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Abstract: This paper discusses the vibration-induced error in non-ideal MEMS tuning fork gyroscopes
(TFGs). Ideal TFGs which are thought to be immune to vibrations do not exist, and imbalance between
two gyros of TFGs is an inevitable phenomenon. Three types of fabrication imperfections (i.e., stiffness
imbalance, mass imbalance, and damping imbalance) are studied, considering different imbalance
radios. We focus on the coupling types of two gyros of TFGs in both drive and sense directions,
and the vibration sensitivities of four TFG designs with imbalance are simulated and compared.
It is found that non-ideal TFGs with two gyros coupled both in drive and sense directions (type CC
TFGs) are the most insensitive to vibrations with frequencies close to the TFG operating frequencies.
However, sense-axis vibrations with in-phase resonant frequencies of a coupled gyros system result
in severe error outputs to TFGs with two gyros coupled in the sense direction, which is mainly
attributed to the sense capacitance nonlinearity. With increasing stiffness coupled ratio of the coupled
gyros system, the sensitivity to vibrations with operating frequencies is cut down, yet sensitivity to
vibrations with in-phase frequencies is amplified.

Keywords: vibration; TFG; simulation; imbalance; error output; coupling

1. Introduction

With the advancement of microelectromechanical system (MEMS) technology [1], gyroscopes
are progressing towards low cost, compact, low power, light weight, and high-performance.
The performance of MEMS vibratory gyroscopes (MVGs) has achieved great improvement in resolution,
sensitivity, and bandwidth [2–6]. Therefore, applications of MVGs are growing rapidly in the fields
of consumer, automobile, industry, navigation, and military devices. MVGs operate based on the
energy transfer between two gyro vibration modes caused by the Coriolis effect [7] and usually
have a high quality factor (Q-factor) ranging from 45 in air [8] to tens of thousands in vacuum [9].
Higher Q factor improves the resolution and sensitivity of MVGs. Meanwhile, it also amplifies the
amplitudes of displacements or forces caused by external vibration at certain frequencies, and results
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in increased output errors [10]. These output errors, known as “vibration sensitivity” are unpredictable,
and difficult to minimize with better electronics circuits design.

To avoid vibration-induced output errors, tuning fork gyroscopes (TFGs) are designed to eliminate
linear vibrations output as a common mode signal by differential sensing. TFGs have two identical
masses that vibrate out of phase [11], which cancel common-mode noises and double the amplitude of
the output signal compared to conventional MVGs. In general, TFGs are considered to be insensitive
to vibrations [12,13]. However, previous works found that linear vibrations along the sense direction
of TFGs still induce error outputs [14,15]. Yoon et al. [16] reported three causes of vibration sensitivity
in ideal TFGs: (1) the asymmetric electrostatic force along the sense direction; (2) the asymmetric
electrostatic force along the drive direction; and (3) nonlinearity in the capacitance of parallel plate
sense electrodes. These three causes, which may appear in special situations and some TFG designs,
were analyzed and compared in three TFG designs [10,17,18] by Matlab and Simulink. However,
the conclusion was based on ideal TFGs, which do not exist because of technological limitations. Earlier
studies found that the sense direction vibration sensitivity of TFGs with stiffness imbalance can be
reduced by increasing the decoupling ratio and coupled stiffness ratio [19,20]. However, only vibration
with operating frequency and sense stiffness imbalance were studied. Moreover, the coupling between
two TFG gyros was not considered in previous works.

In this paper, we conducted a detailed analysis of TFG vibration sensitivity, considering three
types of imbalance caused by fabrication defects. A two degrees-of-freedom (DOFs) coupled gyros
model and a two DOFs uncoupled gyros model are established, and their theoretical dynamics are
studied when both anti-phase forces and in-phase vibration accelerations are applied to two of their
gyros. Sense capacitive nonlinearity leading to small output errors induced by vibrations with
non-operating frequencies is included in this work. And the nomenclature of variables used in the
work is given in Table 1. The vibration sensitivities of four TFG designs with different coupling types
between two gyros are compared though simulation. To compare fairly, all designs considered in this
paper were assumed to be operating ideally (except for the previously-discussed imbalance), and other
effects caused by quadrature errors, mismatch during fabrication, or asymmetric forces are excluded
in this work.

Table 1. Nomenclature of variables in this work.

Force-related
FL/FR Operating force (driving or Coriolis force) of the left/right gyro of a TFG
av External vibration acceleration
aco Coriolis acceleration amplitude: response of TFG to rotation in normal direction
Fd Driving force amplitude
F0/a0 Amplitude of FL and FR in ideal TFG/Amplitude of av
ω0 Operating angular frequency
ωv Vibration angular frequency
ω1/ω2 First/second resonant angular frequency of 2-DOFs model
φ Phase of the external vibration acceleration

Displacement-related
uL/uR Total absolute displacement of the left/right gyro of a TFG
vL/vR Total displacement of the left/right gyro of a TFG relative to the device
uD Total absolute displacement of the device
va/vF Displacement caused by operating force / external vibration

v
[

vL
vR

]
ve/vi Error/ideal displacements difference

TFG structure-related
mL/mR/m Mass of left gyro/right gyro/left or right gyro of ideal TFG
kL/kR/k Stiffness of left gyro mass/right gyro mass/left or right gyro mass of ideal TFG
kc Coupling stiffness between left and right gyro mass
cL/cR/c Damping of left gyro mass/right gyro mass/left or right gyro mass of ideal TFG
ak/am/ac/a′m Stiffness/mass/damping imbalance ratio (IR)/ 1

am
b Coupling stiffness ratio (CR)
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Table 1. Cont.

Capacitance-related
CL/CR Total capacitance value of the left/right gyro
C0 Value of CL and CR of ideal TFG not in operation
As Sense capacitance overlapping area
d1, d2 Initial sense capacitance gaps
CL1i/CL2i, i = 1, 2, 3, 4 Capacitance value of each capacitor of left gyro shown in Figure 2
CR1i/CR2i, i = 1, 2, 3, 4 Capacitance value of each capacitor of right gyro shown in Figure 2
CL1/CL2 Given by (CL11 + CL12 + CL13 + CL14)/(CL21 + CL22 + CL23 + CL24)
CR1/CR2 Given by (CR11 + CR12 + CR13 + CR14)/(CR21 + CR22 + CR23 + CR24)
∆CL/∆CR Differential capacitive readouts of the left/right gyro, given by CL1 − CL2/CR1 − CR2
Co Final capacitance output of a TFG, given by ∆CL − ∆CR
Cv/Cr Final capacitance output caused by external vibration/rotation
ε Permittivity

Other subscripts
d/s Subscripts indicating drive/sense mode or direction
k/m/c Subscripts indicating stiffness/mass/damping-related
1/2 First/second resonant frequency-related displacement or coefficient

Calculation-related
Ik1/Ik2 In-phase/anti-phase modal factor of coupled gyros system with stiffness imbalance
Im1/Im2 In-phase/anti-phase modal factor of coupled gyros system with mass imbalance
α Force ratio given by ma0/F0 or a0/aco
ρk/ρm/ρc Error displacements difference ratio, given by ve

vi
, with stiffness/mass/damping imbalance

2. Theoretical Study on the Vibration Response of the Ideal TFG

The structure of a TFG can be simplified into two DOFs models as shown in Figure 1. In general,
TFGs consists of two gyros with vertical vibrating modes: drive mode and sense mode. The two gyros
can be coupled together in each mode direction to separate the operating frequency from other model
frequencies (see Figure 1a), or uncoupled for simple structure and high sensitivity (see Figure 1b).

(a) (b)

mL mR

kL kR

cL cR

kC

uD

uL uR

mL
mR

kL cL

kR cR

uD
uL uR

Figure 1. Two degrees-of-freedom (DOFs) model of a tuning fork gyroscope (TFG) experiencing
external vibration. (a) TFG model with two gyros coupled on the drive or sense axis. (b) TFG model
with two gyros uncoupled on the drive or sense axis.

When the TFG is not in operation, the response dynamics of the coupled left and right gyros
suffering external vibration are governed by:
for the left gyro:

mLüL + cL(u̇L − u̇D) + kL(uL − uD)− kC(uR − uL) = 0, (1)

for the right gyro:

mRüR + cR(u̇R − u̇D) + kR(uR − uD) + kC(uR − uL) = 0. (2)

With consideration of internal force FL, FR, the displacement dynamics of the coupled left and
right gyros can be expressed in matrix form as:
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[
mL 0
0 mR

]
v̈ +

[
cL 0
0 cR

]
v̇ +

[
kL + kC −kC
−kC kR + kC

]
=

[
−mLav + FL
−mRav + FR

]
, (3)

where v =

[
vL
vR

]
, and vL = uL − uD and vR = uR − uD are the displacements of two gyros relative to

the device.
For an ideal TFG, take FL = −FR = F0 sin(ω0t) and av = a0 sin(ωvt + φ) into Equation (3).

Through the mode superposition method, the steady responses of two gyros can be given by:

v =

−a0β1
ω2

1
sin(ωvt + φ− φ1) +

F0β2
mω2

2
sin(ω0 − φ2)

−a0β1
ω2

1
sin(ωvt + φ− φ1)− F0β2

mω2
2

sin(ω0 − φ2)

 =

[
va + vF
va − vF

]
, (4)

where ω1 =
√

k
m and ω2 =

√
k+2kC

m denote the first-order (in-phase) and second-order (anti-phase)

resonant angular frequencies, βi = 1√
(1−λ2

i )
2+(2ξ1λi)2

are the magnification factors of amplitude,

λ1 = ωv
ω1

and λ2 = ω0
ω2

are the frequency ratios, the phase angles φi = arctan 2ξ1λi
1−λ2

i
, and ξi =

c
2mωi

are

the damping ratios, i = 1, 2.
For the uncoupled gyros model, the response dynamics to external vibration of the uncoupled

left and right gyros when the TFG is not in operation are governed by:
for the left gyro:

mLüL + cL(u̇L − u̇D) + kL(uL − uD) = 0, (5)

for the right gyro:
mRüR + cR(u̇R − u̇D) + kR(uR − uD) = 0. (6)

Steady responses of the two gyros of an ideal TFG in operation can be calculated,
with FL = −FR = F0 sin(ω0t) and av = a0 sin(ωvt + φ):

v =

[−a0β1
ω2 sin(ωvt + φ− φ1) +

F0β2
mω2 sin(ω0t− φ2)

−a0β1
ω2 sin(ωvt + φ− φ1)− F0β2

mω2 sin(ω0t− φ2)

]
=

[
va + vF
va − vF

]
, (7)

where v =

[
vL
vR

]
, and vL = uL − uD and vR = uR − uD are the displacements of two gyros relative to

the device. ω =
√

k
m is the angular resonant frequency, βi =

1√
(1−λ2

i )
2+(2ξ1λi)2

denote the magnification

factors of amplitude, the frequency ratios are λ1 = ωv
ω and λ2 = ω0

ω , the phase angles are φi =

arctan 2ξ1λi
1−λ2

i
, and ξi =

c
2mωi

are the damping ratios, i = 1, 2.

In summary, it is clear that the displacement differences on both sense and drive axes will not
change while suffering external vibrations for an ideal MEMS TFG. This is the advantage of TFGs
compared to single mass MEMS gyroscopes.

3. Sense Capacitance Nonlinearity

Capacitive detection is known to offer several benefits compared to other sensing techniques,
especially its ease of implementation. Capacitive detection does not require the integration of a special
material, which makes them compatible with state-of-the-art fabrication processes. They also provide
good DC response and noise immunity, high sensitivity, low drift, and low temperature sensitivity.
It is advantageous for TFGs’ double masses and anti operating model structure to apply differential
capacitive detection.
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However, the parallel-plate sensing mechanism displays a nonlinear behavior between sense
capacitance and the sense-axis displacement. A simplified model of the differential capacitive sensing
of a TFG is shown in Figure 2. Several groups of capacitive electrodes are symmetrically placed on
two opposing sides of two sensing masses. When the TFG is in operation, the displacements of two
gyro masses will be transferred to the capacitance change. If the TFG is not in operation, the initial
capacitance of two gyro masses can be expressed as:

C0 = CL = CR = CL1 + CL2 = CR1 + CR2 = 4εAs(
1
d1

+
1
d2

). (8)

Left gyroVsL

Fixed

d1 d2

CL11 CL12

d1d2

CL21CL22

d1 d2

CL13 CL14

d1d2

CL23CL24

Right gyro VsR

d1d2

CR11CR12

d1 d2

CR21 CR22

d1d2

CR13CR14

d1 d2

CR23 CR24

Figure 2. Differential configuration of variable-gap capacitors on the sense axis of a TFG with initial
unequal sense capacitance gaps d1 and d2. The capacitance value of each capacitor is given as
CL1i/CL2i/CR1i/CR2i, i = 1, 2, 3, 4.

It is supposed that no external vibration exists, or that the amplitude of vibration displacement is
much smaller than the sense capacitance gaps (d1, d2). The final output capacitance of a TFG derived
in Appendix A can be similarly expressed as:

Co ∼= 4εAs(
1
d1

+
1
d2

)(vsL − vsL)(
1
d1
− 1

d2
), (9)

where vsL and vsR denote the displacements of two gyros along the sense direction.
The demodulation system recovers only the output signals whose frequencies are at or near

the gyro’s operating frequency. With the approximate calculation lists in Appendix A, the error
capacitance that cannot be filtered by demodulating and rotation-related capacitance with considering
vsL = V0 sin(ω0t) + V sin(ωvt + ϕ) and vsR = −V0 sin(ω0t) + V sin(ωvt + ϕ)are given by:

Cv ∼= 3C0(
1
d1
− 1

d2
)V2V0 sin(ω0t)(

1
d2

1
− 1

d2
2
), (10)

Cr ∼= 2C0(
1
d1
− 1

d2
)V0 sin(ω0t). (11)

Vibration performance is determined by the ratio η of the gyro’s vibration sensitivity over the
gyro’s rotation sensitivity:

η =
Cv

Cr
=

3
2

V2(
1
d2

1
− 1

d2
2
). (12)

From Equation (12), it can be found that designers should decrease the Q value of the TFG or
decrease the sense capacitances’ gap difference and increase gap distances to reduce the vibration



Sensors 2018, 18, 1755 6 of 21

error outputs caused by sense capacitance nonlinearity. Either method has to lower the TFG’s
rotation sensitivity.

4. Theoretical Study of the Vibration Response of a Non-Ideal TFG

Due to the limitations of current fabrication technology, the mass, stiffness, and damping of left
and right gyros are not perfectly identical. Three types of fabrication imperfections are discussed in
the following subsections. First, the two resonant angular frequencies of the two DOFs systems shown
in Figure 1 are given by:
coupled gyros:

ω2
1,2 =

1
2
(

kL + kC
m1

+
kR + kC

m2
)± 1

2

√
(

kL + kC
m1

− kR + kC
mR

)2 +
4k2

C
mLmR

, (13)

uncoupled gyros:

ω1 =

√
kL
mL

, ω2 =

√
kR
mR

. (14)

4.1. Stiffness Imbalance

With stiffness imbalance ratio (SIR) ak in the calculation, the displacement dynamics of the two
coupled gyros shown in Figure 1a are given in Appendix B and resonant angular frequencies of the
system are calculated from:

ω2
1,2 =

(1 + ak + 2b)±
√
(1− ak)2 + 4b2

2m
k, (ω1 < ω2). (15)

For most TFG designs, the operating frequency is set to be at or near the anti-phase resonant
frequency (i.e., ω0 = ω2) of the system. If no vibration exists, the error ratio defined by the ratio of
error displacements difference and ideal displacements difference is given by:

ρk
∼= −

(Ik2 + 1)2

2 + 2I2
k2

. (16)

Since only vibrations whose angular frequencies are near ω1,2 lead to large displacements and error
signals at ω1 will be filtered by the system. Besides, the influence of vibrations is much larger than the
internal forces (detailed in Appendix B). Hence, with only the vibrations at ω2 considered, the error
ratio defined as the ratio of error displacements difference and ideal error displacements difference is
given as:

ρk
∼= (

1
2
+

1
2Ik2

)
ma0

F0

cos(ω2t + φ)

cos(ω2t)
, (17)

where Ik2 =
1−ak−

√
(1−ak)2+4b2

2b is the anti-phase mode factor (close to −1 when negligible imbalance
exists) of the coupled gyros system, and φ is the phase difference between vibration acceleration and
operating forces.

The displacement dynamics of the uncoupled gyros system shown in Figure 1b with (SIR) ak are
derived in Appendix C. The error displacements difference ratio when vibrations with ideal resonant
frequency ( ω1

2π ) exist is given by:

ρk
∼= (

1
Jk

sin φk −
1
2
)

ma0

F0

cos(ω1t + φ)

cos(ω1t)
+ (

1
Jk

sin φk −
1
2
), (18)
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where ω1 =
√

k
m and ω2 =

√
akk
m are the resonant angular frequencies of left and right gyros of

uncoupled gyros system, coefficient Jk =
√
(ak − 1)2/ξ2

1 + 4, the phase angle φk = arctan 2ξ1
√

ak
ak−1 ,

the damping ratio ξ1 = c
2mω1

, and φ is the phase difference between vibration acceleration and
operating forces.

4.2. Mass Imbalance

With the mass imbalance ratio (MIR) am = 1
a′m

in the calculation, the displacement dynamics of the
two coupled gyros shown in Figure 1a are given in Appendix D, and the resonant angular frequencies
of the system can be obtained from:

ω2
1,2 =

(1 + a′m)(1 + b)±
√
(1− a′m)2(1 + b)2 + 4a′mb2

2m
k, (ω1 < ω2). (19)

The error displacements difference ratio is given by (calculated in Appendix D):
When no vibration exists and operating forces are driving forces, that is, along the drive direction

(FL = Fd sin(ω2t), FR = −Fd sin(ω2t)):

ρm ∼=
(Im2 − 1)2

2 + 2am I2
m2
− 1; (20)

when no vibration exists and operating forces are Coriolis forces, that is, along the sense direction
(FL = maco sin(ω2t), FR = −ammaco sin(ω2t)):

ρm ∼= (−1
2
− (1 + am)Im2

2 + 2am I2
m2

); (21)

when vibration with ω2 exists and the effect of operating forces are neglected:

ρm ∼= (1− 1− am

2
√

am
+

1√
am Im2

)
α

2
cos(ω2t + φ)

cos(ω2t)
, (22)

where Im2 =
(1−1/am)(1+b)−

√
(1−1/am)2(1+b)2+4b2/am

2b is the anti-phase mode factor (close to −1 when
little imbalance exists) of the system, α is the force ratio given by ma0/F0, and φ is the phase difference
between vibration acceleration and operating forces.

The displacement dynamics of the two uncoupled gyros shown in Figure 1b with (MIR) am are
derived in Appendix E. The error displacements difference ratio for vibrations with anti-phase resonant
frequencies is given by:

When operating forces are driving forces, that is, along the drive direction (FL = Fd sin(ω2t),
FR = −Fd sin(ω2t)):

ρm ∼= (
am

Jm
sin φm −

1
2
)

ma0

Fd

cos(ω1t + φ)

cos(ω1t)
+ (

1
Jm

sin φm −
1
2
); (23)

when operating forces are Coriolis forces, that is, along the sense direction (FL = maco sin(ω2t),
FR = −ammaco sin(ω2t)):

ρm ∼= (
am

Jm
sin φm −

1
2
)

a0

aco

cos(ω1t + φ)

cos(ω1t)
+ (

am

Jm
sin φm −

1
2
), (24)

where ω1 =
√

k
m and ω2 =

√
k

amm are the resonant angular frequencies of the left and right gyros of

the uncoupled gyro system, coefficient Jm =
√
(am − 1)2/ξ2

1 + 4, the phase angle φm = arctan 2ξ1
√

am
1−am

,
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the damping ratio ξ1 = c
2mω1

, and φ is the phase difference between vibration acceleration and
operating force.

4.3. Damping Imbalance

Damping imbalance only influences the amplitudes and phases angle of gyro displacements.
The resonant frequencies of two gyros system are constant regardless of damping imbalance.
The displacement dynamics of two coupled gyros with damping imbalance ratio (DIR) ac are derived
in Appendix F in Laplace form. The error seems to be very small compared with other imbalances,
and the error displacements difference ratio for the two uncoupled gyros system considering ac can be
expressed by (Appendix G):

ρc = (
1

2ac
− 1

2
)

a0

F0

cos(ωt + φ)

cos(ωt)
+ (

1
2ac
− 1

2
), (25)

where ω =
√

k
m is the resonant angular frequency of the left and right gyros of the uncoupled gyros

system, and φ is the phase difference between vibration acceleration and operating force.

4.4. Summary

As discussed previously, the dynamics and error displacements difference ratios of two gyros
systems are similar for stiffness and mass imbalance. It can be found that the anti-phase mode factors
of coupled gyros systems with stiffness or mass imbalance are influenced by the imbalance ratio and
the coupled stiffness ratio. With stiffness or mass IRs far away from 1, anti-phase mode factors become
far away from 1 and error displacements difference ratios increase. By increasing the coupled stiffness
ratio, error displacements difference ratios are reduced for the same stiffness or mass imbalance ratio.
For uncoupled gyros systems with stiffness and mass imbalance, the error displacements difference
ratios are directly related to imbalance ratios and the Q factor (Q ∼= 1

2ξ ). For a TFG with Q = 50, the error
displacements difference ratios of uncoupled gyros systems are much larger than those of coupled
gyros systems with the same stiffness and mass imbalance regardless of vibrations. Moreover, it is more
severe for TFGs with uncoupled gyros as Q factors become higher. Damping imbalance also induces
error outputs to TFGs, and it seems to be much less influential than stiffness and mass imbalance.

5. Models and Parameters

A TFG consists of two gyros which are designed to vibrate out of phase. Each gyro contains two
modes vertical to each other (i.e., drive mode and sense mode). TFGs are divided into four groups
by coupling each gyro’s two mode masses; that is, (1) CP type—TFGs that have coupled sense and
drive masses on each gyro [17], (2) DS type—TFGs that have decoupled sense and drive masses with
an anchored sense mass on each gyro [10], (3) DD type—TFGs that have decoupled sense and drive
masses with an anchored drive mass on each gyro [18,21], (4) fully decoupled type—TFGs that have
fully decoupled sense and drive masses with drive and sense masses anchored on each gyro [22,23].
They respond differently to external vibration for several reasons, as discussed in a previous study [19].
Only imbalance and sense capacitance nonlinearity which exist in each TFG are considered herein.
Drive capacitance, quadrature error, and other reasons are neglected.

From the theoretical study above, it is known that coupling types between two gyros of TFGs
influence the error displacements ratio differently. For fair comparison, four designs of DD-type TFGs
are modeled as CP shown in Figure 3. They are named as UU type—a design that has two gyros
uncoupled in both drive and sense directions; CU type—a design that has two gyros coupled in the
drive direction and uncoupled in the sense direction; UC type—a design that has two gyros uncoupled
in the drive direction and coupled in the sense direction; and CC type—a design that has two gyros
coupled in both drive and sense directions.
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The model parameters are listed in Table 2. To achieve a fair comparison, all types of TFGs
are assumed to have the same parameters. The Simulink model shown in Figure 4 was designed
to operate as real a TFG and the details were created by the subsystem, which is not shown in the
figure. The model consists of (1) the driving force, (2) the dynamic of the sense and drive masses,
(3) the vibration sources and vibration-induced forces, (4) the differential capacitive output, and (5) the
demodulation system. The demodulation system recovers only signals whose frequencies are at/near
the gyro’s resonant frequency, as in the case of real matched-mode gyroscopes. All the simulated results
were obtained with the same demodulation, and other adjustment methods were not considered.

Table 2. Model parameters in the simulation.

Parameters Value Parameters Value

Resonant frequency 10 kHz Q-factor 50
Drive mass 2 µg Sense mass 0.8 µg

Driving force amplitude 0.2 µN Drive damping coefficient 2.5× 10−6 Ns/m
Sense damping coefficient 1.0× 10−6 Ns/m Drive-mode siffness 3.95 N/m

Sense-mode stiffness 2.26 N/m Sense capacitance overlapping area 1× 10−9 m2

Initial total sense capacitance 5.31× 10−13 F Sense comb number 80
Sense capacitance gaps 1, 2 µm Low-pass filter cut-off frequency 100 Hz

(a) UU Type

(b) CU Type

(c) UC Type

(d) CC Type

Drive mass

Sense mass

Anchor

Elastic beam

Electrode

Figure 3. Four different designs of DD-type TFGs. (a) UU-type TFG: design that has two gyros
uncoupled in both drive and sense directions, (b) CU-type TFG: design that has two gyros coupled in
the drive direction and uncoupled in the sense direction, (c) UC-type TFG: design that has two gyros
uncoupled in the drive direction and coupled in the sense direction, (d) CC-type TFG: design that has
two gyros coupled in both drive and sense directions.
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Driveforces

DDvibration Drivedynamic

SDvibration
Sensedynamic

Rotation

Modulation Differential capacitance Filter

Coriolisforces

Final output Rightcapacitance

Leftcapacitance

Figure 4. Simulink block model of a TFG in operation suffering external vibrations, details not shown
were created by the subsystem.

6. Simulation and Discussion

In this section, the vibration sensitivity of TFGs is exhibited by the simulated responses of
their models to a constant normal rotation signal (angular velocity: 100◦/s) and in-plane vibration.
The left gyro of each TFG is supposed to be flawless, and the imbalance ratio (IR) is defined by the ratio
of the properties of the right gyro to the left gyro. Different imbalance types studied with parametric
IR include stiffness, mass, or damping imbalance (SIM, MIM, or DIM, respectively). The vibration
sensitivity of four TFG designs and TFGs with different coupled stiffness ratios (CRs) were compared to
find methods of reducing vibration sensitivity. The operation frequencies of all TFG systems remained
at 10 kHz. Vibrations with resonant frequencies were the main focus, since vibrations with other
frequencies induce much smaller displacements.

Figure 5 demonstrates responses from four ideal TFG designs with the same stiffness imbalance
and in drive or sense direction with or without vibration. Consistent with the study in the previous
section, error outputs were time-related, and thus outputs which were the farthest away from an
ideal output are marked approximately. Through comparison of the responses of four ideal TFGs,
it is seen that TFGs with gyros uncoupled on the sense axis were more sensitive to vibration along
the sense direction and about 22% error output corresponding to 2g, amplitudes existed because
of sense capacitance nonlinearity. As for error outputs induced only by imbalance, the UU-type
TFG with drive or sense stiffness imbalance and the CU-type TFG with sense stiffness imbalance
produced error outputs with about −42◦/s. However, for the UC TFG, the error was much smaller.
Error amplitude differences of drive-axis displacements led to not exactly antisymmetric Coriolis
acceleration, and resulted in amplitude differences of sense-axis displacements and final error outputs
. As discussed previously, the error displacements difference ratios for uncoupled gyros induced
only by stiffness imbalance were much larger than that for coupled gyros. Considering vibrations, it
could be found that outputs with vibrations and stiffness imbalance in the sense direction were almost
not influenced by coupling types in the drive direction. In contrast, the values of error outputs with
vibrations and stiffness imbalance in the drive direction were are enlarged by an uncoupled gyros
structure on the sense axis compared to a coupled gyros structure. The simulation results also revealed
that TFGs with two gyros uncoupled in one direction showed larger same-axis vibration and stiffness
imbalance sensitivity. As shown in Figure 5a,d, error outputs with vibrations and stiffness on the sense
axis were larger than that on the drive axis with the same coupling structure. According to the contrast
of UU-type TFG with UC-type TFG and CU-type TFG, it is clear that the uncoupled gyros structures
are more sensitive to vibrations with operating frequencies compared with coupled gyros structures
on the same axis.
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Simulated outputs of different TFGs with different types of imbalance on the drive or sense axis
before and during vibration consistent with the direction of imbalance are given in Tables 3 and 4.
The influence of mass imbalance was similar to that of stiffness imbalance, and damping imbalance was
less influential than both of them on vibration sensitivity. As with the conclusion we make for Figure 5,
UU-type TFGs were the most sensitive to vibrations with operating frequencies and imbalance and
CC-type TFGs were the most insensitive.

° °

° °

Figure 5. Time-varying outputs of four TFG types—(a) UU-type, (b) UC-type, (c) CU-type,
(d) CC-type—with or without stiffness imbalance (IR = 1.05) in one direction when no vibration
exists, when only the drive axis vibration works (0.04–0.06 s), and when only sense axis vibration works
(0.08–0.10 s). All frequencies and phases were assumed to be 10 kHz and 0, respectively. The vibration
amplitudes were set to be 20g , but for CU-type and UU-type, they were set to 2g for the normal
operation of TFGs. DSIM: drive stiffness imbalance; SSIM: sense stiffness imbalance.

Table 3. Outputs of different TFGs with drive stiffness/mass/damping imbalance (DSIM/DMIM/
DDIM) and sense stiffness/mass/damping imbalance (SSIM/SMIM/SDIM). The IRs were all set to
1.05 and no vibration existed.

TFG Type
Simulated Output of TFGs (◦/s)

DSIM DMIM DDIM SSIM SMIM SDIM

UU-Type 57.13 56.55 96.28 56.70 57.55 95.68
UC-Type 103.95 98.73 102.27 102.98 95.99 101.48
CU-Type 105.06 93.36 102.44 56.70 57.48 95.69
CC-Type 101.02 103.01 102.42 102.98 95.98 101.82

Table 4. Outputs of different TFGs experiencing vibration with DSIM/DMIM/DDIM and SSIM/SMIM/
SDIM. The IRs were all set to 1.05 and vibration directions were supposed to be the same with imbalance.
Vibration acceleration frequencies and phases were 10 kHz and 0, respectively. The amplitudes were
set at 10g , but for UU-type and CU-type with SSIM, SMIM, and SDIM, they were set to 2g for TFGs’
proper operation.

TFG Type
Simulated Output of TFGs (◦/s)

DSIM DMIM DDIM SSIM SMIM SDIM

UU-Type 106.01 104.09 104.02 −54.56 −50.44 112.04
UC-Type 168.82 156.94 107.07 141.12 68.29 102.86
CU-Type 106.44 92.92 104.49 −54.46 −50.44 112.04
CC-Type 102.41 107.24 102.58 141.12 68.29 102.86
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The outputs of UU-type TFGs with different imbalance and IRs in the sense direction are shown
in Figure 6a. In keeping with the previous theoretical study, the error ratios without vibration
for uncoupled gyros system were approximatively inversely proportional to IR for small damping
imbalance and

√
(IR− 1)2 for small stiffness and mass imbalance. Relationships between amplitudes

or phases of vibrations with operating frequencies and UC-type TFG outputs are depicted in Figure 6b,c,
respectively, and stiffness imbalance IR = 1.05 in the same direction with vibration was considered.
Amplitudes were found to be linearly related to the outputs. The variable phases changed both
absolute values and the directions of changing trends of error outputs and the relation curves were
approximately trigonometric. Influences of different IRs were simulated and are shown in Figure 6d,e.
It could be found that absolute values of error outputs increased as IRs moved far away from 1 (ideal
TFGs) for stiffness and mass imbalance. UC-type TFGs consist of two gyros uncoupled in the drive
direction and coupled in the sense direction. Since uncoupled gyros systems respond to vibration
and imbalance differently than coupled gyros systems, relationships between IRs and vibration error
outputs in the drive direction or the sense direction are different. On the drive axis of UC-type
TFGs, vibration error outputs were inversely proportional to

√
(IR− 1)2 for small stiffness and mass

imbalance. However, error outputs were similarly linearly related for IRs of slight stiffness and mass
imbalance with vibration error outputs of UC-type TFGs on the sense axis. The influence of damping
imbalance was much less than that of mass and stiffness imbalance. Therefore, error outputs caused by
imbalanced operating displacements and sense capacitance nonlinearity cannot be ignored compared
with vibration error outputs. They were all influenced by the damping imbalance ratio and the outputs
changed with DIR irregularly, as shown in Figure 6e. For coupled gyro systems, coupled stiffness ratios
(CRs) were also related to the error outputs. Keeping the operating frequency and ideal anti-phase
resonant frequency at 10 kHz, outputs of CC-type TFGs with different CRs in two directions are given
in Figure 6f. Stiffness imbalance with IR= 1.05 and vibration are supposed to be in the same direction.
It is seen that as CR increased, the error outputs were reduced, and the effect of increasing CRs became
insignificant when CRs became larger.

°

π

°

° ° °

°

Figure 6. (a) Outputs of UU-type TFGs with different imbalance and IR when no vibration existed.
(b–e) Outputs of UC-type TFGs with different imbalance type and ratio and different vibrations in the
same direction: (b) Variable amplitudes (a0), (c) Variable vibration acceleration phases (φ), (d) Different
SIR or MIR (ak, am), (e) Different DIR (ac). (f) Outputs of CC-type TFGs with different CR in the case
that SIM and vibration is in the same direction. Default parameters were supposed as: a0 = 10 g, φ = 0,
ak = 1.05, am = 1, ac = 1, b = 0.5, and f = 10 kHz.
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Figure 7a shows simulated outputs of a UU-type TFG with different-frequencies vibrations and
stiffness imbalance (IR = 1.05). Vibration outputs in the same direction with vibration whose frequency
is at operating frequency (10 kHz) are not shown because they are too large. For a CC type TFG in the
same situation, the results are given in Figure 7b. It was found that vibrations with non-operating and
non-resonant frequencies induced smaller error outputs than vibration with operating frequencies, but
error outputs existed because of imbalance and sense capacitance nonlinearity. However, for CC-type
TFGs, vibrations in the sense direction with in-phase resonant frequencies induced very large error
outputs because large error in-phase resonant displacements were produced, and it was similar to
10 kHz vibrations in the uncoupled gyros systems. As the amplitudes of resonant displacements were
inversely proportional to the square of the resonant frequencies, the error outputs were inversely
proportional to CR to maintain anti-phase resonant frequencies, as shown in Figure 7c.

° ° °

Figure 7. Simulated outputs of (a) UU-type TFGs and (b) CC-type TFGs with different frequency
vibrations. Stiffness imbalance (IR = 1.05) is supposed to be in the same direction as vibration and
phases and amplitudes were set to 0 and 10g except for 3g for the sense-axis first-order resonant
frequency in (b) for the TFGs’ normal operation. (c) Vibration outputs of CC-type TFGs with different
CR suffering vibration with in-phase resonant frequency in the sense direction. Amplitudes, phase,
and frequency were set to g, 0, and at the in-phase resonant frequencies (listed in Table 5). Situations
with or without sense stiffness imbalance were all considered.

Table 5. In-phase resonant frequencies of CC-type TFGs in the sense direction with different CRs and
SIRs used in Figure 7c.

SIR

CR In-Phase Sense Axis Resonant Frequency (Hz)

0.2 0.5 0.8 1.1 1.4

1.05 8556.5 7158.9 6278.8 5659.6 5193.6
1 8451.5 7071.1 6201.7 5590.2 5129.9

0.95 8345.2 6982.1 6123.7 5519.9 5065.4

7. Conclusions

The vibration sensitivity of different TFG designs was studied theoretically and with simulation
considering sense capacitance nonlinearity and three types of imbalance induced by fabrication defects.
It is commonly thought that TFGs are vibration-insensitive because they are designed with two
identical gyros that vibrate out-of-phase to cancel common-mode noises. However, ideal TFGs do
no exist due to technological limitations, and imbalance cannot be avoided. A two DOFs coupled
gyros model and a two DOFs uncoupled gyros model are established corresponding to different
TFG designs. Approximate calculations and dynamic simulations were used to obtain their output
dynamics with imbalance when both anti-phase forces and in-phase accelerations are applied to
their two masses. It was found that damping imbalance was less influential on vibration sensitivity
compared with stiffness and mass imbalances. TFGs with two gyros coupled in both drive and sense
directions (CC-type TFGs) were more insensitive to vibrations with frequencies near the TFG operating
frequency due to the smallest error displacements. The operating frequency vibration insensitivity
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could be enhanced by increasing the stiffness coupled ratio (CR). However, vibrations with frequencies
close to the in-phase resonant frequencies of two coupled gyros along the sense direction resulted in
devastating error outputs for CC-type TFGs, mainly because of sense capacitance nonlinearity, and the
error outputs were approximately proportional to the square of CRs. Therefore, avoiding resonant
frequencies of TFG systems and vibration isolation are two effective external methods to reduce TFGs’
vibration sensitivity. A CC-type TFG with low quality factor, proper sense coupled stiffness ratio,
and large variable-gap capacitors gaps or applying sensing variable-area capacitors may be a better
choice for vibration environments.
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Appendix A

The rotation component and vibration component of output capacitance as the gyros are in
motion on the sense axis are derived. When the TFG is in operation and responsive to angular velocity,
differential capacitive readouts of the left and right gyros are given by:

∆CL = CL1 − CL2 = 2εAs(
1

d1 − vsL
+

1
d2 + vsL

)− 2εAs(
1

d1 + vsL
+

1
d2 − vsL

)

= 4εAsvsL(
1

d2
1 − v2

sL
− 1

d2
2 − v2

sL
)

, (A1)

∆CR = CR1 − CR2 = 2εAs(
1

d1 − vsR
+

1
d2 + vsR

)− 2εAs(
1

d1 + vsR
+

1
d2 − vsR

)

= 4εAsvsR(
1

d2
1 − v2

sR
− 1

d2
2 − v2

sR
)

. (A2)

Therefore, the final differential capacitance output of TFG:

Co = ∆CL − ∆CR ∼= 4εAsvsL
d2

1
(1 + v2

sL
d2

1
) + 4εAsvsR

d2
2

(1 + v2
sR

d2
2
)− 4εAsvsR

d2
1

(1 + v2
sR

d2
1
)− 4εAsvsL

d2
2

(1 + v2
sL

d2
2
), (A3)

where vsL and vsR denote the sense axis displacements of the two gyros. If vsL, vsR � d1 < d2,

1 + v2
sL

d2
i

∼= 1 and 1 + v2
sL

d2
i

∼= 1. Then:

Co ∼= 4εAs(
1
d1

+
1
d2

)(vsL − vsL)(
1
d1
− 1

d2
) = A(vsL − vsR). (A4)

Supposing rotation is constant, let vsL = V0 sin(ω0t) + V sin(ωvt + ϕ) and vsR = −V0 sin(ω0t) +
V sin(ωvt + ϕ), the capacitance output can be transferred to:

Co ∼= 2AV0 sin(ω0t) + A(B1 + B2 + B3), (A5)

B1 = 3V2V0 sin(ω0t)(
1
d2

1
− 1

d2
2
), (A6)

B2 = −3
2

V2V0 sin((ω0 + 2ω)t + 2ϕ)(
1
d2

1
− 1

d2
2
), (A7)
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B3 = −3
2

V2V0 sin((ω0 − 2ω)t− 2ϕ)(
1
d2

1
− 1

d2
2
). (A8)

In the case of the same TFG, A is a constant, and B1, B2 and B3 are the third power term of
displacement with different angular frequencies; that is, ω0, ω0 + 2ωv, and ω0 − 2ωv. Since in most
situations, AB2 and AB3 are filtered by the modulation system of TFG, the output capacitance related
to rotation and vibration can be written as: Cr = 2AV0 sin(ω0t) and Cv = AB1. Hence, the vibration
performance ratio is achieved in Equation (12).

Appendix B

With the parameters SIR ak, FL = −FR = F0 sin(ω0t), and av = a0 sin(ωvt + φ) in consideration,
displacements dynamics in Equation (3) are derived by modal superposition method. The displacements
of two coupled gyros are shown as follows:

ω2
1,2 =

(1 + ak + 2b)±
√
(1− ak)2 + 4b2

2m
k, (ω1 < ω2), (A9)

v =

[
va1 + vF1 + va2 + vF2

Ik1va1 + Ik1vF1 + Ik2va2 + Ik2vF2

]
=

[
vL
vR

]
, (A10)

Ik1 =
1− ak +

√
(1− ak)2 + 4b2

2b
, (A11)

Ik2 =
1− ak −

√
(1− ak)2 + 4b2

2b
, (A12)

vai =
−1− Iki

1 + I2
ki

a0

ω2
i

√
(1− λ2

ai)
2 + (2ξiλ

2
ai)

2
sin(ωvt + φ− φai) =

−1− Iki

1 + I2
ki

va0i, (A13)

vFi =
1− Iki

1 + I2
ki

F0

mω2
i

√
(1− λ2

Fi)
2 + (2ξiλFi)2

sin(ω0t− φFi) =
1− Iki

1 + I2
ki

vF0i, (A14)

where Ik1 > 0 and Ik2 < 0 denote modal shape factors used in the modal superposition method with
stiffness imbalance considered whose absolute value are very near 1 and Ik1 Ik2 = −1, ω1, and ω2 are
the resonant angular frequencies of the system, the frequency ratios λai =

ωv
ωi

and λFi =
ω0
ωi

, ξi =
c

2mωi

are the damping ratios, the phase angles φai = arctan 2ξiλai
1−λ2

ai
, φFi = arctan 2ξiλFi

1−λ2
Fi

, i = 1, 2. va0i and vF0i

are vibration- and internal force-related displacement terms.
The displacements difference can be calculated through Equations (A9)–(A14):

vL − vR =
I2
k1 − 1

1 + I2
k1

va01 +
(Ik1 − 1)2

1 + I2
k1

vF01 +
I2
k2 − 1

1 + I2
k2

va02 −
(Ik2 + 1)2

1 + I2
k2

vF02 + 2vF02 = ve + 2vF02. (A15)

For most TFG designs, the operating frequencies are set to be at or near the anti-phase resonant
frequencies ( ω2

2π ) of the system. Therefore, the vF01 term can be ignored. If no vibration exists, the error
displacement difference ratio is given by:

ρk
∼= −

(Ik2 + 1)2

2 + 2I2
k2

. (A16)

Since I2
k1 − 1 = (Ik1 − 1)(Ik1 + 1) � (Ik1 − 1)2, I2

k2 − 1 � (Ik2 + 1)2 and (1 − Ik1)
2 � 2Ik1,

(1 + Ik2)
2 � |2Ik2| when external vibration displacements are large enough compared to operating

displacements. Error displacements difference ve in Equation (A15) is approximately calculated by:
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ve = (1− 2
(1− Ik1)2 + 2Ik1

)va01 + (1− 2
(1 + Ik2)2 − 2Ik2

)va02 ∼= (1− 1
Ik1

)va01 + (1 +
1

Ik2
)va02. (A17)

Supposing ω0 = ωv = ω2:

va01 =
a0

ω2
1

√
(1− λ2)2 + (2ξ1λ2)2

sin(ω2t + φ− φ1), (A18)

va02 =
−a0

ω2
22ξ2

cos(ω2t + φ), (A19)

vF02 =
−F0

2mω2
2ξ2

cos(ω2t). (A20)

For a TFG with high Q, the va01 can be neglected compared with va02. Hence,

vi = 2vF02 =
−F0

mω2
2ξ2

cos(ω2t), (A21)

ve ∼= (1 +
1

Ik2
)
−a0

ω2
22ξ2

cos(ω2t + φ), (A22)

where the frequency ratio λ = ω2
ω1

, ξi =
c

2mωi
are the damping ratios, the phase angle φ1 = arctan 2ξ1λ

1−λ2 ,
i = 1, 2. Equation (17) is obtained by ve/vi.

Appendix C

The steady responses of two uncoupled gyros are derived with stiffness imbalance.
The displacements of two uncoupled gyros with SIR ak, FL = −FR = F0 sin(ω0t), and av =

a0 sin(ωvt + φ) are given by:

ω1 =

√
k
m

, ω2 =

√
akk
m

, (A23)

v =

−a0βa1
ω2

1
sin(ωvt− φa1) +

F0βF1
mω2

1
sin(ω0t− φF1)

−a0βa2
ω2

2
sin(ωvt− φa2)− F0βF2

mω2
2

sin(ω0t− φF2)

 =

[
vL
vR

]
, (A24)

where βai =
1√

(1−λ2
ai)

2+(2ξiλai)2
and βFi =

1√
(1−λ2

Fi)
2+(2ξiλFi)2

are the magnification factors of amplitude,

ω1 and ω2 are the resonant angular frequencies of the system, the frequency ratios λai = ωv
ωi

and

λFi =
ω0
ωi

, ξi =
c

2mωi
are the damping ratios, the phase angles φai = arctan 2ξiλai

1−λ2
ai

, φFi = arctan 2ξiλFi
1−λ2

Fi
,

i = 1, 2.
If ωv = ω0 = ω1 = 1√

ak
ω2, the displacements of two gyros can be written as:

v =

 a0
2ξ1ω2

1
cos(ω1t + φ)− F0

2ξ1mω2
1

cos(ω1t)
−a0

Jkξ1ω2
1

sin(ω1t + φ− φ1)− F0
Jkξ1mω2

1
sin(ω1t− φ1)

 =

[
vL
vR

]
, (A25)

Jk =
ak
ξ1

√
(1−

ω2
1

ω2
2
)2 + (2ξ2

ω1

ω2
)2 =

√
(ak − 1)2/ξ2

1 + 4, (A26)
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where the phase angle φ1 = arctan 2ξ1
√

ak
ak−1 , which is close to 90 degrees, and the damping ratio

ξ1 = c
2mω1

. Therefore, substitute sin(ω1t + φ − φ1) ∼= − cos(ω1t) sin φ to Equation (A25) and the
displacements difference is given as:

vL − vR ∼= (
1

2ξ1
− 1

Jkξ1
sin φk)

a0

ω2
1

cos(ω1t + φ)− (
1

2ξ1
+

1
Jkξ1

sin φk)
F0

mω2
1

cos(ω1t). (A27)

So, the error displacements difference and ideal displacements difference can be calculated by:

ve ∼= (
1

2ξ1
− 1

Jkξ1
sin φk)

a0

ω2
1

cos(ω1t + φ) + (
1

2ξ1
− 1

Jkξ1
sin φk)

F0

mω2
1

cos(ω1t), (A28)

vi =
−F0

ξ1mω2
1

cos(ω1t), (A29)

and Equation (18) is obtained by Equation (A28) divided by Equation (A29).

Appendix D

Replace SIR with mass imbalance ratio (MIR) am = 1/a′m and the displacements of two coupled
gyros are given as:

ω2
1,2 =

(1 + a′m)(1 + b)±
√
(1− a′m)2(1 + b)2 + 4a′mb2

2m
k, (ω1 < ω2), (A30)

v =

[
va1 + vF1 + va2 + vF2

Im1va1 + Im1vF1 + Im2va2 + Im2vF2

]
=

[
v1

v2

]
, (A31)

Im1 =
(1− a′m)(1 + b) +

√
(1− a′m)2(1 + b)2 + 4a′mb2

2b
, (A32)

Im2 =
(1− a′m)(1 + b)−

√
(1− a′m)2(1 + b)2 + 4a′mb2

2b
, (A33)

vai =
−1− Imiam

1 + I2
miam

−a0

ω2
i

√
(1− λ2

ai)
2 + (2ξiλai)2

sin(ωvt + φ− φai) =
−1− Imiam

1 + I2
miam

va0i, (A34)

vFi =
1− Imi

1 + I2
miam

F0

mω2
i

√
(1− λ2

Fi)
2 + (2ξiλFi)2

sin(ω0t− φFi) =
1− Imi

1 + I2
miam

vF0i, (A35)

vFi =
1− Imiam

1 + I2
miam

aco

ω2
i

√
(1− λ2

Fi)
2 + (2ξiλFi)2

sin(ω0t− φFi) =
1− Imiam

1 + I2
miam

vF1i, (A36)

where Im1 > 0 and Im2 < 0 denote modal shape factors in the modal superposition method with
mass imbalance whose absolute values are very near 1 and Ik1 Ik2 = −a′m, ω1 and ω2 are the resonant
angular frequencies of the system, the frequency ratios λai =

ωv
ωi

and λFi =
ω0
ωi

, the damping ratios

ξi
∼= (1+I2

mi)c
2(1+am I2

mi)mωi
, the phase angles φai = arctan 2ξiλai

1−λ2
ai

, φFi = arctan 2ξiλFi
1−λ2

Fi
, i = 1, 2 . va0i and vF0i/vF1i

are vibration and driving force/Coriolis-related displacement terms.
Next, the displacements difference is obtained (not the same for different internal forces):
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driving forces:

vL − vR =ve + 2vF02 =
am I2

m1 + (1− am)Im1 − 1
1 + am I2

m1
va01 +

(Im1 − 1)2

1 + am I2
m1

vF01+

am I2
m2 + (1− am)Im2 − 1

1 + am I2
m2

va02 −
(2am − 1)I2

m2 + 2Im2 + 1
1 + am I2

m2
vF02 + 2vF02.

(A37)

Similar to the stiffness imbalance when no vibration exists, the error displacements difference
ratio is given by:

ρm ∼=
(Im2 − 1)2

2 + 2am I2
m2
− 1; (A38)

Coriolis forces:

v1 − v2 =ve + 2vF02 =
am I2

m1 + (1− am)Im1 − 1
1 + am I2

m1
va01 +

am I2
m1 − (1 + am)Im1 + 1

1 + am I2
m1

vF01

+
am I2

m2 + (1− am)Im2 − 1
1 + am I2

m2
va02 −

am I2
m2 + (1 + am)Im2 + 1

1 + am I2
m2

vF02 + 2vF02.

(A39)

The error displacements difference ratio with no vibration is given by:

ρm ∼= −
1
2
− (1 + am)Im2

2 + 2am I2
m2

. (A40)

In the same way, when external vibration displacements are large enough compared to operating
displacements, the error displacements difference ve in Equation (A31) is approximately calculated by:

ve ∼= (1 +
(1− am)Im1 − 2

(1 +
√

am Im2)2 − 2
√

am Im2
)va02 ∼= (1− 1− am

2
√

am
+

1√
am Im2

)va02. (A41)

With ω0 = ωv = ω2 assumed:

va02 =
−a0

ω2
22ξ2

cos(ω2t + φ), (A42)

vF02 =
−Fd

2mω2
2ξ2

cos(ω2t), vF12 =
−aco

2ω2
2ξ2

cos(ω2t), (A43)

vi = 2vF02 =
−Fd

mω2
2ξ2

cos(ω2t), vi = 2vF12 =
−aco

ω2
2ξ2

cos(ω2t), (A44)

ve ∼= (1− 1− am

2
√

am
+

1√
am Im2

)
−a0

ω2
22ξ2

cos(ω2t + φ), (A45)

where the frequency ratio λ = ω2
ω1

, ξ2 ∼=
(1+I2

m2)c
2(1+am I2

m2)mω2
is the damping ratio. Equation (18) is obtained

by Equation (A45) divided by Equation (A44).

Appendix E

The displacements of two uncoupled gyros with MIR am, FL = −FR = Fd sin(ω0t)/FL = 1
am

FR =

maco sin(ω0t) and av = a0 sin(ωvt + φ) are given as (not the same for different internal forces):

ω1 =

√
k
m

, ω2 =

√
k

amm
; (A46)



Sensors 2018, 18, 1755 19 of 21

driving forces:

v =

 −a0βa1
ω2

1
sin(ωvt + φ− φa1) +

F0βF1
mω2

1
sin(ω0t− φF1)

am
−a0βa2

ω2
1

sin(ωvt + φ− φa2)− F0βF2
mω2

1
sin(ω0t− φF2)

 ; (A47)

Coriolis forces

v =

 −a0βa1
ω2

1
sin(ωvt + φ− φa1) +

aco βF1
ω2

1
sin(ω0t− φF1)

am
−a0βa2

ω2
1

sin(ωvt + φ− φa2)− am
aco βF2

ω2
1

sin(ω0t− φF2)

 , (A48)

where βai =
1√

(1−λ2
1i)

2+(2ξiλ1i)2
and βFi =

1√
(1−λ2

2i)
2+(2ξiλ2i)2

are the magnification factors of amplitude,

ω1 and ω2 are the resonant angular frequencies of the system, the frequency ratios λai = ωv
ωi

and

λFi =
ω0
ωi

, ξ1 = c
2mω1

and ξ2 = c
2ammω2

are the damping ratios, the phase angles φai = arctan 2ξiλai
1−λ2

ai
,

φFi = arctan 2ξiλFi
1−λ2

Fi
, i = 1, 2.

If ωv = ω0 = ω1 =
√

amω2, the displacements can be written as:
driving forces:

v =

 a0
2ξ1ω2

1
cos(ω1t + φ)− F0

2ξ1mω2
1

cos(ω1t)
−ama0
Jmω2

1
sin(ω1t + φ− φm)− F0

mJmω2
1

sin(ω1t− φm)

 =

[
vL
vR

]
; (A49)

Coriolis forces:

v =

 a0
2ξ1ω2

1
cos(ω1t + φ)− ac0

2ξ1mω2
1

cos(ω1t)
−ama0
Jmω2

1
sin(ω1t + φ− φm)− amaco

mJmω2
1

sin(ω1t− φm)

 =

[
vL
vR

]
, (A50)

Jm =
1
ξ1

√
(1−

ω2
1

ω2
2
)2 + (2ξ2

ω1

ω2
)2 =

√
(am − 1)2/ξ2

1 + 4. (A51)

The displacements difference can be written as:
driving forces:

vL − vR ∼= (
1

2ξ1
− am

Jmξ1
sin φm)

a0

ω2
1

cos(ω1t)− (
1

2ξ1
+

1
Jmξ1

sin φm)
F0

mω2
1

cos(ω1t); (A52)

Coriolis forces

vL − vR ∼= (
1

2ξ1
− am

Jmξ1
sin φm)

a0

ω2
1

cos(ω1t)− (
1

2ξ1
+

am

Jmξ1
sin φm)

aco

ω2
1

cos(ω1t), (A53)

where the phase angle φm = arctan 2ξ1
√

am
1−am

, ξ1 = c
2mω1

is the damping ratio. Ideal displacements

difference vi =
−Fd

mω2
2ξ2

cos(ω2t)/ vi =
−aco
ω2

2ξ2
cos(ω2t) and error displacements difference ratio is given

by (vL − vR − vi)/vi. Therefore, Equations (23) and (24) are achieved.

Appendix F

The dynamics of coupled gyros with damping imbalance are derived. For two DOFs system with
coupled gyros with damping imbalance ratio (DIR) ac, Equation (3) can be transferred to Laplace form:[

ms2 + cs + (1 + b)k −bk
−bk ms2 + accs + (1 + b)k

] [
VL(s)
VR(s)

]
=

[
A(s) + F(s)
A(s)− F(s)

]
. (A54)
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The solution through Cramer’s Rule is given by:[
VL(s)
VR(s)

]
=

ms2+accs+(1+2b)k
D(s) A(s) + ms2+accs+k

D(s) F(s)
ms2+cs+(1+2b)k

D(s) A(s)− ms2+cs+k
D(s) F(s)

 , (A55)

VL(s)−VR(s) =
(ac − 1)cs

D(s)
(A(s)− F(s)) +

ms2 + 2cs + k
D(s)

F(s) = E(s) + Vi(s). (A56)

Here, s = jω, A(s), F(s), VL(s), and VR(s) are Laplace transforms of a, FL, vL, and vR. D(s) =

m2s4 + (1 + ac)cs3 + (2(b + 1)mk + acc2)s2 + (1 + ac)(1 + b)ks + (1 + 2b)k2, Vi is the ideal TFG’s
displacements difference. (ac − 1) � 2 is easy to find. Hence, the error outputs are very small
compared with other situations.

Appendix G

For an uncoupled two-gyro system with ac, the displacements of two gyros:

v =

[−a0βa1
ω2 sin(ωvt + φ− φa1) +

F0βF1
mω2 sin(ω0t− φF1)

−a0βa2
ω2 sin(ωvt + φ− φa1)− F0βF2

mω2 sin(ω0t− φF2)

]
=

[
vL
vR

]
, (A57)

where βai = 1√
(1−λ2

ai)
2+(2ξiλai)2

and βFi = 1√
(1−λ2

Fi)
2+(2ξiλFi)2

denote the magnification factors of

amplitude, the frequency ratios λai =
ωv
ωi

and λFi =
ω0
ωi

, φai = arctan 2ξiλai
1−λ2

ai
and φFi = arctan 2ξiλFi

1−λ2
Fi

are the phase angles, the damping ratios ξ1 = c
2mω and ξ2 = acc

2mω , i = 1, 2, and the resonant angular

frequency ω =
√

k
m .

If ωv = ω0 = ω, the displacements difference and error/ideal displacements difference can be
expressed as:

vL − vR = (1− 1
ac
)

a0

2ξ1ω2 cos(ωt + φ)− (1 +
1
ac
)

F0

2mξ1ω2 cos(ωt), (A58)

ve = (1− 1
ac
)

a0

2ξ1ω2 cos(ωt + φ) + (
1
2
− 1

2ac
)
−F0

mξ1ω2 cos(ωt), vi =
−F0

mξ1ω2 cos(ωt). (A59)

From Equations (A59) and (25) is obtained.
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