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Abstract: We propose a sensor placement method for spatio-temporal field estimation based
on a kriged Kalman filter (KKF) using a network of static or mobile sensors. The developed
framework dynamically designs the optimal constellation to place the sensors. We combine the
estimation error (for the stationary as well as non-stationary component of the field) minimization
problem with a sparsity-enforcing penalty to design the optimal sensor constellation in an economic
manner. The developed sensor placement method can be directly used for a general class of
covariance matrices (ill-conditioned or well-conditioned) modelling the spatial variability of the
stationary component of the field, which acts as a correlated observation noise, while estimating the
non-stationary component of the field. Finally, a KKF estimator is used to estimate the field using
the measurements from the selected sensing locations. Numerical results are provided to exhibit the
feasibility of the proposed dynamic sensor placement followed by the KKF estimation method.

Keywords: sparsity; kriging; Kalman filter; sensor placement; convex optimization

1. Introduction

Tracking the spatio-temporal evolution of any field using a limited number of
homogeneous/heterogeneous sensors with a desired accuracy is one of the most common
applications of wireless sensor networks (WSNs) [1,2]. Different types of environmental, geophysical
and biological processes exhibit complicated spatial as well as temporal variability. Spatial and
temporal variability of a spatio-temporally stationary physical field can be modelled by its correlation
over space and time [3]. If the field is non-stationary then a suitable dynamic model can be used
to model the spatio-temporal evolution of the field [3]. If the field exhibits both a stationary and
non-stationary behavior over space and time then the field can be dynamically monitored by the
combination of kriging [3] and Kalman filtering, i.e., a kriged Kalman filter (KKF) [4] or space-time
Kalman filter [5]. The key idea behind the KKF is the liaison of kriging [3] and Kalman filtering.
The unknown physical field is modelled as a combination of a non-stationary (capturing the dynamics)
and a stationary (capturing the low magnitude spatial effects) stochastic component. Assuming that
the dynamics of the non-stationary component and the second-order statistics of the stationary
component (e.g., covariance structure) are perfectly known, KKF jointly estimates both of these field
components using the spatial observations at every time instant. The KKF paradigm has been used
for different applications like wireless communications (e.g., spectrum sensing [6] and path delay
estimation [7]) and field estimation [5]. From a practical perspective, KKF can also be used for air
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pollution level forecasting applications [8]. Also, a distributed implementation of KKF can be used for
environment monitoring using a robotic sensor network [9].

One of the important overheads of dynamic field estimation using a WSN is the lack of sufficient
measurements at every time instant. This is related to the shortage of sensor life time, availability of
bandwidth, and other resource-related economical constraints. In such scenarios, we need to efficiently
place/move the available sensors into the most informative locations over space and time. One notable
approach for sensor placement in Gaussian processes is based on exploiting the submodularity of
the mutual information between the sensing locations [10]. Submodularity of the frame potential and
related greedy algorithms for sensor placement are proposed in [11]. Dynamic sensor scheduling is a
well-cultivated topic in the fields of signal processing as well as control theory [12,13]. Some recent
notable contributions are [14–16]. Prior knowledge regarding the correlation of the field over space and
time can be exploited in a multi-layer design of sensor networks [17]. Selecting the most informative
sensing locations can be treated as a sensor selection problem, which can be formulated as a convex
optimization problem [18]. This can be solved for linear [19] as well as non-linear measurement
models [20]. Sparsity-promoting approaches for sensor placement are also exhibited in [15,21],
where the placement algorithm is formulated using the alternating direction method of multipliers
(ADMM). In [22], a generalized sparsity-enforcing and performance-constrained sensor placement
method is proposed, where the field can be either stationary or non-stationary. The aforementioned
method can be implemented for a single snapshot or multiple snapshot ahead sensor placement and
for a general class of spatio-temporal covariance matrices, which can either be ill-conditioned or
well-conditioned. Seminal contributions on the convex formalism of sensor selection (like [18]) assume
that the measurement noise components are spatio-temporally uncorrelated. However, this can be an
unrealistic assumption in some practical scenarios [23]. However, even in those scenarios, it has been
shown that the sensor selection problem can be formulated as a convex optimization problem [16,24].

In this work, we develop a unified framework of sensor placement followed by a KKF estimator
to dynamically monitor a physical field that exhibits both stationarity and non-stationarity over space
and time. In the first step, we select the most informative locations to deploy/move the sensors and
in the second step we estimate the field by using the measurements from those selected locations.
The key contributions can be summarized as follows,

• The performance metrics to estimate the stationary as well as the non-stationary components of the
field are represented in closed form as an explicit function of the sensor location selection vector.

• The aforementioned analytical formalism tackles two important issues in the sensor placement
step. First, the developed method takes care of the fact that the estimation of the non-stationary
component of the field involves the stationary component of the field as a spatially correlated
observation noise. Second, the proposed method is applicable for a general class of spatial
covariance matrices of the stationary component of the field, even when they are ill-conditioned
or close to singular [25].

• The proposed sensor placement problem is formulated in a way that minimizes a cost function
that involves the sum of the mean square error (MSE) of the stationary and the non-stationary
component of the field as well as a spatial sparsity enforcing penalty. The overall optimization
problem also satisfies a flexible resource constraint at every time instant.

One of the aspects that distinguishes the proposed sensor placement method from the prior works
in sensor placement for environmental field estimation is the specific statistical nature of the unknown
physical field, which yields an additive coupling of stationary and the non-stationary components.
Secondly, we develop a unified framework for the efficient utilization of the spatio-temporal variability
of the field in order to design an opportunistic sensor placement method using a convex approach.
We develop a parsimonious sensor placement algorithm followed by a KKF estimator, which can
be used to dynamically monitor a general class of environmental fields (based on the assumed
process model and spatial statistics of the field components). However, the developed approach is
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similar to [22] in terms of the primary measurement model, which is considered to be linear and
underdetermined. We emphasize that the proposed technique is a model-based centralized sensor
placement method, where we resort to the Bayesian estimation philosophy. We assume that the
available prior statistical knowledge regarding the unknown physical field like spatial correlation
information and dynamics are perfectly known a priori. It is also assumed that for the current
centralized setup the communication range of the sensors are sufficient to communicate with the
fusion center, which can be located inside/outside the given service area.

Notations: Matrices are in upper case bold while column vectors are in lower case bold.
The notation [X]ij is the (i, j)-th entry of the matrix X, [x]i is the i-th entry of the vector x, and tr[X]
denotes the trace of X, i.e., the sum of the diagonal elements of X. The notation supp(x) is defined
as the set of indices of the non-zero entries of x, while diag(x) and diag(X) are the diagonal
matrix with diagonal x and the main diagonal of the matrix X, respectively. An identity matrix
of size N × N is denoted by IN . The notation (·)T is the transpose operator, x̂ is the estimate of x,

and ‖x‖p = (∑N−1
i=0 |[x]i|

p)
1/p

is the `p norm of x. Vectors of all zeros and ones of length N are denoted
by 0N and 1N , respectively. An all zero matrix of size N × N is given by 0N×N . The set of symmetric
matrices of size N × N and the set of symmetric positive-definite matrices of size N × N are denoted
by SN and SN

++, respectively.

2. Signal Modelling and Problem Formulation

2.1. Measurement Model

Let us denote the spatially continuous field by ut(x), at any discrete time index t and location
x ∈ R2. We assume that the entire service area of interest is uniformly discretized over N pixels, where we
would like to estimate the field intensities. The field intensities of the N pixels at time t are represented
by ut ∈ RN . It is assumed that the field intensity is the same everywhere within a pixel, and it can
be represented by [ut]j = ut(xj), where xj ∈ R2 is the centroid of the j-th pixel, with j = 1, . . . , N.
We consider a linear underdetermined measurement model

yt = Ctut + et (1)

= Ct(vt + st) + et, (2)

where vt ∈ RN is the non-stationary component of the field and st ∈ RN is a stationary
component of the field capturing the non-dynamic spatial effects. It is assumed that vt and st are
mutually uncorrelated.

At any time t, the measurements are given by yt ∈ RMt collected from Mt (Mt < N) sensing
locations (pixels) of the entire service area. The time-varying sensing or measurement matrix
Ct ∈ {0, 1}Mt×N selects Mt measurements from N field locations. The measurement matrix Ct is
constructed by removing the zero rows of diag(wt), where wt ∈ {0, 1}N is a sensor location selection
vector. If [wt]j = 1(0), then the j-th pixel is selected (not selected) for sensor placement. Based on
this, at any time t, the number and the constellation of the selected sensing locations are given by
1Twt = Mt and supp(wt), respectively. Using the considered construction of Ct, we have the relations

CtCT
t = IMt ; CT

t Ct = diag(wt). (3)

Note that the type of measurement matrix used in this work is similar to an incidence matrix,
which can be viewed as a flexible data collection method using heterogeneous sensing equipments.
In practice, when different types of sensing modalities are used, we may not know the process
by which any of the sensors gathers its measurement but only its recorded value is important.
Also, we rigorously exploit the property of the structure of Ct mentioned in (3), later in this paper.
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The error incurred by the measurement process is modelled through et, which is uncorrelated
with both vt and st, respectively. The spatio-temporally white measurement noise et is characterized
by et ∼ N (0Mt , σ2

e IMt).

2.2. Modelling of the Spatial Variability

The spatial effects of the field are modelled through a spatially colored yet temporally white
discrete random process st ∼ N (µs, Σs), where µs ∈ RN is the mean and Σs ∈ SN

++ is the spatial
covariance matrix of st. We assume that the process st is spatially second-order stationary as well as
isotropic, which means that

µs = E[st] = µs1N , (4)

[Σs]ij = E[(st(xi)− µs)(st(xj)− µs)] = f (‖xi − xj‖2), (5)

where i, j = 1, . . . , N [3]. Note that here we follow the same spatial discretization as mentioned in
Section 2.1. There are several empirical as well as parametric model-based approaches to model the
spatial covariance. In this work, we assume that the spatial covariance function is given by a simple
squared exponential function:

f (‖xi − xj‖2) = σ2
s exp(−

‖xi − xj‖2
2

θ2 ), (6)

where θ > 0 is the parameter controlling the strength of the spatial correlation. The covariance
function mentioned in (6) is plotted in Figure 1a for increasing values of the pairwise distance between
the centroids of the pixels, i.e., dij = ‖xi − xj‖2 and the parameter θ. Note that the aforementioned
covariance function belongs to the family of Matérn covariance functions [3], which are widely used to
model the spatial variability of a field in geostatistics and environmental sciences.

Using the squared exponential covariance function, the elements of the N × N spatial covariance
matrix (Σs) can be constructed by the Relation (5). Let us consider a service area with N = 36 pixels.
The centroids of these 36 pixels, which are also the candidate locations for sensor deployment are
shown in Figure 1b. These centroids are indexed from the top left to the bottom right. The elements of
Σs are shown in Figure 1c. Note that based on the nature of the covariance Function (6), the spatial
covariance matrix Σs is symmetric and based on the constellation of the candidate sensing locations
(Figure 1b), Σs is also a block Toeplitz matrix. We assume that µs and Σs are perfectly known a priori.

2.3. State Model

The spatio-temporal evolution of the non-stationary component of the field, i.e., vt, can be
modelled by the following state model

vt = Htvt−1 + qt. (7)

Here, the time-varying state transition/propagator matrix is given by Ht ∈ RN×N . The process
noise vector qt is assumed to be characterized by qt ∼ N (0, Qt). The elements of the state transition
matrix Ht act as spatial redistribution weights for vt−1 for the temporal transition from t− 1 to t [3].
Note that this spatial redistribution can be dependent on the temporal sampling interval. We model
the elements of Ht by using a parameterized Gaussian kernel function

[Ht]ij = ν exp[−(xi − xj − aij
t )

T [Dij
t ]
−1(xi − xj − aij

t )], (8)

where i, j = 1, . . . , N and the spatio-temporally varying translation and dilation parameters are
represented by aij

t ∈ R2, and Dij
t ∈ S2

++, respectively. The scalar ν ∈ (0, 1) is a scaling parameter to
avoid an explosive growth of vt, i.e., to keep the maximum eigenvalue of Ht below 1. The simplest
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form of the state model (7) is defined by Ht ≈ νIN , which is similar to a Gaussian random walk model.
This corresponds to the Gaussian kernel Function (8), with Dt = ζI and ζ � 1, and with at = 0. In this
work, we assume that the state transition matrix Ht, whose elements are parameterized by {aij

t } and
{Dij

t } through the Function (8) is perfectly known a priori.
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Figure 1. (a) Squared exponential covariance function for different values of θ (variance σ2
s = 1);

(b) Service area with N = 36 candidate sensing locations; (c) Spatial covariance matrix.

From a practical point of view, the aforementioned Gaussian kernel-based spatio-temporal
evolution can be used for rainfall prediction [26]. This modelling approach incorporates some
physical properties of environmental fields, such as diffusion, advection etc. [26], so it can also
be used for modelling the propagation of a general class of environmental fields (e.g., pollutants,
aerosol movements).

2.4. Main Problem Statement

The main problem is to design an optimal sensor placement pattern, i.e., to design wt,
whose support gives the optimal locations to deploy the sensors. At any t, the design goal is to
minimize the estimation error for both the stationary and the non-stationary components of the field
as well as to enforce sparsity in wt, i.e., to reduce the number of required sensing locations. If the
estimation error of the stationary and non-stationary components of the field can be represented by a
single performance metric g(wt), the sensor placement problem can be represented by
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arg min
wt∈{0,1}N

g(wt) + λt‖wt‖1 (9a)

s.t. Kmin
t ≤ 1Twt ≤ Kmax

t . (9b)

At any t, Kmin
t and Kmax

t denote the lower bound on the number of available sensors, and a given
budget on the maximum number of available sensors, respectively. Sparsity is enforced through a
sparsity-promoting penalty, i.e., an `1 norm of wt in the second summand of the cost Function (9a)
with a time-varying regularization parameter λt > 0 controlling the sparsity of the elements of wt.
A detailed description regarding the structure of the objective function and the importance of the
constraints in the optimization problem (9) are discussed in Section 3.1.

2.5. Simple KKF Estimator and Estimation Error Covariance

Using the measurement and state models of (1) and (7), respectively, the state estimate ût,
for t = 1, 2, . . . , can be computed following the lines of a standard KKF [5,6]. First, a simple Kalman
filter is used to track the dynamic component vt, where the stationary component st is interpreted as a
noise term. In this case, the measurement model is given by

y̆t = Ctvt + ĕt, (10)

where y̆t = yt − Ctµs, ĕt = Ct s̆t + et, and s̆t = st − µs. Furthermore, s̆t ∼ N (0N , Σs), and ĕt ∼
N (0Mt , R̆t), with R̆t = CtΣsCT

t + σ2
e IMt . It can be easily shown that vt and ĕt are mutually uncorrelated

as it is already assumed in Section 2.1 that vt is mutually uncorrelated with st and et, respectively.
Now, using the state model of (7) and the measurement model of (10), the non-stationary component
vt can be estimated following the lines of a simple Kalman filter [27]. In this case, the recursive state
estimate at time t is given by

v̂t = Htv̂t−1 + Gt(y̆t − CtHtv̂t−1), (11)

where the Kalman gain Gt can be expressed as

Gt = [HtMvt−1 HT
t + Qt]CT

t ×
[R̆t + Ct(HtMvt−1 HT

t + Qt)CT
t ]
−1. (12)

The MSE matrix of the estimate v̂t at time t is given by E[(vt − v̂t)(vt − v̂t)T ] = Mvt , which is
related to the MSE matrix of the estimate at time t− 1, i.e., Mvt−1 , by the recursive relation [27]

Mvt = [(HtMvt−1 HT
t + Qt)

−1 + CT
t R̆−1

t Ct]
−1. (13)

In the next stage, the estimate of v̂t in (11) is used to compute the stationary component st using
kriging. In spatial statistics, the intensity of an environmental field in an unknown location can be
interpolated using a variogram model [3,4]. For a spatially stationary field, this variogram can be
expressed as a covariance [3]. In this way kriging can be viewed as a simple linear minimum mean
square error (LMMSE) interpolator [27]. The linear model is given by yt − Ctv̂t = Ctst + et and the
related estimator has the form

ŝt = µs + ΣsCT
t (CtΣsCT

t + σ2
e IM)−1(yt − Ctv̂t − Ctµs), (14)

where we use the prior information st ∼ N (µs, Σs). The MSE matrix [27] of the estimate ŝt, i.e., Mst is
given by

Mst = [Σ−1
s + σ−2

e CT
t Ct]

−1. (15)

Finally, the overall field estimate at time t is given by ût = v̂t + ŝt.
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2.6. Performance Metrics as a Function of wt

In this section, we express the MSE matrices, i.e., Mvt and Mst as functions of wt. First of all,
we mention some facts regarding the structure of the error covariance matrices presented in the
Expressions (13) and (15).

It should be noted that the measurement noise in (10) is correlated over space through the
off-diagonal elements of R̆t. Due to this fact, sensor selection approaches using the standard convex
framework like [18,20,22], i.e., designing a wt by directly optimizing the Expression (13) is difficult
due to the presence of the off-diagonal elements of R̆t. It should also be noted that the expression of
R̆t is a function of the measurement matrix Ct and thus the selection vector wt. However, we do not
encounter this issue in the performance metric to estimate the stationary component st, i.e., (15), as the
measurement noise et is assumed to be spatially uncorrelated in this case.

In the expression of Mst , i.e., (15), we assume that Σs is well-conditioned, i.e., accurately invertible.
However, this may not be the case in some scenarios. The condition number of Σs strongly depends on
the correlation of the field, spatial sampling distance, grid size etc. [25]. The variation of the condition
number of Σs with different values of θ for both N = 36 and N = 144 is plotted in Figure 2a. It is
seen that for a higher resolution or a strong spatial correlation, the spatial covariance matrix becomes
increasingly ill-conditioned and thus close to singular. In such circumstances, we cannot compute the
estimation error covariance matrix Mst using the Expression (15). In that case, Mst can be computed
using the alternate expression of (15) given by

Mst = [Σ−1
s + σ−2

e CT
t Ct]

−1

= Σs − ΣsCT
t (CtΣsCT

t + σ2
e IMt)

−1CtΣs, (16)

which is obtained using the matrix inversion lemma (MIL). It should be noted that the alternative
expression of the MSE can be used to compute the MSE (without inverting Σs), but it is difficult to
express it as an explicit function of wt.
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Figure 2. (a) Plot of the condition number of Σs vs. θ with different number of candidate sensing
locations (N); (b) MSE of the estimate of st vs. θ for different numbers of candidate sensing locations
(N); Mt = N; σ2

e = 1; The spatial resolution is increased by representing one pixel of Figure 1a by
4 pixels.

In Figure 2b, we plot tr[Mst ] for the best case, i.e., the MSE with all the pixel centroids equipped
with sensors (wt = 1N or Ct = IN) for different values of θ, and for two different spatial resolutions
(N = 36 and N = 144) of the same 6× 6 square km service area. It is seen that tr[Mst ] decreases as the
strength of the correlation is increased by increasing θ.
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To circumvent the effect of ill-conditioning as well as to handle the correlated measurement noise
in the expression of Mvt , we propose the following approach. We start by introducing the substitution

Σsr = Σs + αI, (17)

where Σsr is a well-conditioned matrix and α ∈ R. More specifically, the range of α is considered to
be 0 < α < σ2

e . Substituting Σs = Σsr − αI, we can represent the measurement error covariance
matrix of (10) as, R̆t = CtΣsrCT

t + ζIMt , where ζ = σ2
e − α and where we used CtCT

t = IMt .
Substituting R̆t = CtΣsrCT

t + ζIMt in (13), the MSE matrix for the estimate of the non-stationary
component is given by

Mvt = [(HtMvt−1 HT
t + Qt)

−1+

CT
t (CtΣsrCT

t + ζIMt)
−1Ct]

−1. (18)

Using the MIL, we have the following matrix identity

(Σ−1
sr + CT

t (ζIMt)
−1Ct)

−1 = Σsr

− ΣsrCT
t (CtΣsrCT

t + ζIMt)
−1CtΣsr, (19)

from which we can derive

CT
t (CtΣsrCT

t + ζIMt)
−1Ct = Σ−1

sr

− Σ−1
sr (Σ−1

sr + ζ−1diag(wt))
−1Σ−1

sr , (20)

where we used CT
t Ct = diag(wt). Substituting (20) in (18) we obtain the following expression for Mvt .

Mvt = [(HtMvt−1 HT
t + Qt)

−1 + Σ−1
sr

− Σ−1
sr (Σ−1

sr + ζ−1diag(wt))
−1Σ−1

sr ]−1. (21)

Next, substituting Σs = Σsr− αI in the inverse of the right most term of (16) and using CtCT
t = IMt ,

we obtain
Mst = Σs − ΣsCT

t (CtΣsrCT
t + ζIMt)

−1CtΣs. (22)

Substituting the identity (20) into (22), we obtain the following expression of Mst .

Mst = Σs − ΣsΣ−1
sr Σs

+ ΣsΣ−1
sr (Σ−1

sr + ζ−1diag(wt))
−1Σ−1

sr Σs. (23)

Note that, the expression of (23) avoids the inversion of an ill-conditioned Σs. Here, we only need
to invert the well-conditioned Σsr.

In this work, we consider the overall MSE as a performance metric for sensor placement,
i.e., g(wt) as mentioned in (9a). This is given by

g(wt) = tr(Mvt) + tr(Mst)

= tr[X− F[F + ζ−1diag(wt)]
−1F]−1 + tr[Y]

+ tr[ZT [F + ζ−1diag(wt)]
−1Z], (24)

where X = (HtMvt−1 HT
t + Qt)−1 + Σ−1

sr , F = Σ−1
sr , Y = Σs − ΣsΣ−1

sr Σs, and Z = Σ−1
sr Σs. Note that

the matrices X, F, Y, and Z are all independent of wt. To model Σsr and F + ζ−1diag(wt) as positive
definite matrices we need 0 < α < σ2

e .
The performance metric derived in (24) incorporates the MSE matrices of the estimates of the

non-stationary (vt) as well as the stationary (st) component of the field, as explicit functions of the
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sensor location selection vector wt. Note that a formulation similar to (23), for the computation of the
MSE matrix as a function of wt is proposed in [22], where the field is considered to be either purely
stationary or non-stationary.

3. KKF with Sensor Placement

In this section, we relax and reformulate the proposed sensor placement problem (9) as a
semidefinite programming (SDP) problem. Then we present the overall KKF estimator followed
by the sensor placement to dynamically monitor the field using only the measurements from the
selected sensing locations.

3.1. Sensor Placement Problem as an SDP

Solving for the best subset of sensing locations is a combinatorially complex problem.
However, it can be relaxed to a convex problem [18–20]. As discussed in Section 2.1, the sensor
location selection vector wt ∈ {0, 1}N acts as a weighting vector for all the N candidate pixels.
Following the main optimization problem, i.e., (9), a sparsity-enforcing, low estimation error,
and resource-constrained design of wt can be obtained by solving

arg min
wt∈[0,1]N

g(wt) + λt‖wt‖1 (25a)

s.t. Kmin
t ≤ 1Twt ≤ Kmax

t , (25b)

where the expression of g(wt) is given by (24). Here, we have relaxed the non-convex Boolean
constraint wt ∈ {0, 1}N of (9) to a convex box constraint wt ∈ [0, 1]N . The resource constraint of (25b)
is affine and thus convex. Some comments regarding the formulation of the proposed sensor placement
problem of (25) are presented next.

• First of all, let us consider the non-convex version of the optimization problem of (25) with λt = 0.
This is given as

arg min
wt∈{0,1}N

g(wt) (26a)

s.t. Kmin
t ≤ 1Twt ≤ Kmax

t . (26b)

In this case, the MSE cost will be minimum, i.e., the best estimation performance is achieved,
when we select the maximum number of available candidate locations or in other words,
when 1Twt = Kmax

t . Then, there is no way to reduce the number of selected locations below
Kmax

t and the constraint 1Twt ≥ Kmin
t becomes redundant. In the aforementioned case, it is

difficult to reduce the number of selected sensing locations below Kmax
t .

• Notice that, dropping the resource constraint (25b) and increasing λt will reduce the number of
selected sensing locations. However, there is no explicit relation between λt and 1Twt, i.e., it is
difficult to directly control the resource allocation (i.e., Kmax

t ) through λt.
• We mention that the proposed formulation of (25) is not a direct MSE minimization problem but it

attains a specific MSE along with enforcing sparsity in spatial sensor location selection through the
second summand of (25a). The sparsity enforcement is lower bounded by the minimum number
of sensing locations to be selected at any t, i.e., Kmin

t . It should be noted that for an arbitrary
selection of λt, the minimum number of selected sensing locations will always be Kmin

t .
• Lastly, it should be noted that a sparsity-enforcing design of wt can be achieved by retaining

only the second summand of the objective function of (25a) and using a separate performance
constraint given as g(wt) ≤ γt,MSE [20,22]. The desired performance threshold γt,MSE can be
time-varying or independent of t based on the application. However, in many practical scenarios,
it could be difficult to set the performance threshold γt,MSE a priori for every t.
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Based on the aforementioned arguments, we advocate the proposed design approach (25) that
lowers the MSE along with enforcing sparsity in sensor placement satisfying a flexible resource
allocation constraint.

After solving (25), we obtain ŵt ∈ [0, 1]N which can be converted to a Boolean selection vector
wt ∈ {0, 1}N . This can be performed by either deterministic or stochastic rounding procedures as
discussed below.

• The simplest approach could be to set the non-zero entries of ŵt to 1. However, there can be a
huge difference between the magnitudes of any two non-zero elements in ŵt. Considering the
fact that the indices of the high magnitude (close to 1) elements of ŵt signify a more informative
sensing location, ŵt can be sorted in ascending order of magnitude [18] and a selection threshold
(γ) can be selected based on the magnitudes of the elements of the sorted ŵt. The entries of the
Boolean selection vector can be computed as [wt]j = 1 if [ŵt]j ≥ γ else [wt]j = 0, for j = 1, . . . , N.

• Another approach could be a stochastic approach, where every entry of ŵt is assumed to be
the probability that this sensing location is selected at time t. Based on this, multiple random
realizations of wt ∈ {0, 1}N are generated, where the probability that [wt]j = 1 is given by [ŵt]j,
for j = 1, . . . , N. Then the realization that satisfies the constraints and minimizes the estimation
error, i.e., g(wt) is selected [20].

Let us now transform the optimization problem of (25) into an SDP. From the expression
of (24), it is clear that minimizing g(wt) w.r.t. wt is equivalent to minimizing the expression
tr[X− F[F + ζ−1diag(wt)]−1F]−1 + tr[ZT [F + ζ−1diag(wt)]−1Z] as the matrix tr[Y] is independent
of wt. In the first step, we represent the optimization problem of (25) in an epigraph form ([28],
p. 134), ([18], Equations (25) and (26)) which is given by

arg min
wt∈[0,1]N ,V∈SN ,B∈SN

tr[V] + tr[B] + λt‖wt‖1 (27a)

s.t. V � [X− F[F + ζ−1diag(wt)]
−1F]−1, (27b)

B � ZT [F + ζ−1diag(wt)]
−1Z, (27c)

Kmin
t ≤ 1Twt ≤ Kmax

t , (27d)

where we introduce the auxiliary variables V ∈ SN and B ∈ SN . We notice that the epigraph form (27)
is well-posed since by choosing 0 < α < σ2

e in (17) the matrix [F + ζ−1diag(wt)] is always positive
definite and symmetric. In addition, also the matrix [X − F[F + ζ−1diag(wt)]−1F] is also positive
definite by construction as derived in (18)–(21).

The epigraph form (27) is not a strictly convex program, in the sense that there are multiple
V and B matrices that achieve the minimal cost value. This is due to the inequality constraints of
(27b) and (27c). At optimality, the eigenvalues of V and B must be equivalent to their lower bounds
in (27b) and (27c). Hence, an optimizer of the problem is V = [X− F[F + ζ−1diag(wt)]−1F]−1 and
B = ZT [F + ζ−1diag(wt)]−1Z.

We proceed by simplifying the constraint (27b). Let us introduce another auxiliary variable
A ∈ SN and substitute (27b) with two constraints

V � [X−A]−1, (28)

A � F[F + ζ−1diag(wt)]
−1F. (29)

With this in place, the optimization Problem (27) can be formulated as
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arg min
wt∈[0,1]N ,V,A,B∈SN

tr[V] + tr[B] + λt‖wt‖1 (30a)

s.t. V � [X−A]−1, (30b)

A � F[F + ζ−1diag(wt)]
−1F, (30c)

B � ZT [F + ζ−1diag(wt)]
−1Z, (30d)

Kmin
t ≤ 1Twt ≤ Kmax

t , (30e)

It can be claimed that the optimization problem (30) is equivalent to (27) given that it yields a
decision variable wt with the same optimal cost of (27) . To prove this, let us choose an arbitrary wt

say w̄. For a fixed yet arbitrary w̄ verifying (30e), the optimization problem (30) minimizes both V and
B. This means that due to (30b) it minimizes also A: in fact, as V � [X−A]−1 the lower bound for V
is minimal if the positive definite matrix [X−A] is maximal, that is A is minimal. Therefore, A must
attain its lower bound. As mentioned earlier, there are multiple optimizers, yet one is A = F[F +

ζ−1diag(wt)]−1F. In addition, V = [X−A]−1 = [X− F[F + ζ−1diag(w̄)]−1F]−1 at optimality, as well.
The same reasoning holds also for B, which at optimality is B = ZT [F + ζ−1diag(w̄)]−1Z. Since this
reasoning is valid for any feasible w̄, it is also valid for an optimal one and therefore the equivalence
claim follows. It should be noted that a similar argument was also presented in [24], where only the
issue of correlated measurement noise is considered.

Using the Schur complement lemma the constraints (30b) and (30c) can be equivalently
represented by the linear matrix inequalities (LMI) :[

X−A I
I V

]
� 0 (31a)[

A F
F F + ζ−1diag(wt)

]
� 0 (31b)

The constraint (30c) can be equivalently represented by an LMI using the Schur complement [28].
In other words, using the fact that [F + ζ−1diag(wt)] � 0, we obtain[

B ZT

Z F + ζ−1diag(wt)

]
� 0. (32)

Finally, an SDP representation of the overall optimization problem of (27) can be expressed as

arg min
wt∈[0,1]N ,A,B,V∈SN

tr[V] + tr[B] + λt‖wt‖1, (33a)

s.t. LMIs in (31a), (31b), (32) (33b)

Kmin
t ≤ 1Twt ≤ Kmax

t (33c)

The solution of the aforementioned SDP is a selection vector ŵt ∈ [0, 1]N .

3.2. Spatial Sensor Placement for Stationary Field Estimation

Let us consider the effect of the stationary component of the field st for any t. In this case,
we consider that vt = 0. In this case, the measurement model of (1) is given by yt = Ctst + et.
Exploiting the prior information regarding st, i.e., st ∼ N (µs, Σs) an LMMSE estimator of st

can be presented by ŝt = µs + ΣsCT
t (CtΣsCT

t + σ2
e IMt)

−1(yt − Ctµs). The performance of the
aforementioned estimator is given by the MSE matrix Mst = [Σ−1

s + σ−2
e CT

t Ct]−1 = Σs −
ΣsCT

t (CtΣsCT
t + σ2

e IMt)
−1CtΣs. Considering the fact that Σs can be ill-conditioned, following the

formulation of (23), the expression of Mst can be expressed as a function of wt as
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Mst = Y + ZT [F + ζ−1diag(wt)]
−1Z, (34)

where Y = Σs − ΣsΣ−1
sr Σs, Z = Σ−1

sr Σs, and F = Σ−1
sr . Note that the matrices F, Y, and Z are

all independent of wt. Considering g(wt) = tr[Mst ] and following the same SDP formulation of
Section 3.1, the proposed sensor placement problem of (9) can be represented as

arg min
wt∈[0,1]N ,B∈SN

tr[B] + λt‖wt‖1, (35a)

s.t.

[
B ZT

Z F + ζ−1diag(wt)

]
� 0, (35b)

Kmin
t ≤ 1Twt ≤ Kmax

t . (35c)

The optimization problem of (35) gives the spatial sensor placement pattern for any snapshot
t, when the field is stationary over space. However, if the field is also temporally stationary then
the sensor placement problem of (35) can be extended to blocks of multiple snapshots. In this case,
the performance metric can be computed using the same approach as [22]. In the simulation section,
we show the effects of spatial correlation on sensor placement.

3.3. Sparsity-Enhancing Iterative Design

In order to eschew the effect of the magnitude dependencies of the elements of ŵt, we individually
weigh each element of wt. In this case, we consider a vector form for the regularization parameter :
λt ∈ RN . The weight associated to the each element of wt is the corresponding element of λt ∈ RN .
We iteratively refine the weighting vector λt in the `1 minimization term of the problem (33) [29].
Using this approach, higher weights are applied on the smaller elements of wt to push them towards 0
and the magnitudes of the larger elements are maintained by applying a smaller weight. In this way,
a sparser solution can be obtained compared to the standard sparsity-promoting method. The iterative
algorithm can be summarized as

• Initialize i = 0, weight vector λ0
t = 1N , ε, and maximum number of iterations I.

• for i = 0, . . . , I

ŵi
t = arg min

wt∈[0,1]N ,A,B,V∈SN
tr[V] + tr[B] + (λi

t)
Twt, (36a)

s.t. LMIs in (31a), (31b), (32) (36b)

Kmin
t ≤ 1Twt ≤ Kmax

t (36c)

• [λi+1
t ]j =

1
ε+[ŵi

t ]j
, for every j = 1, . . . , N

• end;
• set ŵt = ŵI

t .

After solving the above algorithm, we still obtain ŵt ∈ [0, 1]N . We convert this to a Boolean
selection vector wt ∈ {0, 1}N using a deterministic/stochastic rounding method as mentioned
in Section 3.1.

3.4. KKF Algorithm with Sensor Placement

The informative Mt locations to deploy/move the sensors at any t is denoted by supp(ŵt),
where 1Tŵt = Mt. The noisy measurements collected from the aforementioned Mt locations are
stored in yt. The sensing matrix Ct is constructed by removing the all-zero rows of diag(ŵt) at
every t. This measurement matrix is used for the estimation of the non-stationary and the stationary
components by (11) and (14), respectively. Then the overall field estimate at time t is computed by
ût = v̂t + ŝt. Note that the estimation steps, i.e., (11) and (14) do not require the computation of the
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inverse of Σs. The error covariance of the non-stationary component can be updated by (13), which also
does not require the inverse of Σs. At every t, the overall estimation performance can be computed by
the expression of (24). The best case performance, i.e., the performance with all the locations selected
can also be computed by the expression of (24) by using wt = 1N .

In many practical environmental fields (such as rainfall), the field is generally non-negative.
To achieve a non-negative estimate at every t, the estimates of the stationary and non-stationary
components can be projected onto the non-negative orthant, i.e., the negative values are set to zero.
This is obtained by adopting

ût = [v̂t + ŝt]+. (37)

However, in this case, the performance metrics tr[Mvt ] and tr[Mst ] are only the approximations.
The overall sensor placement followed by a KKF algorithm is presented in Algorithm 1.

Algorithm 1 Sensor placement followed by a KKF estimator

1: Initialize: t = 0, v̂t, Mv̂t , λ0
t = 1N .

2: Given: {Ht}T
t=1, Qt = Q, Σs, σ2

e , I, ε, Kmax
t , Kmin

t .

3: for t = 1, . . . , T

4: Prediction using the state model.

5: Sensor placement: iterative sparsity-enhancing design of wt ∈ {0, 1}N (Section 3.3).

6: Correction: estimation of vt and st using the measurements from the selected sensing locations.

7: Overall KKF estimate: ût = [v̂t + ŝt]+.

8: Covariance update.

9: end for

4. Simulation Results

In this section, we perform some numerical experiments to exhibit the practicality of the developed
sparsity-enforcing sensor placement followed by the KKF estimation method. We select a service
area of 6× 6 square km with 1 square km spatial resolution as illustrated in Figure 3. The spatial
distribution of the non-stationary component at time t = 0, i.e., v0, is generated by the following
exponential source-field model

[v0]j =
K

∑
k=1

sk exp(−dk‖xj − ρk‖2), j = 1, . . . , N, (38)

where K is the number of field-generating points/sources. The parameters ρk, sk, and dk are the
location, amplitude, and the spatial decaying factor of the k-th source at time t = 0. Based on this
function, we generate the non-stationary component of the field at time t = 0, i.e., v0 ∈ RN using the
parameters K = 1, ρ1 = [1.5, 1.5]T , s1 = 2, and d1 = 1. The spatial distribution of v0 in the specified
service area is shown in Figure 3.

The state model of the non-stationary component vt is modelled by (7). The state transition matrix
is modelled by the Gaussian kernel function given by (8). For the sake of simplicity, we consider a
spatially invariant translation parameter and spatio-temporally invariant dilation parameters given as
aij

t = at and Dij
t = D, respectively, for i, j = 1, . . . , N. The elements of the state transition matrix are

given by
[Ht]ij = νexp[−(xi − xj − at)

TD−1(xi − xj − at)]. (39)

The spatio-temporal evolution of the true value of the field, i.e., ut = vt + st is generated in the
following two ways.
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Figure 3. Field distribution at t = 0 with a single source: K = 1, ρ1 = [1.5, 1.5]T , s1 = 2, d1 = 1.

In the first case, we consider a pure advective process, i.e., we select a very low dilation parameter
given by D = 10−4I2 for all t = 1, . . . , 8 and ν = 0.8. It is assumed that the temporal resolution
is 1 min. The translation vectors, i.e., at, are assumed to be changing every t as [1, 1]T , [−1,−1]T ,
[1, 1]T , [0, 0]T , [1, 1]T , [−1,−1]T , [0, 1]T , and [−1,−1]T . It is assumed that at t = 0, vt is generated
by the source as shown in Figure 3. The different states of vt for t = 1, . . . , 8 are generated by the
state model of (7). The spatially colored yet temporally uncorrelated process noise is characterized by
qt ∼ N (0N , Q), where [Q]ij = 10−4 exp(−‖xi − xj‖2). The stationary component st is modelled by
st ∼ N (1N , Σs). The parameters of the squared exponential covariance function of (6) are given by
σ2

s = 0.001 and θ = 1. Note that increasing the value of θ, the field becomes spatially more correlated
and the condition number of Σs increases. However, as mentioned earlier, our proposed formulation,
i.e., both the selection and the estimation, does not involve the inversion of Σs. A highly spatially
correlated st is considered in the next case. For the first case, the true field ut = vt + st for t = 1, . . . , 8
can be simulated as shown in Figure 4.
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Figure 4. Spatio-temporal evolution of ut in a 6× 6 square km area; spatial resolution: 1× 1 square
km; time varying Ht for t = 1, . . . , 8; strength of spatial correlation: θ = 1.
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In the second case, we consider D = I2 for all t = 1, . . . , 8 and the translation parameters are
fixed as at = [0.4, 0.4]T for t = 1, . . . , 4, and no translation for the last 4 snapshots, i.e., at = [0, 0]T for
t = 5, . . . , 8. The state of vt at t = 0 is the same as before. The scaling parameter is given by ν = 0.35.
The process noise qt is the same as before. In this case, we assume that the stationary component st is
spatially more correlated than the last case. The parameters of the covariance Function (6) are taken as
σ2

s = 0.01 and θ = 4, which generates an ill-conditioned Σs (Figure 2a). Using these, the true field, i.e.,
ut = vt + st for t = 1, . . . , 8 is shown in Figure 5.
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Figure 5. Spatio-temporal evolution of ut in a 6× 6 square km area; spatial resolution: 1× 1 square
km; time varying Ht for t = 1, . . . , 8; strength of spatial correlation: θ = 4.

4.1. Sensor Placement Followed by Field Estimation Using KKF

We select the optimal sensing locations and use them to estimate the field for t = 1, . . . , 8 snapshots
for the two different scenarios of the spatio-temporal evolution of the field, as mentioned in the previous
section. We use the same service area shown in Figure 1b, where the centroids of the N = 36 pixels
are the candidate sensing locations. We assume that the measurement noise variance is given by
σ2

e = 0.001. We solve the optimization problem of (36) with the parameters I = 2 and ε = 10−6.
The weighting vectors are initialized as λ0 = 1N . The resource constraints are given as Kmax

t = 30
and Kmin

t = 25 for all t. To extract the Boolean solution wt ∈ {0, 1}N from ŵt ∈ [0, 1]N , we adopt the
randomized rounding method. We use the software CVX [30] (parser CVX, solver SeDuMi [31]) to
solve the SDP problem (36).

Following the above simulation setup, the selected sensing locations for the first and the second
scenario are shown in Figure 6a,b respectively for the 8 snapshots. The indices of the pixel midpoints
are the same as in Figure 1b (vertical axis). The main observations from the selected locations are
listed below.

• First of all, it is clearly seen that the selected sensing locations depend on the dynamics. Note
that Figure 6a gives the optimal placement pattern, when Ht is changing every t (different at on
every t). Figure 6b shows the optimal sensing locations when we have the same Ht for t = 1, ..., 4
(at = [0.4, 0.4]T) and another Ht for t = 5, ..., 8 (at = [0, 0]T).

• When Ht is changing every t, i.e., the spatio-temporal evolution of the field is guided by the
time-varying spatial translation parameter at (Figure 1b), the optimal selection pattern also
depends upon this translation (Figure 6a).
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• In the second scenario, we have assumed a very low and fixed translation, i.e., at = [0.4, 0.4]T for
the first 4 snapshots and at = [0, 0]T , i.e., no translation, for the last 4 snapshots (Figure 5). It is
seen that almost the same set of sensors are selected in the last 4 snapshots of Figure 6b. In general,
when Ht is not changing with time, the estimation error of the non-stationary component reaches
a steady state after a number of snapshots and the same set of sensors are selected every t.

The overall estimation performance using the measurements from the selected locations of
Figure 6a,b is shown in Figure 7a,b, respectively. In these figures, we exhibit the pixel-wise comparison
of the estimates for T = 8 snapshots, i.e., the estimation performance of 36 × 8 = 288 pixels.
We initialize the KKF iterations with v̂t = 1N and Mvt = 0.001IN at t = 0.
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Figure 6. (a) Selected sensing locations to estimate the field with the first scenario of the true value;
(b) Selected sensing locations to estimate the field with the second scenario of the true value.
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Figure 7. (a) Comparison of the KKF estimate (ût) with the true value (ut) (Figure 4) with the
measurements from the selected locations shown in Figure 6a; (b) Comparison of the KKF estimate
(ût) with the true value (ut) (Figure 5) with the measurements from the selected locations shown
in Figure 6b.
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4.2. Performance Analysis

We compare the estimation performance of the developed sensor placement method by comparing
the performance metric, i.e., g(ŵt) = tr[Mst ] + tr[Mvt ] with a random sensor placement (with the same
Mt, i.e., ‖ŵt‖0 = Mt as for the developed method) and with the best case performance (i.e., Mt = N or
wt = 1N). For the random placement, we generate 100 different realizations of wt ∈ {0, 1}N at every t
with the same Mt as for the proposed method. Then g(wt) is computed for every wt and their average
is considered. Similarly, we compute the best case performance, i.e., g(1N) for every t and in this case
Mvt is updated with wt = 1N . We use the same set of parameters as mentioned in the first case of
Section 4.1. Only the resource allocation constraint is simplified as 1Twt = 15, i.e., we fix that only
15 sensing locations will be selected every t. The performance comparison is shown in Figure 8. It is
seen that the proposed approach slightly outperforms the random placement. However, the random
placement of sensors does not optimize any performance criterion.
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Figure 8. Comparison of the performance metric for the proposed method, random placement and the
best case (only 15 sensors are selected on every t).

4.3. Spatial Sensor Placement for Stationary Field Estimation

In this section, we show the effects of different spatial correlation patterns on sensor placement
assuming the field is purely stationary. We solve the optimization problem of (35), for two different
spatial covariance matrices (Σs). In the first case, we consider that Σs is generated by the squared
exponential Function (6) with θ = 2 and σ2

s = 0.01 (Figure 9a). In the second case, we consider
a randomly generated Σs (Figure 9b). The resource allocation constraint is the same as before,
i.e., Kmin

t = 25, and Kmax
t = 30. We solve the optimization problem of (35), with the iterative approach

of (36) with the same parameters as mentioned in the previous section. The selected locations (marked
by black squares where the blue dots are the candidate locations as shown in Figure 1b) to deploy
sensors are shown in Figure 10a,b for the spatial covariance matrices shown in Figure 9a,b, respectively.

First of all, it is observed that the spatial distribution of the optimal sensing locations depends
upon the correlation pattern of the field. It is seen that when Σs is generated by a squared
exponential covariance (stationary) function then the optimal sensor placement pattern is more or less
symmetrically and uniformly distributed over the entire service area. However, for a random spatial
covariance matrix the optimal sensing locations do not follow any specific pattern.
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Figure 9. (a) Spatial covariance matrix generated by the squared exponential function (σ2
s = 0.01,

θ = 2); (b) Randomly generated spatial covariance matrix.
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Figure 10. (a) Sensor placement pattern for the Σs as shown in Figure 9a; (b) Sensor placement pattern
for the Σs as shown in Figure 9b.

5. Conclusions and Future Work

In this work, we have developed a sparsity-enforcing sensor placement followed by a field
estimation technique using a KKF. The proposed methodology selects the most informative sensing
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locations over space and time in a specified service area of interest. Along with minimizing the
estimation error, the developed method also economizes the sensor placement (in terms of resources)
at every temporal interval. The salient features of the proposed method include handling a general
class of spatial covariance matrices and tackling correlated measurement noise. Numerical analysis
shows the feasibility of the method. The effects of the dynamics and spatial correlation of the field in
spatio-temporal sensor placement are discussed with numerical experiments.

In this work, we have considered the fact that the prior knowledge regarding the spatial variability
and the dynamics are perfectly known a priori. In that case, the performance of a clairvoyant Kalman
setup with Gaussian measurement and process noise is optimal. However, in many practical scenarios,
the aforementioned spatio-temporal prior information may not be accurate and we require more
information regarding the unknown field in the estimation step. Future research is envisioned to
incorporate the effects of model imperfections in the developed method. Another future research area
could be using distributed algorithms to apply the developed method for large scale sensor network
applications. It will also be interesting to tailor the recent progress in time-varying optimization [32] to
solve the SDPs in a tracking fashion, rather than at optimality at each sampling time.
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