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Abstract: A home-auxiliary robot platform is developed in the current study which could assist patients
with physical disabilities and older persons with mobility impairments. The robot, mainly controlled by
brain computer interface (BCI) technology, can not only perform actions in a person’s field of vision,
but also work outside the field of vision. The wavelet decomposition (WD) is used in this study
to extract the δ (0~4 Hz) and θ (4~8 Hz) sub-bands of subjects’ electroencephalogram (EEG) signals.
The correlation between pairs of 14 EEG channels is determined with synchronization likelihood (SL),
and the brain network structure is generated. Then, the motion characteristics are analyzed using
the brain network parameters clustering coefficient (C) and global efficiency (G). Meanwhile, the eye
movement characteristics in the F3 and F4 channels are identified. Finally, the motion characteristics
identified by brain networks and eye movement characteristics can be used to control the home-auxiliary
robot platform. The experimental result shows that the accuracy rate of left and right motion recognition
using this method is more than 93%. Additionally, the similarity between that autonomous return path
and the real path of the home-auxiliary robot reaches up to 0.89.
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1. Introduction

As people age, their limb movement becomes more and more difficult, which brings inconvenience
to their life. Additionally, some people can lose their normal neuromuscular pathway through which
the brain exchanges information with the outside world. To solve this problem, brain computer
interface (BCI) technology is developed by researches. BCI technology is a direct communication
method established between the brain and a controlled device, which makes it possible to use the
human brain to directly control external devices to assist humans in performing related operations [1–4].
The characteristics of human motion, which were collected in previous studies using models of the
Event-Related Potential (ERP) [5–8] and the Steady-State Visual Evoked Potential (SSVEP) [9,10],
are obvious. Additionally, these two models, which have strong anti-interference ability, are widely
used in BCI technology research. A BCI system, which is highly recognized by users, should be
non-invasive, safe, and practical to use. Many research teams have developed BCI systems which
were used to control the navigation of humanoid robots [11–19], assistive exoskeletons [20], flying
robots [21,22], robotic wheelchairs [21,23,24], and wheeled robots [25–27]. Moreover, the study
of telepresence robots controlled by electroencephalogram (EEG) signals is an area of interest to
researchers [25,28].

Research shows that the theory of modern complex networks has been used extensively to imitate
human brain function [29]. Brain connectivity analysis has been proven to be a very effective and
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informative way to explore brain function and neural activity [30–33]. The theory of modern complex
networks has been used to analyze human brain activities [34,35]. One study presented a small-world
structure of the brain from the functional connectivity point of view, in which the functional relationship
of the human brain is characterized by the structural properties of the network [36]. The two structural
properties of the network, the clustering coefficient and global efficiency, are used to analyze the
motion characteristics in this study. The electrooculogram (EOG), in experiments on BCI, was usually
removed due to interference signal [37,38]. The authors applied BCI technology in combination with
characteristics of EOG signals to control the auxiliary robot to complete the left-right movement.
Additionally, the robot, which used the autonomous return mode to go back to the original starting
point, could reduce the labor intensity of the users. This rendered it more convenient to use in the field
of home application.

2. Experiment

2.1. Subjects

A total of 10 healthy subjects (eight males and two females; aged 27 ± 1.3 (Standard Deviation)
years), who were randomly selected from a group of volunteers, were chosen for this experiment. All of
the subjects, who were required to meet the condition of no visual illness or history of neurological
diseases, were asked to refrain from consuming any type of stimulus such as alcohol, tea, or coffee
during the experiment. Figure 1 shows the experimental setup.

Figure 1. Experimental setup.

2.2. Experimental Process

The authors used Neuroscan as the EEG acquisition device, and its electrodes were attached to
the scalp according to the international 10–20 system (30 channels = FP1, FP2, F7, F3, FZ, F4, F8, FT7,
FC3, FCZ, FC4, FT8, T3, C3, CZ, C4, T4, TP7, CP3, CPZ, CP4, TP8, T5, P3, PZ, P4, T6, O1, OZ, and O2),
which can detect the brain activity features reflected in frontal, central, and posterior regions of the
human brain [39,40].

The subjects in this study were arranged in a room as shown in Figure 1a. The home-auxiliary
robot (TurtleBot) was arranged in another room as shown in Figure 1b. Subjects controlled the robot to
walk using the wireless video sensor and the wireless radio frequency communication device NRF905
(made in China by Zhejiang Hangzhou Yuze Electronic Company, Hangzhou, China). Two types of
experimental actions were performed per subject to ensure that the robot’s grayscale sensor was not
out of orbit. One action involved the subject looking at the cross mark (Figure 2), and then moving
their eyes to the end of the left red rectangle. Then, the subject moved their eyes back to look at the
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cross mark, and then back to the robot’s path visual monitor window to monitor the robot walking.
The eye movement process was completed within 0.3 s. The second action involved the subject looking
at the cross mark (Figure 2), and then moving their eyes to the end of the right red rectangle, and then
completing the process in the same way as described for the previous experimental action. The model
of visual evoked stimulation is shown in Figure 2.

The robot received a steering command through the wireless device NRF905 (A) and turned
15 degrees each time. The robot would continue to travel at a speed of 0.05 m/s after the steering was
completed until the next steering command was received. Each subject controlled the robot to walk
along the track by using EEG and EOG signals, and then allowed the robot to autonomously return to
its starting position along the original track. Additionally, the path the robot walked was recorded by
a PC every time.

Figure 2. The model of visual evoked stimulation.

All subjects were informed about the research background and the study protocol. Moreover,
all of them gave their written informed consent to be included in the study. The Ethics Committee at
the Northeast Electric Power University Hospital endorsed the study protocol, according to the Code
of Ethics of the World Medical Association (Declaration of Helsinki). Additionally, they were free to
choose to participate in the experiment or resign.

2.3. Data Pre-Processing

The EEG signals were easily influenced by noise, so the raw EEG signals needed to be quieted first.
The wavelet decomposition (WD), which was represented as a continuous time wavelet decomposition
sampled at different frequencies at every level, specifically enabled the authors to discriminate between
non-stationary signals with different frequency features [41]. Studies have shown that the WD is more
efficient than other methods in the frequency domain [42]. The WD was defined as a continuous
wavelet transform (CWT) and a discrete wavelet transform (DWT), and where the input signal was
X(t), the CWT was defined as:

CWT(a, b) =
∫

X(t)ψ∗a,b(t)dt (1)

where * denotes a complex conjugate, a∈R+ shows the scale parameter, b∈R+ shows the translation,
and ψa,b(t) was obtained by scaling the prototype wavelet ψ(t) at time b and scaling by a as follows:

ψa,b(t) =
1√
a

ψ(
t− b

a
) (2)

The orthogonal dyadic functions are often chosen as the mother wavelet in the WD, which is
defined as:

ψj,k(t) = 2−j/2ψ(2−jt− k) (3)
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where {ψj,k(t), j, k, ∈Z} for L2(R).
The DWT method analyzed the signal at different frequency bands with different resolutions.

The function, decomposing the signal into the different frequency bands, was completed using successive
high-pass and low-pass filtering of the time domain signal. The original signal, which is shown as x[n],
was first passed through a half-band high-pass filter g[n] and a low-pass filter h[n]. Then, half of the
samples were eliminated according to Nyquist’s rule. This procedure can be represented as follows:

Yhigh[k] = ∑ x[n]× g[2k− n] (4)

Ylow[k] = ∑ x[n]×h[2k− n] (5)

where Ylow [k] and Yhigh [k] are the outputs of the low-pass and high-pass filters, respectively. Following
this procedure, sub-sampling was performed twice. The sub-sampling process is presented in in
Figure 3.

Figure 3. Sub-band coding algorithm.

Butterworth high-pass and low-pass filters as well as the filtering of the EEG signals at 0.5 Hz
and 32 Hz were used to remove artifacts and noisy signals. Then, EEG data were divided into low
and high wavelet coefficients. Once again, these low and high wavelet coefficients were divided into
their sub-high and sub-low wavelet coefficients. Resulting from the original EEG signal, the authors
obtained δ (0~4 Hz) and θ (4–8 Hz) sub-bands.

3. Algorithm

3.1. Brain Network

Research has shown that a number of cortical and sub-cortical regions are activated in different
brain regions when human beings process complex information [43]. Every region of the brain is
taken as a node and the connections between brain regions are taken as edges. The brain connectivity
analysis of the subjects was used to express the differences of nerve activity between the two brain
hemispheres. The connection between pairs of EEG channels was determined with the synchronization
likelihood (SL) and the calculation method described below.

Consider a time series given by Xk,i (K = 1, . . . , M; i = 1, . . . , N). With a given embedding
dimension m, the series can be denoted as:

Xk,i = (xk,i, xk,i+l , xk,i+2l , . . . , xk,i+(m−1)l) (6)
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The probability of the distance between pairs of embedded vectors less than ε is:

Pε
k,i =

Ei
2(ω2 −ω1)

∑
j=1

θ(ε− |
N
Xk,i − Xk,j|) (7)

where ω1 < |j− i| < ω2. The Euclidean distance is expressed as |•| and the Heaviside staircase function
is expressed as θ. The ω1 andω2 are two window variables, which meet the condition ω1 « ω2 « N.

Regarding each k and each i, we can determine a critical distance using εk,i:

Pεk,i
k,i = Pre f (8)

in which Pref « 1. The number of channels, whose distance is less than the critical distance between
vectors Xk,i and Xk,j, is expressed as:

Hi,j =
M

∑
K=1

θ(εk,i − |Xk,i − Xk,j|) (9)

in which ω1 < |j − i| < ω2. The SL algorithm, which defines each channel and each discrete time,
is expressed as:

SK,i,j =
Hi,j − 1
M− 1

(10)

where |Xk,i − Xk,j| < εk,i and the average is calculated for all j values, which can be expressed as:

Sk,i =
I

2(ω2 −ω1)

N

∑
j=1

Sk,i,j (11)

in which ω1 < |j − i| < ω2.
The correlations between pairs of 14 channels (14 channels = F7, F3, F4, F8, FT7, FT8, C3, C4, TP7,

TP8, P3, P4, O1, and O2) were calculated using Equation (11). Then, the brain networks were formed.
The steps of the brain connectivity analysis are described as follows.

First, the data of a 14-channel EEG were collected. Then, the δ and θ sub-bands were extracted
from the EEG signals. The adjacent matrix was computed for the sub-bands (δ and θ). Each matrix
element corresponded to the SL between a pair of channels EEG signals. The entries on the main
diagonal were equal to 1, because each EEG signal was perfectly correlated with itself. The matrix
elements were symmetric relative to the main diagonal, that is, Cij = Cji. An edge was deemed to exist
between i and j if their SL was greater than the fixed T; otherwise, no edge existed between i and j.
Finally, the networks were formed using the adjacent matrix and a threshold value.

The SL values lie in the range PrefT ≤ T ≤ 1, where the PrefT is the minimum value which is close
to 0, or close to 1 in the case of maximally synchronous signals. To compare the clustering coefficient
(C) and global efficiency (G) of brain networks between the left and right brain hemispheres, networks
were formed for the two brain hemispheres. The authors explored a whole range of the T values,
0.01 < T < 0.12, with increments of 0.005. Figure 4 shows the comparison of C and G at different
brain hemispheres.
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Figure 4. (a) Mean clustering coefficient (C) as a threshold when moved to the right; (b) mean global
efficiency (G) as a threshold when moved to the right; (c) mean C as a threshold when moved to the
left; (d) mean G as a threshold when moved to the left.

Over the whole range of threshold values (0.01–0.12), the significant difference of C can be found
in Figure 4 for different brain hemispheres when T is in the range of 0.07 < T < 0.11. The significant
difference of G can be found for different brain hemispheres when T is in the range of 0.08 < T < 0.11.
The authors used the mean value of T (T = 0.092) for the correlation calculation so, the mean value of T
(T = 0.092) was chosen as the fixed threshold. Using the fixed threshold, the network parameters C
and G for all of the subjects’ brain networks were computed.

C and G were used to analyze the functional differences of the complex brain networks. These are
explained in the following subsections.

3.1.1. Clustering Coefficient

The connectivity degree of a node indicates the importance of that node in a network, which
can be represented as the number of edges connected to that node. C can be expressed as the ratio of
the number of existing edges to the number of maximum possible edges [44,45]. Its formula can be
represented as:

Ci =
Ei

Di(Di − 1)/2
(12)

in which Ei is the number of existing edges between neighbors of the node i and Di is the degree of
connectivity of that node. Di(Di–1)/2 is the number of maximum possible edges between neighbors of
the node i [45].

3.1.2. Global Efficiency

G can express the degree of integration of a network, which is associated with the speed at which
the human brain processes information. The path length Li,j between two nodes i and j is the minimum
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number of edges that are needed to connect. Additionally, the path length, which is the inverse ratio of
the nodal efficiency, is mathematically defined as [44,45]:

Li =
1

N − 1 ∑
i 6=j∈G

Li,j (13)

where Li,j is the minimum path length. The N is the number of nodes within a network. The average
value of the nodal efficiencies of each node can be used to estimate the G. Thus, the global efficiency
(G) of nodes can be defined by:

G = Eglobal =
1

N(N − 1) ∑
i 6=j∈G

1
Li,j

(14)

Equation (14) can express that networks, which are characterized by a short minimum path length
between any pair of regional nodes, have high global efficiency [46,47]. Combined with Equation (12),
this leads to the fact that the bigger the values of C and G, the faster the information transmission
speed of a node with others.

3.2. Motion Feature Recognition

Obvious fluctuations occurred in the F3 and F4 channels when eyes move left or right, and the
directions of fluctuations are opposite. The result is shown in Figure 5.

Figure 5. The difference regarding eye movement and brain topography when moved right (a) and left (b).

Following the fluctuations that occurred in the F3 and F4 channels, the brain topography showed
that there was a significant difference between the left and right hemispheres, which indicated that
there were differences in neural activities between the two hemispheres. Regarding brain topography,
low activity is indicated by the blue-shaded areas, whereas high activity is indicated by the red-shaded
areas. Figure 5a shows that the color of the right-brain region is darker than the color of the left-brain
region, which means that the neural activities in the right-brain are more active than those in the
left-brain when a person is moving to the left. Additionally, a different phenomenon appears, as shown
in Figure 5b, when a person is moving to right.

A moving window with a width of 20 samples was established in the experiment, and the
fluctuation characteristics of the eye movement signal were identified by using Equation (15).

Ki =
y(xi+20)− y(xi)

20
(15)
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The K values of the F3 and F4 channels display opposite fluctuation changes when a person’s
eyes move to the left or to the right. Concurrently, this meets the |K| > 1 condition. The authors used
these features (G, C, and K) to judge the direction of movement for the robot.

The eye movement fluctuations in the time domain signal were identified using Equation (15),
the parameter values for the left hemisphere and the right hemisphere were calculated. Then,
the direction of the subject’s motion according to the K value and the brain network parameters’
value were judged. Taking the left movement as an example, the discrimination logic is shown in
Figure 6.

Figure 6. The logic of motion recognition.

3.3. Autonomous Return

The TurtleBot walked along the track to the destination controlled by EEG and EOG signals.
During the robot travel, the software recorded each direction conversion information as an array for
the robot, which included the robot walking time, steering direction, and steering angle elements.
The arrays are shown in Figure 7.

Figure 7. Robot motion track array. (a) Running track array; (b) return track array.

Figure 7a shows the running track array, in which x is the robot walking time, y is the steering
direction (1: turn to the left and −1: turn to the right), and z is the steering angle. Subjects controlled
the robot to walk along the track using their EEG and EOG signals, and the direction conversion
information was recorded in the running track array. Subsequently, the return track array was
transformed from the running track array using a simple mathematical algorithm. Finally, the TurtleBot
autonomously returned to its starting position along the original track using the return track array.
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4. Results

The characteristics of human motion feature signals were comprehensively identified by
combining the characteristics of the human brain network with the characteristics of eye motion
signals in motor imagery.

4.1. Motion Recognition

The correlations between pairs of 14 EEG channels (14 channels = F7, F3, F4, F8, FT7, FT8, C3,
C4, TP7, TP8, P3, P4, O1, and O2) were calculated using Equation (11), following which the brain
networks were formed. Figure 8 shows the brain networks of one subject when he turned right and
left in the experiment.

Figure 8. The difference of brain networks when moving right and left. (a) Move to the left; (b) move
to the right.

One clearly can see from Figure 8 that the connection density of the right-brain network is
significantly higher than that of the left-brain network when the subject turned left. Quite the
opposite, the connection density of the left-brain network is significantly higher than that of the
right-brain network when the subject turned right. To quantify the density of a brain network,
the parameters clustering coefficient (C) and global efficiency (G) were used to calculate and analyze
network characteristics. Figure 9 shows the comparison of the brain network parameters C and G
between a subject turning left and turning right.

Figure 9. The difference of brain network parameters when a subject turns right or left. (a) Move to the
left; (b) move to the right.

Figure 9 shows that there are significant differences in C and G when subjects turn to the left
and right (P < 0.05). Taking the left movement as an example, the connectivity density of the right
hemisphere was higher than that of the left hemisphere when ERP was used to stimulate left motor
imagery. The corresponding brain network parameter values (C and G) of the right hemisphere were
larger than those of the left hemisphere at that time. This means that the neuron cluster in each brain
region of the right hemisphere of the human brain cooperated to complete an equivalent action at
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that time, and the correlation between them was strong. Meanwhile, the neuron cluster in each brain
region of the left hemisphere of the human brain did not need to cooperate to complete an equivalent
action, thus the correlation between them was weak.

The authors analyzed motion recognition accuracy using EOG and EEG. Meanwhile, the accuracy
was analyzed separately using the EOG and EEG signals. The accuracy comparison of motion direction
recognition is shown in Table 1.

Table 1. Accuracy comparison of motion direction recognition.

EEG EOG Comprehensive Detection Using EEG and EOG

Subject 1 80% 90% 98%
Subject 2 85% 95% 100%
Subject 3 90% 85% 95%
Subject 4 85% 88% 99%
Subject 5 85% 90% 93%
Subject 6 80% 85% 97%
Subject 7 83% 94% 98%
Subject 8 79% 87% 96%
Subject 9 88% 91% 97%
Subject 10 77% 87% 94%

Table 1 shows that the accuracy rate of left and right motion recognition using EEG and EOG
is more than 93%. This is compared with the identification methods using EOG and EEG separately,
demonstrating that the recognition rate of the proposed method in this paper is higher.

4.2. Track Similarity

Subjects controlled the robot to walk along the track by using EEG and EOG signals, and then
allowed the robot to autonomously return to its starting position. Additionally, the track of the
robot’s autonomous return to its starting position was record by the PC, which is shown in Figure 10.
The experiment was conducted eight times for each subject, and the track data of each subject
were averaged.

Figure 10. Track of autonomous return.

The track similarity of the TurtleBot between the autonomous return track and the experimental
original track reflects the accuracy of the robot motion controlled by EEG and EOG. To determine the
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similarity of the two types of track, the authors calculated the Pearson’s correlation coefficient between
them. The similarity values calculated for the subjects are shown in Table 2.

Table 2. The similarity between the autonomous return track and the experimental original track.

Number of Experiments Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8 Subject 9 Subject 10

1 0.7832 0.7533 0.6523 0.7398 0.6813 0.7761 0.8237 0.7934 0.8021 0.7731
2 0.8567 0.7821 0.6822 0.7678 0.7165 0.7324 0.7895 0.8277 0.8314 0.7964
3 0.8927 0.8175 0.7127 0.8136 0.7837 0.7752 0.8109 0.7899 0.8237 0.8311
4 0.8465 0.8013 0.8397 0.8287 0.8019 0.8532 0.8369 0.8322 0.8417 0.8543
5 0.9235 0.8618 0.8156 0.9213 0.8515 0.8314 0.8562 0.8452 0.8253 0.8827
6 0.9011 0.8728 0.8993 0.8986 0.9089 0.9210 0.8613 0.8871 0.8657 0.8375
7 0.9207 0.8922 0.9204 0.9185 0.9102 0.9125 0.8943 0.8793 0.8955 0.8815
8 0.9345 0.9688 0.9158 0.9281 0.9054 0.9227 0.9328 0.9127 0.9003 0.8966

Table 2 shows that the values of correlation coefficients between the autonomous return track and
the experimental original track are greater than 0.50. This means that these variables have a strong
correlation. Specifically, the correlation coefficients are greater than 0.85 for subjects after six tests.
Thus, one can conclude that the method applied in this paper has high control precision after proper
training for subjects, which makes it more convenient to use in the field of home application.

4.3. Training Effect

Each subject was tested eight times. The number of times the robot deviated from the path was
recorded by the off-track counter shown in Figure 1b. The results are shown in Figure 11.

Figure 11. The number of times the TurtleBot deviates from the path.

Figure 11 shows that the number of times the TurtleBot deviated from the path decreases
significantly as the amount of training increases, which means that the method using EEG and EOG to
control the robot’s movement has high accuracy after proper training. Additionally, the autonomous
return of the robot makes it more convenient to use in the field of home application.

5. Discussion

The authors used EEG and EOG to comprehensively identify and control the TurtleBot to walk
along the track and return by using the autonomous return mode, which made it more convenient to
use in the field of home application.
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5.1. Previous Studies

Rinku Roy et al. used the Genetic Algorithm (GA) to identify left-right arm movement.
They achieved a correct recognition rate of 75.77% [48]. CAS Filho et al. used the graph method
to classify human hands signals, achieving a high recognition rate of up to 98% [49]. Research shows
that the recognition of motor information in brain signals using the BCI is an effective method [50–52].
Although it is very accurate to identify motion characteristics using EEG, the authors cannot confirm
that it also has an efficient motion recognition rate when the auxiliary robot is controlled in real time
outside the field of vision.

5.2. Novel Findings of This Study

This study’s results show that the method that subjects used to control the robot to walk along
the track by using the EEG and EOG had high precision of the controls and recognition speed.
Additionally, the method can record the data of the TurtleBot walking track, which can make the robot
autonomously return to its starting position, all of which makes it more convenient to use in the field
of home application.

5.3. Limitations and Future Research Lines

The EEG acquisition equipment with high precision is expensive and inconvenient to wear,
which is not conducive to the popularization and application of this technology. Additionally, this
study is limited to using EEG, EOG, and related sensors to quickly control the TurtleBot’s path
of movement and return. Future research works might develop portable equipment that can be
conveniently worn and inexpensively fabricated. It could become a reality that an individual could
control a manipulator to easily imitate their motion using motion imagination.

6. Conclusions

A home-auxiliary robot platform was developed which could facilitate patients with physical
disabilities and older persons with mobility impairments. The authors applied BCI technology to
practical operations. Combined with ERP vision evoked stimulation, the method, which applies
portable EEG acquisition equipment, acquires EEG signals and extracts EEG motion characteristics in
real time. The experimental result showed that the accuracy rate of left and right motion recognition
using this method is more than 93%. Additionally, the similarity between the autonomous return track
and the original track of the home-auxiliary robot reached up to 0.89. Thus, one can conclude that the
method applied in this paper has high control precision after proper training for subjects, which makes
it more convenient to use in the field of home application.
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