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Abstract: The GPS provides positioning information almost anytime and anywhere on Earth,
regardless of the weather conditions, and has become an essential technology for positioning and
navigation. As a modernization program, the fourth civil GPS signal, denoted as L1C, will be
transmitted from Block III satellites. One distinction of the L1C signal from the former signals is the
use of binary offset carrier (BOC) modulation, which is necessary for compatibility and the reduction
of interference between the legacy L1 signal and L1C signal, despite their use of the same carrier
frequency. One drawback of using BOC modulation is the ambiguity problem, which comes from
the multiple peaks in the correlation function and causes difficulties finding the code phase in the
acquisition process. In this paper we suggest two delay-and-multiply (DM) methods for the L1C
signal to solve the ambiguity problem. For the DM acquisition schemes we suggest the optimal
delay time for the delay signal, and prove that the correlation function of the received DM signal
and the generated DM signal has a triangular shape, as seen in the legacy GPS L1 signal. The noise
characteristics of the decision variable are obtained and the performance of the DM acquisition
scheme is given in terms of the probability of detection, and compared with that of the conventional
method. We provide the procedure to find the Doppler frequency after obtaining the code phase
through the proposed DM method.
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1. Introduction

The Global Positioning System (GPS) has become an essential technology for positioning,
navigation, and timing after the full operational capability (FOC) in early 1995, and GPS modernization
has now been in progress since January 1999 [1–3]. As a modernization program, two civil signals have
been added at the L2 and L5 frequencies, which are denoted as the L2C and L5 signals, respectively [1].
The L2C signal has been transmitted from the GPS Block IIR-M satellite since September 2005, while the
L5 signal from GPS Block IIF satellite has been transmitted since May 2010 [4,5]. The fourth civil signal,
denoted as L1 Civil (L1C) signal, will be transmitted from the next generation satellites (GPS Block III)
on the L1 carrier frequency [6,7]. One feature of the L1C signal is the use of binary offset carrier (BOC)
modulation, which enables compatibility, and reduces interference between the legacy L1 signal and
L1C signal, despite their use of same carrier frequency.

The BOC modulation is also used in Galileo [8,9], the European Global Navigation Satellite System
(GNSS) that is like the GPS of the United States, and enables Galileo E1 open service (OS) signal to use
the same GPS L1 carrier frequency. The BOC modulation results in split spectrum signal, and thus
enables frequency sharing [10–13]. After many years of research, MBOC (multiplexed BOC) is applied
to GNSS, such that composite BOC (CBOC) is used for Galileo E1 OS signal, and time multiplexed
BOC (TMBOC) for GPS L1C signal. GPS L1C signal consists of data and pilot channels with power
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ratio (75%/25% for the pilot/data) [14], where the data channel uses BOC(1,1) modulation, and the
pilot channel uses TMBOC modulation.

One drawback of using BOC modulation are the multiple peaks which appear in the correlation
between the received signal and the generated signal, complicating the signal acquisition and tracking
process, and termed the ambiguity problem. To deal with the BOC modulation, many techniques
have been suggested [9,14–17], and several unambiguous methods, such as the “BPSK-like” technique,
sub-carrier phase cancellation (SCPC) technique, and bump-jumping technique, have been suggested
to deal with the ambiguities of the traditional BOC modulation [9,14]. Recently, the delay-and-multiply
(DM) concept has been suggested for unambiguous acquisition of Galileo E1 OS signals in [18–20].

The DM concept exists from early GNSS history [3], but has not been studied in depth, since the
DM method causes the multiplication of noise, which greatly deteriorates the signal acquisition
performance. However, one advantage of the DM concept is the elimination of the Doppler frequency.
That is, the DM method can reduce the two-dimensional acquisition process to a one-dimensional
search. The Doppler frequency can be obtained after finding the code phase first. The DM concept
also eliminates the effect of data symbol transition [19], which comes from the same length of the data
symbol and the period of ranging code, so the non-coherent integration can be greatly increased.

The acquisition problem for GPS L1C signal has been studied in [21–24], but it is hard to find any
research on the ambiguity problem for the GPS L1C signal. The DM acquisition method is attractive
for the GPS L1C signal despite the multiplication of noise, since the L1C signal has a severe ambiguity
problem and long search time, because of its long 10 ms ranging code. Even though [18–20] used
the DM method in the Galileo E1 OS signal, which uses CBOC modulation, the GPS L1C signal uses
TMBOC modulation. Thus the DM approach for the GPS L1C signal is a new problem and it is
necessary to find optimal delay and the generated DM scheme again for the GPS L1C signal.

In this paper, we propose new DM acquisition schemes for the GPS L1C signal to eliminate the
ambiguity of the correlation function between the received signal and the generated signal. We prove
that the correlation function of our proposed scheme has a triangular shape, which completely
removes the ambiguity problem, and analyze the performance of the proposed DM method using the
signal-to-noise ratio (SNR) of the decision variable and the probability of detection. We also add the
procedure to find the Doppler frequency for tracking the L1C signal.

The rest of the paper is organized as follows: Section 2 defines the GPS L1C signal and its DM
signal, while Section 3 provides the result of this paper, such as new DM acquisition schemes for
GPS L1C signal and the noise characteristics of the proposed DM method with performance analysis.
Section 4 discusses the results of the proposed methods.

2. Materials and Method

2.1. GPS L1C Signal

Consider the GPS L1C received signal r(t) in Equations (1) and (2) [21]:

r(t) = SL1C(t) cos(2π( f IF + fD)t) (1)

and SL1C (t) =

√
3
2

c·COL(t)CP(t)SCP(t) +
√

c
2
·D(t)CD(t)SCD(t) (2)

where, the total signal power is denoted as c (Watts) which includes any antenna gain and receiver
losses, f IF is the intermediate frequency, fD is the Doppler frequency, COL(t) is the overlay code of
the pilot channel, D(t) is the data, CP(t) and CD(t) are ranging codes of the pilot and data channel,
respectively, and SCP(t) and SCD(t) are subcarriers of the pilot and data channel, respectively. The chip
rate of the ranging codes, CD(t) and CP(t), is f0 = 1.023 MHz, and the length of CP(t) and CD(t) is
10,230 chips (10 ms). The duration of each data bit and each chip of the overlay code is also 10 ms.
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The overlay code COL(t) is 18 s in length at a rate of 100 bps, which results in the total length of
1800 bits.

Figure 1 shows a generic view of the L1C signal generation, where the subscript i denotes the
number of a satellite, but it is not used in the equations for the brevity of notation.
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Figure 1. GPS L1C signal structure.

Figure 1 shows the generation procedure of CP(t) and CD(t), while [6] gives the details.
Equation (3) expresses the subcarriers SCD(t) and SCP(t), while Figures 2 and 3 show the structure
of BOC(1,1), BOC(6,1), and TMBOC. The TMBOC uses a time multiplexed combination of BOC(1,1) and
BOC(6,1) as in Figure 3, where BOC(6,1) is placed at the 0th, 4th, 6th, and 29th chip, and BOC(1,1) is
placed at the other chips among 33-chips. This pattern repeats 310 times, which makes 10,230 chips,
and 10 ms in time:

SCD(t) = sinBOC(1,1)(t),SCP(t) = TMBOC(6,1, 4
33 )

(t) (3)

where, BOC(m,1)(t) = sinBOC(m,1)(t) = sgn(sin(2πm f0t)).
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2.2. GPS L1C DM Signal

The received signal rn(t) of the GPS L1C signal with an additive Gaussian noise n(t) can be
expressed as Equation (4):

rn(t) = SL1C(t) cos(2π( f IF + fD)t) + n(t), with n(t) ∼ N(0, σ2
n

)
(4)

The DM (delay-and-multiply) signal of the received signal rn(t) is given with the delay δ as
Equation (5):

rDM,δ(t) = rn(t)·rn(t− δ)

= SL1C(t)SL1C(t− δ) cos(2π( f IF + fD)t)) cos(2π( f IF + fD)(t− δ))

+SL1C(t) cos(2π( f IF + fD)t)n(t− δ)

+SL1C(t− δ) cos(2π( f IF + fD)(t− δ))n(t)
+n(t)n(t− δ)

(5)

= sDM, δ(t) + ηDM,δ(t) (6)

For the unit of delay δ, the chip of the ranging codes CD(t) and CP(t) can be used as δ = n chip,
or the second can be used as δ = nT0 second, where T0 = 1

f0
= 1

1.023×106 s.
The first term sDM,δ(t) in Equation (5) is deterministic, and the following three terms, which are

gathered in ηDM,δ(t), are random. The first term sDM,δ(t) can be expressed as Equation (7), considering
the removal of the high frequency term during the correlation process:

sDM,δ(t) = r(t)r(t− δ) ≈ SL1C(t)SL1C(t− δ)× 1
2

cos(2π( f IF + fD)δ) (7)

= 1
2 cos(2π( f IF + fD)δ)· c2

[√
3COL(t)CP(t)SCP(t) + D(t)CD(t)SCD(t)

]
·
[√

3COL(t− δ)CP(t− δ)SCP(t− δ) + D(t− δ)CD(t− δ)SCD(t− δ)
]

= d[3COL(t)COL(t− δ)CP(t)CP(t− δ)SCP(t)SCP(t− δ)

+
√

3 D(t)COL(t− δ)CD(t)CP(t− δ)SCD(t)SCP(t− δ)

+
√

3COL(t)D(t− δ)CP(t)CD(t− δ)SCP(t) SCD(t− δ)

+D(t)D(t− δ)CD(t)CD(t− δ)SCD(t) SCD(t− δ)]

≈ d[3CP(t)CP(t− δ)SCP(t)SCP(t− δ)±
√

3 CD(t)CP(t− δ)SCD(t)SCP(t− δ)

±
√

3CP(t)CD(t− δ)SCP(t) SCD(t− δ) + CD(t)CD(t− δ)SCD(t) SCD(t− δ)]
(8)
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where:
d =

c
4

cos(2π( f IF + fD)δ). (9)

We used some approximation in Equation (8) such that D(t)D(t− δ) ≈ 1, COL(t)COL(t− δ) ≈ 1,
D(t)COL(t− δ) ≈ D(t− δ)COL(t) ≈ ±1, where ≈means that the term may have different values for
only δ among 10,130 chips.

The term ηDM,δ(t) in Equation (6) consists of three noise terms as follows:

ηDM,δ(t) = SL1C(t) cos(2π( f IF + fD)t)n(t− δ) + SL1C(t− δ) cos(2π( f IF + fD)(t− δ))n(t) + n(t)n(t− δ)

where the first and second terms are zero-mean random noise, and the third one is the product of two
Gaussian noises. The product of two independent Gaussian random variables x and y with zero mean
and variances σ2

x and σ2
y has a normal product distribution, as follows:

pxy(u) =
∫ ∞

−∞

∫ ∞

−∞

e
−x2

2σ2
x

σx
√

2π
· e

−y2

2σ2
y

σy
√

2π
·δ(xy− u)dxdy =

K0

(
|u|

σxσy

)
πσxσy

where, δ(x) is the Dirac delta function, and K0(x) is the modified Bessel function of the second kind
and zero order, and the solution is K0(x) =

∫ ∞
0

cos(xt)√
t2+1

dt [19].

3. Results

3.1. New DM Acquisition Schemes for GPS L1C Signal and the Unambiguous Property

3.1.1. Choosing the Optimal Delay δ0 for the GPS DM Signal

The signal SDM,δ (t) in Equation (8) can be expressed as Equation (10) using some simple notations
as Equation (11):

sDM,δ (t) = d[3CPP,δ(t)SCP(t)SCP(t− δ)±
√

3 CDP,δ(t)SCD(t)SCP(t− δ)

±
√

3CPD,δ(t)SCP(t) SCD(t− δ) + CDD,δ(t)SCD(t) SCD(t− δ)]
(10)

where:
CPP,δ(t) = CP(t)CP(t− δ), CDP,δ(t) = CD(t)CP(t− δ),

CPD,δ(t) = CP(t)CD(t− δ), CDD,δ(t) = CD(t)CD(t− δ). (11)

Equation (10) has two ± symbols, and the same sign occurs simultaneously, that is, (+) (+) or (−)
(−), since D(t)COL(t− δ) ≈ D(t− δ)COL(t).

Figure 4a is the auto correlation function (ACF) of
√

3SCP(t), which shows that it has peaks at
δ = 33n-chips. Figure 4b shows the ACF of SCD(t), and it has peaks at every δ = 0.5n-chip. The cross
correlation function (CCF) of

√
3SCP(t) and SCD(t) shows a similar result to Figure 4b, and it also has

peaks at every δ = 0.5n-chip. Thus δ0 = 33n-chip will be candidate for the optimal delay.
Considering the condition of cos(2π f IFδ0) = ±1, the optimal delay δ0 in the GPS L1C DM signal

is chosen as Equation (12):

δ0 =

33T0, n = 1
kπ

2π f IF
, k = 1, 2, 3, · · ·

(12)

The optimal delay δ0 in Equation (12) is long compared with the Galileo case [18–20] and thus the
Doppler frequency effect cannot be ignored in Equation (9). The value d becomes d0 with condition (12):

d0 =
c
4

cos(2π( f IF + fD)δ0) =
c
4

cos(kπ + 2π fDδ0) = ±
c
4

cos(2π fDδ0). (13)
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When cos(2π fDδ0) = 0.5, we obtain that fD = 5167 Hz, which is the maximum Doppler frequency
when a GPS receiver moves at the speed of 198 km/h. This calculation comes from the assumption
of a circular orbit of the GPS satellite [3]. As is well-known, the Doppler frequency is slowly varying
and the average rate of change of the Doppler frequency is 0.54 Hz/s for the stationary receiver [3],
which is 0.567 Hz/s at the speed of 198 km/h. Thus d0 in Equation (13) depends on the Doppler
frequency, but can be treated as a constant during the acquisition process since the coherent integration
time Tc = 10 ms for the GPS L1C signal.

The limitation that the proposed DM method which will be given in the following section can be
used only for low speed due to the Doppler frequency can be solved by using combined L1 and L1C
signal acquisition, which will be given in Section 3.4.

3.1.2. The Proposed 33-chip Delay DM Acquisition Scheme

This section provides the two proposed DM acquisition schemes. Figure 5a shows the first 33-chip
delay (δ0 = 33T0) DM acquisition scheme.
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The following Lemma shows the unambiguous property of the proposed 33-chip delay DM
acquisition scheme in Figure 5a.

Lemma 1. Consider the GPS L1C DM signal sDM,δ0(t) in Equation (10) (δ = δ0 = 33T0), and also the
generated signal:

gDM,PP(t) = CPP,δ0(t) = CP(t)CP(t− 33T0)

then the CCF of sDM,δ0(t + τ) and gDM,PP(t) during the coherent integration time Tc = 10 ms is defined as the
decision variable dDM,PP(τ) =

∫ Tc
0 sDM,δ0(t + τ)gDM,PP(t)dt in Figure 5a. The CCF can be obtained as:

dDM,PP(τ) = 3d0(1− |τ|)(u(τ + 1)− u(τ − 1)) (14)

where d0 = ± c
4 cos(2π fDδ0) and u(τ) is the unit step function.

Proof. Considering the optimal time delay σ0 = 33T0, we obtain:

SCP(t)·SCP(t− δ0) = SC2
P(t) = 1, SCD(t)·SCD(t− δ0) = SC2

D(t) = 1, and∫ Tc
0 CDP,δ0(t + τ)CPP,δ0(t)dt

≈ 0,
∫ Tc

0 CPD,δ0(t + τ)CPP,δ0(t)dt ≈ 0,
∫ Tc

0 CDD,δ0(t + τ)CPP,δ0(t)dt ≈ 0.

dDM,PP(τ) =
∫ Tc

0 sDM,δ0(t + τ)gDM,PP(t)dt
=
∫ Tc

0 d[3CPP,δ0(t + τ)±
√

3 CDP,δ0(t + τ)SCD(t + τ)SCP(t + τ − δ0)

±
√

3CPD,δ0(t)SCP(t + τ) SCD(t + τ − δ0) + CDD,δ0(t + τ)]CPP,δ0(t)d
≈ 3d0

∫ Tc
0 CPP,δ0(t + τ)CPP,δ0(t)dt

Since CPP,δ0(t) is a pseudo random noise (PRN) signal, the dDM,PP(τ) is the 3d0 times of ACF of
CPP,δ0(t), which has the form of Equation (14), and is shown as Figure 5b. �

Figure 6a shows the second 33-chip delay (δ0 = 33T0) DM acquisition scheme.
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The following Lemma shows another 33-chip delay DM acquisition scheme as in Figure 6a.

Lemma 2. Consider the GPS L1C DM signal sDM,33T0(t) in Equation (10) (δ = δ0 = 33T0) and also the
generated signal:

gDM,PP+DD(t) = CPP,δ0(t) + CDD,δ0(t) = CP(t)CP(t− 33T0) + CD(t)CD(t− 33T0). (15)

then the CCF of sDM,δ0(t + τ) and gDM,PP+DD(t) during the coherent integration time Tc = 10 ms is defined
as the decision variable dDM,PP+DD(τ) =

∫ T
0 sDM,δ0(t + τ)gDM,PP+DD(t)dt in Figure 6a. The CCF can be

obtained as:
dDM,PP+DD(τ) = 4d0(1− |τ|)(u(τ + 1)− u(τ − 1)) (16)

where d0 = ± c
4 cos(2π fDδ0) and u(τ) is the unit step function.

Proof. Using the similar manipulation as in the Proof of Lemma 1, we obtain that:

dDM,PP+DD(τ) =
∫ Tc

0 sDM,δ0(t + τ)gDM,PP+DD(t)dt
=
∫ Tc

0 d0[3CPP,δ0(t + τ)±
√

3 CDP,δ0(t + τ)SCD(t)SCP(t + τ − δ0)

±
√

3CPD,δ0(t + τ)SCP(t) SCD(t + τ − δ0) + CDD,δ0(t + τ)]·
{

CPP,δ0(t) + CDD,δ0(t)
}

dt
≈ 3d0

∫ Tc
0 CPP,δ0(t + τ)CPP,δ0(t)dt + d0

∫ Tc
0 CDD,δ0(t + τ)CDD,δ0(t)dt

= 4d0(1− |τ|)(u(τ + 1)− u(τ − 1))

(17)

Since CPP,δ0(t) and CDD,δ0(t) are PRN signals, the dDM,PP+DD(τ) is the ACF of CPP,δ0(t) plus the
ACF of CPP,δ0(t), which has the form of Equation (16), and is shown as Figure 6b. �

3.1.3. Determination of the Doppler Frequency

In this section we show the procedure to find the Doppler frequency of the received signal rn(t)
after we obtain the code phase through the proposed DM acquisition scheme.

Consider the received signal rn(t) and the generated signal gconv,P(t) in Figure 7 with τ = 0. Then:

rn(t)·gconv,P(t) =

[{√
3
2 c·COL(t)CP(t)SCP(t) +

√
c
2 ·D(t)CD(t)SCD(t)

}
cos(2π( f IF + fD)t) + n(t)

]
CP(t)SCP(t) cos(2π f IFt)

=

{
±
√

3
2 c±

√
c
2 CD(t)CP(t)SCD(t)SCP(t)

}
· 12 (cos(2π fDt) + cos(2π(2 f IF + fD)t)

+n(t)·CP(t)SCP(t) cos(2π f IFt)

≈ ± 1
2

√
3
2 c· cos(2π fDt)

(18)

where we use that C2
P(t) = 1, SC2

P(t) = 1, and the ranging code and the Gaussian noise term will be
filtered out.

By performing the fast Fourier transform for the signal (18) we can obtain the Doppler frequency
fD with Lemma 3.

Lemma 3. Suppose that a continuous-time signal x(t) is a sinusoidal signal with frequency fD. Define fs as
the sampling frequency, and T as the sampling interval in the time domain.

The sampled sequence x[n], 1 ≤ n ≤ M, has a discrete-time Fourier transform (DFT) X(k), 1 ≤ k ≤ M:

(1) Then the resolution of X(k) is ∆ f = 1
T [Hz].

(2) If we reduce the number of samples by averaging x[n] while maintaining the Nyquist theorem such that

x[n], 1 ≤ n ≤ M, M = LM, and the DFT is X
(

k
)

, 1 ≤ k ≤ M, then the resolution of X
(

k
)

is still

∆ f = 1
T [Hz].

Proof. (1) From the sampling frequency and the sampling interval, the number of samples is M = fs·T.
It is well-known that the highest frequency of the sampled data is fs

2 and the highest frequency of
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X(k) is located at M
2 (suppose that M is even). There ore e obtain ∆ f ·M2 = fs

2 = 1
2

M
T , which results

in ∆ f = 1
T [Hz]. (2) From the new sampling frequency fs =

fs
L and the number of samples M = M

L ,

the similar Equation holds as in proof (1) such as ∆ f ·N2 = fs
2 = 1

2
N
T , which results in the same Equation,

∆ f = 1
T [Hz]. �

Considering (18), the above method cannot distinguish positive Doppler frequency from negative
Doppler frequency since cos(2π fDt) = cos(2π(− fD)t). Thus after finding the Doppler frequency
using Lemma 3, the rate of the relative velocity of the vehicle from the satellite should be used to
determine the sign of the Doppler frequency.

3.2. Noise Characteristics of the Proposed DM and Conventional Acquisition Method

3.2.1. Noise Characteristics of the Proposed DM Acquisition Method

In this section, we show the SNR of the decision variables for the proposed DM acquisition
methods, which are shown in Figures 5a and 6a.

Lemma 4. Consider the proposed DM acquisition scheme in Figure 5a, where the generated signal is
gDM,PP(t) = CPP,δ0(t) = CP(t)CP(t− 33T0). The SNR of the decision variable in the presence of GPS
L1C signal can be approximated as Equation (19):

SNRDM,PP =
9

16 ·c2{cos(2π fDδ0)}2M
σ4

n + 2c·σ2
n

(19)

where δ0 = 33T0 is the optimal delay in DM signal, M is the number of samples according to the appropriate
sampling frequency and the coherent integration period Tc, and σ2

n is the variance of the noise n(t) in Equation (4).

Proof. Denote H0 as the hypothesis in the absence of GPS L1C signal, and H1 in the presence of the
signal, and ZH0 and ZH1 as the decision variables in the case of H0 and H1, respectively. Suppose
that the optimal time delay is δ0 = 33T0, and the generated signal is gDM,PP(t) = CPP,δ0(t) =

CP(t)CP(t− 33T0), then we obtain the decision variables for H0 and H1 as follows:

H0 : ZH0 =
M−1

∑
i=0

n(ti)n(ti − 33T0)CPP,δ0(t)

Denote nDM,δ0(t) = n(t)n(t− 33T0), then it is known that E
[
nDM,δ0

]
= 0, σ2

nDM,δ0
= σ4

n [19].
The signal nDM,δ0(t) is actually a random process, and thus nDM,δ0(ti), i = 0, 1, 2, · · · , M− 1,

are random variables that are independent and identically distributed. Thus by the central limit
theorem, ZH0 has the Gaussian distribution with mean zero and variance, Mσn

4, that is:

H0 : ZH0 ∼ N
(

0, Mσn
4
)

Suppose that the GPS L1C signal is present, and that the received signal and the generated signal
are aligned in phase, then the decision variable becomes:

H1 : ZH1 =
M−1
∑

i=0
rDM,δ0(ti)CPP,δ0(ti)

=
M−1
∑

i=0
sDM,δ0(ti) CPP,δ0(ti) +

M−1
∑

i=0
SL1C(ti) cos(2π( f IF + fD)ti) n(ti − δ0)CPP,δ0(ti)

+∑M−1
i=0 SL1C(ti − δ0) cos(2π( f IF + fD)(ti − δ0) n(ti)CPP,δ0(ti)

+∑M−1
i=0 nDM,δ0(ti)CPP,δ0(ti)

(20)
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The first term is given using Equation (14) as follows:

ZH1,1 =
M−1

∑
i=0

sDM,δ0(ti) CPP,δ0(ti) ≈ 3d0

M−1

∑
i=0

CPP,δ0(ti)CPP,δ0(ti) = 3d0M =
3c
4

cos(2π fDδ0)M.

The second term of Equation (20) has the form of ZH1,2 = ∑M−1
i=0 ain(ti − δ0), where

ai = SL1C(ti)CPP,δ0(ti) cos(2π( f IF + fD)ti), is the linear combination of independent and identically
distributed random variables. Thus by the central limit theorem, ZH1,2 has the Gaussian distribution
with mean zero and variance σ2

ZH1,2
:

σ2
ZH1,2

=
M−1
∑

i=0
a2

i σ2
n =

M−1
∑

i=0

{
S2

L1C(ti)cos2(2π( f IF + fD)ti)C2
PP,δ0

(ti)
}

σ2
n

= σ2
n ∑M−1

i=0

{
S2

L1C(ti)cos2(2π( f IF + fD)ti)
}

= σ2
n ∑M−1

i=0

{
1
2

{(
2 +
√

3
)

c +
(

2−
√

3
)

c
}
· 1−cos(4π( f IF+ fD)ti)

2

}
≈ cMσ2

n

where, we use the property that S2
L1C(ti) has two values of (2 +

√
3)c or (2 −

√
3)c with equal

opportunity, and the high frequency signal is filtered out.
Similarly, we obtain that E

[
ZH1,3

]
= 0, σ2

ZH1,3
≈ cMσ2

n . Also E
[

ZH1,4

]
= 0, σ2

ZH1,4
= Mσ4

n .

In summary, the decision variable has the Gaussian distribution as follows:

ZH1 ∼ N(
3c
4

cos(2π fDδ0)M,
(

σ4
n + 2cσ2

n

)
M).

Thus the SNR is obtained as follows:

SNRDM,PP =
E
[
ZH1

]2
σ2

H1

=

( 3
4 c· cos(2π fDδ0)M

)2

(σ4
n + 2cσ2

n)M
=

9
16 ·c2cos2(2π fDδ0)M

σ4
n + 2cσ2

n

�

Lemma 5. Consider the proposed DM acquisition scheme in Figure 6a, where the generated signal is
gDM,PP+DD(t) = CPP,δ0(t) + CDD,δ0(t) = CP(t)CP(t− 33T0) + CD(t)CD(t− 33T0). The SNR of the
decision variable in the presence of GPS L1C signal can be approximated as Equation (21):

SNRDM,PP+DD =
1
2 ·c2{cos(2π fDδ0)}2M

σ4
n + 2c·σ2

n
(21)

where δ0 = 33T0 is the optimal delay in DM signal, M is the number of samples according to the sampling
frequency and the coherent integration period, and σ2

n is the variance of the noise n(t) in Equation (4).

The proof of Lemma 5 has similar procedure as that of Lemma 4, and thus is omitted here and is
given in Appendix A.

3.2.2. Noise Characteristics of the Conventional Acquisition Method

In this section, we show the SNR of the decision variables for the possible conventional acquisition
methods which are shown in Figure 7.
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Lemma 6. Consider the conventional acquisition scheme in Figure 7, and assume that we know the Doppler
frequency, and thus we use fD = 0. Note that the generated signal is gconv,i(t). We consider three cases of
generated signals, which are:

gconv,P(t) = CP(t)SCP(t) cos(2π f IFt)
gconv,

√
3P+D(t) =

{√
3CP(t)SCP(t) + CD(t)SCD(t)

}
cos(2π f IFt)

gconv,P+D(t) = {CP(t)SCP(t) + CD(t)SCD(t)} cos(2π f IFt)

The SNR of the decision variable in the presence of the GPS L1C signal can be approximated for
the three cases as (22):

SNRconv,P =
3
4 c·M

σ2
n

, SNRconv,
√

3P+D =
1
4 c·M

σ2
n

, SNRconv,P+D =
1
2 c·M

σ2
n

or 0 (22)

where, M is the number of samples according to the sampling frequency and the coherent integration period,
and σ2

n is the variance of the noise n(t) in Equation (4).

The proof of Lemma 6 has similar procedure as that of Lemma 4, and thus is omitted here and
given in Appendix B.

3.2.3. Comparison of the SNR Performance between DM and Conventional Methods

This section summarizes the SNR ratio in the presence of L1C signal for the DM and conventional
methods from the results of Lemmas 4–6. Table 1 compares the performance with each other. For the
two DM methods, the SNR of gDM,PP is greater than that of gDM,PP+DD, while the mean value,
which is the correlation peak, of gDM,PP+DD is greater than that of gDM,PP. In this case the use of
gDM,PP provides greater probability of detection than that of gDM,PP+DD. Thus, we can conclude
that the DM method of g(t) = gDM,PP(t) is preferable to obtain better performance such as the
probability of detection. In similar way, g(t) = gconv,P(t) is the best among the three candidates in the
conventional method.

As mentioned in Section 3.1.1, the optimal delay δ0 = 33T0 is long and thus we cannot ignore
the effect of the Doppler frequency such that 0.5 ≤|cos(2π fDδ0)|≤ 1 , for −5167 Hz ≤ fD ≤ 5167 Hz,
which is the maximum Doppler frequency when a GPS receiver moves at the speed of 198 km/h.
The Doppler frequency is slowly varying and thus the cosine value in Table 1 can be treated as a
constant for the acquisition process. The following Corollary shows the ratio of SNR between the DM
method and the conventional method.
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Table 1. Comparison of the performance between the DM method and the conventional method.

Delay-And-Multiply Method Conventional Method

g(t) gDM,PP gDM,PP+DD gconv,P gconv,
√

3P+D gconv,P+D

ZH0 N
(
0, Mσ4

n
)

N
(
0, 2Mσ4

n
)

N
(

0, M
2 σ2

n

)
N
(
0, 2Mσ2

n
)

N
(
0, Mσ2

n
)

ZH1 N
(

3c
4 cos(2π fDδ0)M,

(
σ4

n + 2cσ2
n
)

M
)

N
(
c· cos(2π fDδ0)M,

(
2σ4

n + 4cσ2
n
)

M
)

N
(
±
√

3c
8 M, 1

2 σ2
n M
) N

(
±
√

c
2 M, 2σ2

n M
)

or

N
(
±
√

2cM, 2σ2
n M
) N

(
±
√

c
2 M, σ2

n M
)

or

N
(
0, σ2

n M
)

SNR for ZH1

9
16 ·c2cos2(2π fDδ0)M

σ4
n+2cσ2

n

1
2 ·c2cos2(2π fDδ0)M

σ4
n+2cσ2

n

3
4 c·M

σ2
n

1
4 c·M

σ2
n

or c·M
σ2

n

1
2 c·M

σ2
n

or 0

preference o o
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Corollary 1. Consider the SNR of the decision variable for the DM acquisition method SNRDM,PP and the
SNR of the decision variable for the conventional acquisition method SNRconv,P. Then, SNRDM,PP is always
less than SNRconv,P, and the SNR ratio is given as Equation (23):

SNRDM,PP

SNRconv,P
=

3
4 c·cos2(2π fDδ0)

σ2
n + 2c

. (23)

3.2.4. Probability of Detection with Respect to the Number of Samples

In this section we consider the effect of the number of samples on the detection probability. It is
well-known that when a longer data is used for the acquisition process, the SNR increases and the
detection performance enhances. This performance improvement can be obtained through the fast
sampling, which increases M in the DM method in Table 1

The following Lemma shows that when the sampling speed increases, meaning the increase of M,
the detection probability increases.

Lemma 7. Consider the generated signal g(t) = gDM,PP(t) in the DM acquisition method in Table 1. Assuming
that c = 1 and cos(2π f IFδ0) ≈ 1, we obtain that ZH0 ∼ N

(
0, Mσ4

n
)

and ZH1 ∼ N
( 3

4 M,
(
σ4

n + 2σ2
n
)

M
)
,

where M is the number of samples according to the appropriate sampling frequency and the coherent integration
period T. Suppose that the probability of false alarm is given, then the detection probability Pd increases as the
number of sample M increases, i.e.:

i f M1 < M2, then PM1
d < PM2

d .

Proof. Define the probability density functions of the decision variables ZH0 and ZH1 as fZH0
(z) and

fZH1
(z). When the probability of false alarm Pf a is given, the threshold γ and the probability of

detection Pd is given as follows:
∫ γ
−∞ fZH0

(z)dz = Pf a and
∫ ∞

γ fZH1
(z)dz = Pd.

Consider two sample numbers M1 and M2 with M1 < M2, and the corresponding thresholds γ1

and γ2, and the corresponding probability of detection, as PM1
d and PM2

d . We will show that γ1 < γ2

first and then PM1
d < PM2

d .

(i) Suppose that the probability of false alarm Pf a is given. Despite of the change of variance,

the normalized threshold does not change, i.e., γ1√
M1σ2

n
= γ2√

M2σ2
n

, which becomes γ1
γ2

=
√

M1
M2

< 1.
Hence, we have γ1 < γ2.

(ii) The probability of detection is given for the sample numbers M1 and M2 as:

∫ ∞

γ1

f M1
ZH1

(z)dz = PM1
d and

∫ ∞

γ2

f M2
ZH2

(z)dz = PM2
d .

The normalized thresholds are γ1 =
γ1− 3

4 M1√
M1·
√

σ4
n+2σ2

n
and γ2 =

γ2− 3
4 M2√

M2·
√

σ4
n+2σ2

n
, which becomes:

γ1
γ2

=
√

M2
M1
· γ1− 3

4 M1

γ2− 3
4 M2

=
√

M2
M1
·

γ2·
√

M1
M2
− 3

4 M1

γ2− 3
4 M2

=
γ2− 3

4
√

M1 M2

γ2− 3
4 M2

> 1.

Thus γ2 < γ1, meaning that PM1
d < PM2

d .

3.2.5. Comparison of Search Time for Coarse Acquisition

This section compares the acquisition time taken roughly by both the conventional method and
the proposed DM method. Suppose that the software receiver is used with the fast Fourier transform
(FFT) method and the Doppler frequency search bin is 50 Hz for brevity. Then the conventional method
should search the Doppler frequency 209 (= 10.4 kHz/50 Hz + 1) times. The Doppler frequency
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of 5.2 kHz comes from the discussion in Section 3.1.1. For the DM approach, the generated signal
gDM,PP(t) in Figure 5a and gDM,PP+DD(t) in Figure 6a can be precalculated and stored in the memory.
Thus only one more multiplication is necessary for the DM approach to obtain sDM,δ0(t) before
correlation, compared with the conventional method in Figure 7. The correlation of the received
signal rDM(t) and the generated signal gDM(t) is performed through the parallel code phase search
acquisition using FFT [2] in this paper. However, we count it as 1 correlation for simplicity. The search
time to obtain both code phase and Doppler frequency can be roughly described with the Doppler
frequency resolution ∆ f = 50 Hz as follows:

(1) The proposed DM approach:
K *(1 multiplication + 1 correlation) to search the code phase
+1 multiplication + 1 FFT (much reduced order) to obtain the Doppler frequency
≈(K + 1) multiplication + K correlations

(2) The conventional approach:
209 correlations + find maximum peak ≈ 209 correlations

where K is the number of non-coherent integration.
Thus the search time of the DM acquisition method depends on K, which depends on the

noise environment.

Comment 1. According to Lemma 7, the probability of detection can be increased as the number of sample
increases, which can be obtained by sampling more fast as well as by using longer samples like non-coherent
integration. So the acquisition time of the DM approach can be reduced much with higher sampling rate due to
the advance of sampling technology.

3.3. Results of the Performance Analysis for the Proposed DM Acquisition Method

In this section we simulate the acquisition process for both conventional and proposed DM
methods. Assume that the intermediate frequency is f IF = 6.2 MHz, the sampling frequency is
fs = 60 MHz, and the Doppler frequency fD = 0. The coherent integration time is Tc = 10 ms and the
number of samples is M = fsTc = 600,000.

3.3.1. The Correlation Function of DM and Conventional Method

The decision variable dconv,P(τ) in Figure 7, which is the CCF of the received signal r(t + τ) and
the generated signal g(t) = gconv,P(t) for the conventional acquisition scheme is plotted with respect
to the code phase τ in Figure 8.
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Figure 8. The CCF for the conventional method; (a) Correlation plot for 10,230 chips (600,000 samples);
(b) Correlation plot for ±1 chip (59 samples) around the correlation peak.

The correlation peak is shown in Figure 8a and shown again in detail around the peak
within ±1 chip

(
T0 = 1

1.023×106 s
)

in Figure 8b, which shows severe multiple peaks around the
maximum peak.

The decision variable dDM,PP(τ) in Figure 5 is the CCF of the received DM signal sDM,σ0(t + τ)

and the generated DM signal g(t) = gDM,PP(t) for the DM acquisition scheme and is plotted with
respect to the code phase τ in Figure 9. The correlation peak is shown in Figure 9a and shown again in
detail around the peak within ±1 chip in Figure 8b, where we can see that the multiple peaks around
the maximum peak are completely removed.
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3.3.2. Probability of Detection for the Proposed DM Method

For the proposed DM acquisition method as in Figure 5, the probability of detection is shown
with respect to the probability of false alarm in Figure 10, where each point in the plot is obtained from
10,000 simulation runs.
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Figure 10. Probability of detection obtained for the proposed DM method (C/N0): 33-chip delay.

Figure 11 shows the probability of detection according to C/N0 with Pfa = 0.001. As discussed
in Section 3.2.4, the detection probability can be increased by sampling more fast as well as by using
longer samples like non-coherent integration. Figure 11 shows the detection probability with using
longer samples, i.e., non-coherent integration. If we use KTc long samples, where K is the number of
non-coherent integration and Tc is the coherent integration time, the detection performance of DM
method can be improved. As K increases, Pd also increases as in Figure 11.
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3.3.3. Finding the Doppler Frequency

In this section we obtain the Doppler frequency after finding the code phase as in Section 3.1.3.
In Figure 7, after the code phase aligned, the multiplication of the received signal r(t) and gconv,P(t)
contains the Doppler frequency fD as:

r(t)·gconv,P(t) ≈ ±
1
2

√
3
2

c· cos(2π fDt). (24)

Thus we can obtain fD using the FFT method. We use the received signal r(t) for 10 ms with
600,000 samples, i.e., M = 600,000 and multiply it with gconv,P(t), and then average 1000 samples
resulting in M = 600 samples. The frequency resolution of the FFT is 100 Hz since 10 ms data is used.
Figure 12 shows the FFT result from the 600 samples with Doppler frequencies, such as 1 kHz, 2 kHz,
3 kHz, and −1 kHz. We can notice that the cases of fD = 1 kHz and fD = −1 kHz show the same
result because of cosine function in (24).
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3.4. Modified DM Acquisition for GPS L1C Signal Using Combined L1/L1C Signal Acquisition

In Section 3.1.1 the optimal delay is chosen as σ0 = 33T0 for the DM signal and the magnitude
of the received DM signal sDM,σ0 (t) is given as d0 = ± c

4 cos(2π fDσ0) in Equations (10) and (13).
This optimal delay σ0 = 33T0 is so long that the Doppler frequency effect cannot be ignored in
d0 = ± c

4 cos(2π fDσ0) as discussed in Section 3.1.1, and thus the proposed DM methods in Section 3.1.2
can be used only for low speed up to approximately 200 km/h.

In this section we propose a modified DM acquisition method which can be used even for high
speed and high dynamics. Suppose that we obtain the Doppler frequency in advance by using the L1
signal acquisition.

Define the generated signal gD(t) = cos (2π( f IF + f̂D)t), where f̂D is the Doppler frequency
obtained from the L1 signal acquisition, and rg(t) as follows:

rg(t) = r(t)gD(t) (25)

= SL1C(t) cos (2π( f IF + fD)t) cos (2π( f IF + f̂D)t) ≈
1
2

SL1C(t) cos (2π( fD − f̂D)t)

where the high frequency term is considered as removed during the correlation process.
The DM signal of rg(t) with the optimal delay is given as follows:

sgDM,σ0 (t) = rg(t)rg(t− σ0) ≈ SL1C(t)SL1C(t− σ0)×
1
4

cos (2π( fD − f̂D)σ0).

If the Doppler frequency error is 100 Hz, then cos (2π( fD − f̂D)σ0) = 0.998, and thus the
magnitude of the received DM signal sgDM,σ0 (t) can be considered as constant regardless of the
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Doppler frequency. We can substitute the rg(t) in Equation (25) for r(t) Figures 5a and 6a as a modified
DM acquisition method.

4. Discussion and Conclusions

This paper considers the acquisition problem of the GPS L1C signal. One difficulty of GPS L1C
signal acquisition is the ambiguity problem, which comes from the multiple peaks in the correlation
function between the received signal and the generated signal. We use the DM method to solve
the ambiguity problem and propose two unambiguous DM acquisition schemes for GPS L1C signal.
We have chosen the optimal delay δ0 of the DM signal as 33-chip delay of the ranging code with
the condition of cos(2π f IFδ0) = ±1. We have proven that by using our proposed DM methods the
correlation function between the received signal and the generated signal has a triangular shape with
respect to the code phase as in the correlation function of GPS L1 C/A code, which completely removes
the ambiguity problem.

However, this 33-chip delay is so long that the Doppler frequency has an effect on the magnitude of
the DM signal and thus the proposed DM method can be used for moving receivers up to approximately
200 km/h, for which the magnitude of the DM signal may decrease to the half due to the Doppler
frequency for the worst case. One remedy for the magnitude decrease of DM signal is to increase the
sampling speed. Faster sampling can recover the SNR and increases the probability of detection as
proved in Lemma 7. In the case of the use of L1C signal only the proposed DM method can be used
only for low speed application. Second remedy is to use the acquisition result of the legacy GPS L1
signal, which will provide the Doppler frequency. GPS receivers can receive both L1 and L1C signal
together and thus the limitation of the DM method can be solved by using the combined L1/L1C
acquisition method.

We also analyze the performance of the proposed DM method. The SNR of the DM acquisition
method and that of the conventional method are derived analytically and the detection performance
of the two methods is compared. The probability of detection is used as the performance measure in
the acquisition process, with fixed false alarm probability. The performance result of the proposed DM
acquisition methods is shown via simulations.
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Appendix A

The Proof of Lemma 5

The proof is similar to that of Lemma 4, and thus we use the same notation as in Lemma 4.
The difference is that here, the generated signal is gDM,PP+DD(t) = CPP,δ0(t) + CDD,δ0(t), instead of
gDM,PP(t) = CPP,δ0(t).

Consider the H0 hypothesis:

H0 : ZH0 =
M−1
∑

i=0
n(ti)n(ti − 33T0){CPP,δ0(t) + CDD,δ0(t)}

=
M−1
∑

i=0
nDM,δ0(t)CPP,δ0(t) +

M−1
∑

i=0
nDM,δ0(t)CDD,δ0(t)

Then we have the Gaussian distribution for H0 as ZH0 ∼ N
(
0, 2Mσn

4).
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Suppose that the GPS L1C signal is present, and that the received signal and the generated signal
are aligned in phase; the decision variable then becomes:

H1 : ZH1 = ∑M−1
i=0 rDM,δ0(ti) {CPP,δ0(ti) + CDD,δ0(ti)}

= ∑M−1
i=0 sDM,δ0(ti) {CPP,δ0(ti) + CDD,δ0(ti)}

+∑M−1
i=0 SL1C(ti) cos(2π( f IF + fD)ti) n(ti − δ0) {CPP,δ0(ti) + CDD,δ0(ti)}

+∑M−1
i=0 SL1C(ti − δ0) cos(2π( f IF + fD)(ti − δ0) n(ti) {CPP,δ0(ti) + CDD,δ0(ti)}

+∑M−1
i=0 nDM,δ0(ti) {CPP,δ0(ti) + CDD,δ0(ti)}.

The first term is given using Equation (16) as follows:

ZH1,1 = ∑M−1
i=0 sDM,δ0(ti) {CPP,δ0(ti) + CDD,δ0(ti)} ≈ 3d0 ∑M−1

i=0 CPP,δ0(ti)CPP,δ0(ti) + d0 ∑M−1
i=0 CDD,δ0(ti)CDD,δ0(ti)

= 4d0M = c· cos(2π fDδ0)M.

The second term ZH1,2 has the Gaussian distribution with mean zero and variance σ2
ZH1,2

, which is

given as follows using the similar procedure in the proof of Lemma 4:

σ2
ZH1,2

=
M−1

∑
i=0
{S2

L1C(ti)cos2(2π( f IF + fD)ti){C2
PP,δ0

(ti) + C2
DD,δ0

(ti)}}σ2
n≈ 2cMσ2

n

Similarly, we obtain that E
[

ZH1,3

]
= 0, σ2

ZH1,3
≈ 2cMσ2

n . Also E
[

ZH1,4

]
= 0, σ2

ZH1,4
= Mσ4

n .

In summary, the decision variable has a Gaussian distribution, as follows:

ZH1 ∼ N
(

c· cos(2π fDδ0)M,
(

2σ4
n + 4cσ2

n

)
M
)

.

Thus the SNR is obtained as follows:

SNRDM =
E
[
ZH1

]2
σ2

H1

=
(c· cos(2π fDδ0)M)2

2(σ4
n + 2cσ2

n)M
=

1
2 ·c2cos2(2π fDδ0)M

σ4
n + 2cσ2

n

Appendix B

The Proof of Lemma 6

Consider the received signal r(t) of the GPS L1C signal in Equation (4), and the three cases of
generated signal gconv,i(t). We use the same notation and similar procedure as in the proof of Lemma 4,
and the Doppler frequency fD = 0 from the assumption:

(i) gconv,P(t) = CP(t)SCP(t) cos(2π f IFt).
H0 : ZH0 = ∑M−1

i=0 n(ti)CP(ti)SCP(ti) cos(2π f IFti) E[ZH0 ] = 0,
σ2

ZH0
= ∑M−1

i=0 σ2
n(CP(ti))

2(SCP(ti))
2cos2(2π f IFti) ≈ σ2

n ∑M−1
i=0 1·1· 12 = 1

2 σ2
n M,

that is, ZH0 ∼ N
(

0, 1
2 σ2

n M
)

.

H1 : ZH1 = ∑M−1
i=0 SL1C(ti) cos(2π f IFti)·CP(ti)SCP(ti) cos(2π f IFti)

+∑M−1
i=0 n(ti)CP(ti)SCP(ti) cos(2π f IFti)

=
M−1

∑
i=0

{√
3
2 c·COL(ti)CP(ti)SCP(ti) +

√
c
2 ·D(ti)CD(ti)SCD(ti)

}
CP(ti)SCP(ti)cos2(2π f IFti) + ZH0
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≈ ∑M−1
i=0

{√
3
2 c·COL(ti)C2

P(ti)SC2
P(ti) cos2(2π f IFti)

}
+ ZH0

= ∑M−1
i=0

{√
3
2 c· ± 1·1·1· 12

}
+ ZH0 = ±

√
3c
8 M + ZH0 .

that is, ZH1 ∼ N(±
√

3c
8 M, 1

2 σ2
n M).

Thus, the SNR is obtained as follows:

SNRConv,P =
E
[
ZH1

]2
σ2

H1

=
3c
4 M
σ2

n
.

(ii) gconv,
√

3P+D(t) =
(√

3CP(t)SCP(t) + CD(t)SCD(t)
)

cos(2π f IFt).
For the H0 hypothesis:

H0 : ZH0 = ∑M−1
i=0 n(ti)

(√
3CP(t)SCP(t) + CD(t)SCD(t)

)
cos(2π f IFti) E[ZH0 ] = 0,

σ2
ZH0

= ∑M−1
i=0 σ2

n

(√
3CP(t)SCP(t) + CD(t)SCD(t)

)2
cos2(2π f IFti)

≈ σ2
n ∑M−1

i=0

{(√
3CP(t)SCP(t)

)2
+ (CD(t)SCD(t))

2
}
· 12 = (3 + 1)· 12 Mσ2

n = 2Mσ2
n ,

we obtain that ZH0 ∼ N
(
0, 2σ2

n M
)
.

H1 : ZH1 =
M−1

∑
i=0

SL1C(ti) cos(2π( f IF)ti){
√

3CP(ti)SCP(ti) + CD(ti)SCD(ti)} cos(2π f IFti) + ZH0

E[ZH1 ] = ∑M−1
i=0

{√
3
2 c·COL(ti)CP(ti)SCP(ti) +

√
c
2 ·D(ti)CD(ti)SCD(ti)

}
{
√

3CP(ti)SCP(ti) + CD(ti)SCD(ti)} cos2(2π f IFti)

≈
√

c
2 ∑M−1

i=0 {3COL(ti)C2
P(ti)SC2

P(ti) + D(ti)C2
D(ti)SC2

D(ti)} 1
2 =

√
c
2 (±3± 1)· 12 ·M

σ2
ZH1

= σ2
ZH0

= 2σ2
n M

that is, ZH1 ∼ N(±
√

c
2 M, 2σ2

n M) or N
(
±
√

2cM, 2σ2
n M
)

Thus, the SNR is obtained as follows:

SNRconv,
√

3P+D =
E
[
ZH1

]2
σ2

H1

=
1
4 c·M

σ2
n

or
c·M
σ2

n

(iii) gconv,P+D(t) = (CP(t)SCP(t) + CD(t)SCD(t)) cos(2π f IFt).
By the similar procedure as in (ii), we obtain that:

ZH0 ∼ N(0, σ2
n M), and ZH1 ∼ N(±

√
c
2

M, σ2
n M) or N(0, 2σ2

n M)

Thus, the SNR is obtained as follows:

SNRconv,P+D =
E
[
ZH1

]2
σ2

H1

=
1
2 c·M

σ2
n

or 0
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