considered the situation that the UAV may fly beyond the pre-defined border.
So, a border-handling function is defined to calculate the minimum turning angle and generate a
flying path back to the farming land.

• For the precision farming system, two objective functions are defined mathematically, including
the beneficial and cost objective functions. Regarding the mission planning, it is treated as a
multi-objective optimization problem, because it considers several criteria, including energy
consumption, equipment loss, expected benefit and working efficiency.

• In order to generate the mission planning approach, we studied two widely-used optimization
algorithms, Particle Swarm Optimization and Genetic Algorithms. We took advantage of both
algorithms and developed an improved optimization algorithm, called MP-PSOGA. The main



Sensors 2018, 18, 1795 28 of 32

body of MP-PSOGA is based on Particle Swarm Optimization, embedded with crossover and
mutation operators from Genetic Algorithms. Meanwhile, we developed dynamic updating
mechanism for the parameters of MP-PSOGA, including weight, learning factors, crossover and
mutation probabilities. With these dynamic parameters, MP-PSOGA is capable of computing the
precise Pareto optimal with quick convergence. The simulation results illustrate that the proposed
mission planning approach works properly.

• An agent coalition mechanism is proposed for the purpose of enabling the UAVs to work
cooperatively in the precision farming system. The coalition formation is based on the negotiation
result. During the negotiation process, a mission auction is held in order to generate the most
appropriate agent coalition for a specific task. The auctioneer computes the comprehensive benefit
by running MP-PSOGA. The negotiation process aims to distribute the benefit in a balanced way.

• Dynamic changes of precision farming system is taken into consideration in this paper. The
dynamic changes includes establishment of new missions, malfunction of UAVs and change of
meteorological environment. Hence, a mission re-planning mechanism is introduced into the
precision farming system, aiming to re-assigning tasks based on new situation. The mission
re-planning mechanism strengthens the robustness of the precision farming system.

5.2. Future Work

In this paper, most of the work for the precision farming system focus on the theoretical study
and simulation verification. Though the simulation result illustrates the feasibility of the proposed
mission planning approach, it is more convincible if this mission planning approach is verified in the
real scenario by deploying the approach in real UAVs. However, several work and studies should be
done before the deployment. The future work is summarized as follows:

1) In this paper, only a general target model and UAV model are defined. Though other agricultural
machinery models, such as unmanned ground vehicles and harvesters, are similar to the UAV
model, it is necessary to define these models and simulate them to verify their usability in
precision farming system. Meanwhile, a management module in precision farming system should
be considered in order to manage all the agricultural machineries. Regarding the target model, it
is possible to implement the second development on the general target model. For example, to
implement the livestock model, it is feasible to add random movement into the general target
model. In future study, these theoretical models should apply to the real scenario. Fortunately,
there is one development tool, called “Micro Python”, allowing us to develop the real agricultural
machineries with ARM processors or field programmable gate array (FPGA) by means of the
programming language Python. The syntax of Micro Python is almost the same as Python 3.*
and Micro Python has its own translator, interpreter, library and etc. Hence, it is promising and
feasible to test the proposed mission planning approach in the real agricultural machineries in
the future. Furthermore, it is necessary to verify the proposed mission planning approach under
a large-scale case. For example, thirty target fields and twenty agricultural machineries.

2) A credit evaluation mechanism should be taken into consideration. During the negotiation
process, each agent is supposed to not only consider the benefit of itself, but also the benefits of
other agents’. However, sometimes, certain agents are selfish and only consider their own benefits.
These selfish agents may maliciously occupy the limited resources and not share information
with other coalition members. Under such circumstance, other agents are unable to compete these
selfish agents in the auction process and no long receive any tasks due to lacking of resources.
So, the credit evaluation mechanism aims to supervising the behavior of each agent. When
an agent is found to behave selfishly, then, certain punishment should be established, such as
forbidding this selfish agent bidding in the next-round auction. In addition, if an agent is unable
to complete the assigned task, its credit should be deducted by certain number. For these agents,
who complete the assigned tasks successfully, certain credits should be rewarded. Generally,
the credit evaluation mechanism ranks each agent’s reliability. A higher credit an agent has, the
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more reliable this agent is. Such credit evaluation mechanism could strengthen the robustness of
precision farming system.

3) During the negotiation process, the auction mechanism is proposed in order to distribute the
decomposed tasks to agricultural machineries. In our work, the auction mechanism is based on
English Auction (EA), also known as Open Ascending Bid (OAB). However, there are several
types of auction mechanisms, such as sealed-bid auction, the first-price sealed auction, Vickrey
auction and etc. In the future work, these mentioned auction mechanisms could be combined in
order to improve the performance of negotiation process. Furthermore, it is possible to propose
more mechanisms into the negotiation process, such as Nash bargaining, cooperative game theory,
non-cooperative game theory, etc. By proposing more negotiation mechanisms, the precision
farming system may be more applicable to the real scenario and achieve better performance.

4) In this paper, mission re-planning process is not considered thoroughly. When dynamic changes
occur, the captain agent will calculate the optimal mission planning strategy for the new mission
from the very beginning, which lacks of consideration for the already-completed parts. Ideally, in
the precision farming system, UAVs should have the capability of dynamically adapting to new
missions without restarting from the beginning. Because re-planning from the very beginning
will cost more resources and computation time than re-planning from the break point of the
system. Thus, it is worthy of introducing an efficient mission re-planning mechanism in order to
enhance the robustness of PFS.
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