
sensors

Article

Spectral Kurtosis Entropy and Weighted SaE-ELM
for Bogie Fault Diagnosis under Variable Conditions

Zhipeng Wang 1,2,3,* ID , Limin Jia 1,2,3, Linlin Kou 1,2,3 and Yong Qin 1,2,3

1 State Key Lab of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China;
lmjia@bjtu.edu.cn (L.J.); 13114254@bjtu.edu.cn (L.K.); yqin@bjtu.edu.cn (Y.Q.)

2 National Engineering Laboratory for System Safety and Operation Assurance of Urban Rail Transit,
Guangzhou 510000, China

3 Beijing Research Center of Urban Traffic Information Sensing and Service Technologies,
Beijing Jiaotong University, Beijing 100044, China

* Correspondence: zpwang@bjtu.edu.cn; Tel.: +86-010-5168-4281

Received: 24 April 2018; Accepted: 22 May 2018; Published: 24 May 2018
����������
�������

Abstract: Bogies are crucial for the safe operation of rail transit systems and usually work under
uncertain and variable operating conditions. However, the diagnosis of bogie faults under variable
conditions has barely been discussed until now. Thus, it is valuable to develop effective methods to deal
with variable conditions. Besides, considering that the normal data for training are much more than
the faulty data in practice, there is another problem in that only a small amount of data is available that
includes faults. Concerning these issues, this paper proposes two new algorithms: (1) A novel feature
parameter named spectral kurtosis entropy (SKE) is proposed based on the protrugram. The SKE
not only avoids the manual post-processing of the protrugram but also has strong robustness to
the operating conditions and parameter configurations, which have been validated by a simulation
experiment in this paper. In this paper, the SKE, in conjunction with variational mode decomposition
(VMD), is employed for feature extraction under variable conditions. (2) A new learning algorithm
named weighted self-adaptive evolutionary extreme learning machine (WSaE-ELM) is proposed.
WSaE-ELM gives each sample an extra sample weight to rebalance the training data and optimizes
these weights along with the parameters of hidden neurons by means of the self-adaptive differential
evolution algorithm. Finally, the hybrid method based on VMD, SKE, and WSaE-ELM is verified by
using the vibration signals gathered from real bogies with speed variations. It is demonstrated that
the proposed method of bogie fault diagnosis outperforms the conventional methods by up to 4.42%
and 6.22%, respectively, in percentages of accuracy under variable conditions.

Keywords: bogie fault diagnosis; spectral kurtosis entropy; weighted self-adaptive evolutionary
extreme learning machine; protrugram; variational mode decomposition

1. Introduction

Urban rail transit systems are critical for large modern cities. With the development of urban rail
traffic, more and more metro trains are being placed into service, and the safe and reliable operation
of these trains has become a hot topic. Bogies, as crucial parts of metro trains, have a great influence
on the safe utilization of urban rail traffic [1]. Therefore, many studies have been done on bogie
fault diagnosis. Chudzikiewicz et al. [2,3] utilized acceleration signals on wheelset axle-boxes to
monitor trains and tracks simultaneously. Qin et al. employed a wavelet feature for bogie fault signal
analysis [4]. Cai et al. [5] and Trilla et al. [6] utilized empirical mode decomposition (EMD) for fault
diagnosis of railway axle bearings. Na et al. [7] utilized ensemble EMD and manifold learning for
bogie fault identification. Bustos et al. [8] utilized EMD for the identification of the bogie operating
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state of a high-speed train in service. However, all of the existing methods require mainly stable
operating conditions. In the real world, bogies usually work under variable and fluctuant conditions.
Therefore, it is critical to study the diagnosis of bogie faults under variable conditions.

Due to the joint influence of the train and the track, the vibrations of bogies have remarkable
characteristics of nonlinear vibration. Considering the nonlinear signals and heavy background noises,
traditional signal analysis algorithms such as Fourier transform (FT) are futile in this situation. To solve
this problem, EMD has been applied [5,7]. However, EMD has a significant drawback: mode mixing,
which restricts the application of EMD in practice. In 2014, Dragomiretskiy et al. [9] proposed a novel
adaptive method called variational mode decomposition (VMD), which can decompose a signal into
an ensemble of band-limited intrinsic mode functions (IMFs), each with a center frequency. VMD is
an entirely non-recursive and quasi-orthogonal method and has been applied to rotating machinery
fault diagnosis [10]. It has been proven that VMD is more efficient than EMD. Therefore, VMD has been
employed in this paper for nonlinear signal processing.

As the dynamic relationships of bogies are extremely sophisticated, it is sufficiently challenging
to extract features of early faults from vibration signals with a low signal-to-noise ratio (SNR).
Spectral kurtosis (SK), proposed by Dwyer [11], can indicate how the impulsiveness of a signal varies with
frequency and can detect fault-induced peaks (or protrusions). Antoni further analyzed the concept and
proposed the fast kurtogram (FK) [12], which was proven to be effective in early fault diagnosis [13–16].
However, FK has several shortcomings, especially when the noise is strong and contains high peaks [17].
Thus, a novel method called a protrugram was proposed [17]. A protrugram is calculated by using
the kurtosis of envelope spectrum amplitudes of signals and is more effective than FK for detecting
transients with low SNR. However, it should predetermine the bandwidth with a priori knowledge and
requires manual post-processing to reject discrete tones [17]. Due to the complicated kinematics and
variable conditions of bogies, these drawbacks limit their application in bogie fault diagnosis.

In this paper, inspired by the Shannon entropy, a novel feature extraction method named
spectral kurtosis entropy (SKE) is proposed to extract fault characteristics under variable conditions.
This method calculates the entropy of spectral kurtosis based on the protrugram. As the Shannon
entropy can be used to measure the uncertainty of information, spectral kurtosis entropy has a strong
robustness to the predetermined bandwidth value and the operating condition and avoids the manual
post-processing of the protrugram. In the following study, the advantages of SKE will be verified.
Thus, this paper employs SKE for feature extraction under variable conditions.

After feature extraction, the main part is fault classification with the problem of imbalanced
data. Extreme learning machine (ELM), as a new effective learning method, has been applied in many
studies and has shown great efficiency [18–20]. However, since the parameters of hidden neurons
in ELM are randomly assigned and invariant in the training processing, a number of useless and
non-optimal neurons exist in the trained model. To solve this problem, the self-adaptive evolutionary
extreme learning machine (SaE-ELM) was proposed [21,22] and has been proven to outperform
the conventional ELM. However, since in practice the normal samples acquired from bogies are much
more than the faulty ones, bogie fault diagnosis algorithms suffer from the imbalance of data. To deal
with this issue, this paper proposes a novel algorithm named weighted self-adaptive evolutionary
extreme learning machine (WSaE-ELM). This method gives each sample an optimizable sample weight
to rebalance the training data and employs self-adaptive differential evolution algorithm to optimize
these weights and the parameters of the hidden neurons. The proposed WSaE-ELM was employed for
bogie fault diagnosis and its feasibility and effectivity was verified in the following study.

This paper is organized as follows: Section 2 introduces VMD, spectral kurtosis entropy,
WSaE-ELM, and the scheme of the hybrid method for bogie fault diagnosis under variable conditions;
Section 3 describes the simulation verification of VMD and SKE; Section 4 describes the application of
the proposed method on bogie fault diagnosis under variable conditions; and Section 5 concludes this
paper. The acronyms used in this paper are listed in Table 1.
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Table 1. The list of acronyms.

Acronym Full Name

VMD variational mode decomposition
IMF intrinsic mode function
SKE spectral kurtosis entropy
ELM extreme learning machine

SaE-ELM self-adaptive evolutionary extreme learning machine
WELM weighted extreme learning machine

WSaE-ELM weighted self-adaptive evolutionary extreme learning
machine

BW bandwidth
FK spectral kurtosis
CF center frequency
FT Fourier transform

SNR signal-to-noise ratio
RMSE root mean squared error

2. Methodology

2.1. Variational Mode Decomposition

To decompose a nonlinear signal with low RMSE into a discrete number of intrinsic mode functions
(IMFs), VMD assumes that each IMF is around a center frequency and the bandwidth is assigned as its
sparsity prior [9]. This method is a non-recursive algorithm and can extract IMFs concurrently. It involves
three essential concepts: Wiener filtering, Hilbert transform, and frequency mixing. The details about
VMD can be found in Reference [9]. By using VMD, a signal can be decomposed as follows:

x(t) =
k

∑
i=1

im fi(t) (1)

Here, x(t) is the raw signal and {im fi} = {im f1, . . . , im fk} represents the obtained modes. VMD
has shown its great efficiency and strong robustness to sampling and noise [9,10]. In this paper, it is
employed for bogie signal processing.

2.2. Spectral Kurtosis Entropy

Kurtosis is a dimensionless parameter indicating the impulsiveness (or the protrusion) of a signal.
The definition is as follows:

K =
E(X− µ)4

σ4 (2)

Here, X is the signal, µ and σ are the mean value and standard deviation of the signal, respectively.
For a vector X = {x1, x2, · · · , xN}, Equation (2) can be illustrated as follows:

K(X) = E(X−µ)4

σ4 =
(1/N)

N
∑

i=1
(xi−µ)4

(√
(1/N)

N
∑

i=1
(xi−µ)2

)4 =
(1/N)

N
∑

i=1
(xi−µ)4

(
(1/N)

N
∑

i=1
(xi−µ)2

)2 =
(1/N)

N
∑

i=1

[
xi−

(
(1/N)

N
∑

i=1
xi

)]4

{
(1/N)

N
∑

i=1

[
xi−

(
(1/N)

N
∑

i=1
xi

)]2}2 (3)

Here, N is the number of sample points of the signal X. Kurtosis has been applied widely on
mechanical fault diagnosis but it is a time-domain parameter and cannot extract transients of the signal.

The protrugram is a kurtosis-based algorithm [17] and computes spectral kurtosis values by
using the amplitudes of the spectrum of the narrowband envelopes of the signal. Compared with
FK, the protrugram should predetermine the bandwidth (BW) and seek the optimal center frequency (CF).
The setting of the BW depends mainly on expertise and a priori knowledge. Besides, additional manual
post-processing is also essential for the protrugram. To deal with these drawbacks and automatically
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extract fault characteristics under variable conditions, this paper proposed a novel feature parameter
named spectral kurtosis entropy by means of the Shannon entropy theory. As shown in Figure 1, the steps
of spectral kurtosis entropy are as follows:
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Figure 1. The procedure of spectral kurtosis entropy.

(1) Based on the obtained IMFs by VMD, the fast Fourier transform is calculated to acquire
frequency-domain results of IMFs.

(2) The BW and step size are assigned to fixed values. The value of BW used to be approximately
three to five times larger than the fault eigenfrequency. In the following study, the proposed SKE has
been proven to be insensitive to the parameter setting.

(3) The CF is assigned numbers ranging from BW/2 to f/2 gradually (f is the sampling frequency),
and the corresponding window is determined.

(4) Inverse fast Fourier transform is employed to process the narrowband signal.
(5) The narrowband envelope spectrum is calculated.
(6) The kurtosis of spectral amplitudes of positive frequencies is computed.
(7) Steps 3 to 6 are repeated until the spectral kurtosis vector SK = {sk1, sk2, · · · , skF} is acquired.
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(8) According to the definition of spectral kurtosis entropy, its value is calculated. The equations
are as follows: 

SK− entropy = −
F
∑

i=1
Pi log2(Pi)

Pi =
ski

F
∑

j=1
skj

(4)

Here, SK − entropy is the spectral kurtosis entropy, ski is from the spectral kurtosis vector
SK = {sk1, sk2, · · · , skF}, F is the length of SK, and i varies from 1 to F.

In the following study, the proposed SKE has been proven to have strong robustness to the setting
of the BW and also avoids the manual post-processing. Therefore, it can self-adaptively extract fault
features under variable conditions.

2.3. Weighted Self-Adaptive Evolutionary ELM

ELM was proposed for single-hidden-layer feedforward networks (SLFNs) and has been widely
studied and applied due to its remarkable performance [23–25]. In ELM, the input weights and biases
of hidden neurons are randomly allocated with no adjusting during the training, and the output
weights are calculated efficiently using a least square algorithm. The structure is shown in Figure 2.
Details can be found in Huang et al. [23].
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Figure 2. The structure of the extreme learning machine (ELM).

For an arbitrary training dataset (xi, yj), (i = 1, 2, · · · , N; j = 1, 2, · · · , M), the trained model of
ELM with L hidden neurons can be described as follows:

oi(x) =
L

∑
i=1

βig(αi, bi, x) = H·β (5)

Here, αi, bi and βi are the input weight vector, bias, and output weight vector of the ith hidden
neuron, respectively; g(·) is the selected activation function. H is the output matrix of the hidden layer
and can be described as

H =

 g(α1, b1, x1) · · · g(αL, bL, x1)
...

. . .
...

g(α1, b1, xN) · · · g(αL, bL, xN)


N×L

=

 g(α1 · x1 + b1) · · · g(αL · x1 + bL)
...

. . .
...

g(α1 · xN + b1) · · · g(αL · xN + bL)


N×L

(6)
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To deal with the data imbalance, each training sample is given an extra sample weight,
wj(j = 1, 2, · · · , N), which is randomly assigned initially and optimized during the training.
Thus, the output matrix H can be redefined as follows:

H =

 g(α1 · w1 · x1 + b1) · · · g(αL · w1 · x1 + bL)
...

. . .
...

g(α1 · wN · xN + b1) · · · g(αL · wN · xN + bL)


N×L

(7)

Since the parameters αi and bi are randomly assigned and remain unchanged, the network generates
a lot of non-optimal neurons that are useless for classification. To solve this issue, this study has
employed the self-adaptive differential evolutionary algorithm for adaptive optimization of the parameters
αi, bi, wj together. Therefore, a novel algorithm named weighted self-adaptive differential evolutionary
ELM (WSaE-ELM) is proposed. As shown in Figure 3, the steps of WSaE-ELM are as follows:
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(1) Redefine the output matrix H by introducing sample weights wj (j = 1, 2, · · · , N).

(2) Initialize the original populations, which consist of the parameters αi, bi, wj:

θr,G =
[
αT

1,(r,G), · · · , αT
L,(r,G), b1,(r,G), · · · , bL,(r,G), wT

1,(r,G), · · · , wT
N,(r,G)

]
(8)

where G is the generation and r = 1, 2, · · · , NP.

(3) Calculate, according to the least square method, the output weights β and root mean square error
(RMSE) corresponding to each population vector:

βr,G = H+
r,G ·Y (9)

RMSEr,G =

√√√√√ N
∑

i=1
‖

L
∑

j=1
β jg(αj,(r,G) · wi,(r,G) · xi + bj,(r,G))− yi

M · N (10)
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where H+
r,G is the Moore–Penrose pseudo inverse of Hr,G.

Hr,G =


g(α1,(r,G) · w1,(r,G) · x1 + b1,(r,G)) · · · g(αL,(r,G) · w1,(r,G) · x1 + bL,(r,G))

...
. . .

...
g(α1,(r,G) · wN,(r,G) · xN + b1,(r,G)) · · · g(αL,(r,G) · wN,(r,G) · xN + bL,(r,G))


N×L

(11)

θr,G+1 =


ur,G+1 RMSEθr,G − RMSEur,G+1 > λ · RMSEθr,G

ur,G+1

∣∣∣RMSEθr,G − RMSEur,G+1

∣∣∣ < λ · RMSEθr,G

and‖βur,G+1‖ < ‖βθr,G‖
θr,G else

(12)

where θr,G+1 is the (G + 1)th candidature vector generated based on RMSE; ur,G+1 is the (G + 1)th trial
vector; and λ is assigned to 0.015 by default.

(4) Obtain the new mutant vectors vr,G by mutation. There are four selectable mutation strategies
as shown in Table 2. In this paper, the strategy is selected adaptively based on the probability
ps,G, which means the probability of selecting the strategy s is (s = 1,2,3,4). Details can be found in
Reference [21]. The factor F is used to determine the step size and obeys the normal distribution; K is
randomly assigned [0, 1]. k1 · · · k5 are random integers in the range of 1, 2, · · · , NP.

Table 2. Mutation strategies.

Strategy Expression

DE/rand/1 vr,G = θk1,G + F(θk2,G − θk3,G)
DE/rand/1-to- best/2 vr,G = θk1,G + F(θbest,G − θk1,G) + F(θk2,G − θk3,G) + F(θk4,G − θk5,G)

DE/rand/2 vr,G = θk1,G + F(θk2,G − θk3,G) + F(θk4,G − θk5,G)
DE/current-to-rand/1 vr,G = θk1,G + K(θk1,G − vr,G) + F(θk2,G − θk3,G)

(5) After the mutation process, calculate the trial vector ur,G by means of a crossover procedure:

uj
r,G

=

{
vj

i,G (randj ≤ CR)or(j = jrand)

θ
j
i,G otherwise

(13)

where CR represents the crossover rate, which can be valued in [0, 1]; randj is randomly assigned in [0, 1];
jrand is a random integer from 1, 2, · · · , NP.

(6) Consider RMSE as the fitness function. When the value of RMSE is the lowest, the corresponding
target vector and trial vector are stored for the next population.

(7) Repeat Steps 3 to 6 until the goal is achieved or the maximum iterations are arrived at.
By involving the sample weight, WSaE-ELM assigns a different misclassification cost for each

sample to rebalance the data. Compared with the conventional ELM and SaE-ELM, WSaE-ELM not
only improves the stability and generalization ability but also overcomes the imbalance of data.

2.4. Bogie Fault Diagnosis Based on VMD, SKE and WSaE-ELM

In this study, VMD, SKE, and WSaE-ELM were employed for bogie fault diagnosis under variable
conditions. The scheme is illustrated in Figure 4.



Sensors 2018, 18, 1705 8 of 15
Sensors 2018, 18, x FOR PEER REVIEW  8 of 16 

 

Condition Monitoring 

of Bogie
Trained WSaE-ELMTraining data

Off-line: Training

On-line: Diagnosis

VMD

IMF1

IMF2

IMF3

IMF4

 

SKE1

SKE2

SKE3

SKE4

 

SKE

 vectors

Trained WSaE-ELMTesting data

VMD

IMF1

IMF2

IMF3

IMF4

 

SKE1

SKE2

SKE3

SKE4

 

SKE

vectors

Fault 

diagnosis

 

Figure 4. The scheme of the proposed method. 

(1) Feature extraction. VMD is first applied to decompose the vibration signals of the bogie into 

n IMFs. Then, the spectral kurtosis entropy of each IMF is calculated to form an n-dimensional feature 

vector. The calculation processes of VMD and SKE can be found in Sections 2.1 and 2.2, respectively. 

(2) Fault classification. Based on the acquired features, the proposed WSaE-ELM is utilized to 

diagnose bogie faults under variable conditions by using imbalanced training data. More details 

about the novel WSaE-ELM can be found in Section 2.3. 

3. Simulation Experiment 

3.1. Simulation Data 

To demonstrate the efficiency of VMD and SKE for feature extraction, a simulated mechanical 

vibration signal ( )x t  was involved. Assume that the rotational speed increased from 0 to the rated 

speed 1800 r/min in the 0–100 s time frame and then remained stable in the 100–120 s time frame. The 

simulation model can be described as follows: 

1 2( ) sin ( ) 0 100
2

( )=

200 sin 60 100 120
2

x t x t t t

x t

t t






  
  +   

  


    +     

 (14) 

2

1( )=20x t t  (15) 

2

3
( )=

10
x t t   (16) 

The sample rate was set to 100 S/s. The acquired data are shown in Figures 5 and 6. 

 

Figure 4. The scheme of the proposed method.

(1) Feature extraction. VMD is first applied to decompose the vibration signals of the bogie into
n IMFs. Then, the spectral kurtosis entropy of each IMF is calculated to form an n-dimensional feature
vector. The calculation processes of VMD and SKE can be found in Sections 2.1 and 2.2, respectively.

(2) Fault classification. Based on the acquired features, the proposed WSaE-ELM is utilized to
diagnose bogie faults under variable conditions by using imbalanced training data. More details about
the novel WSaE-ELM can be found in Section 2.3.

3. Simulation Experiment

3.1. Simulation Data

To demonstrate the efficiency of VMD and SKE for feature extraction, a simulated mechanical
vibration signal x(t) was involved. Assume that the rotational speed increased from 0 to the rated
speed 1800 r/min in the 0–100 s time frame and then remained stable in the 100–120 s time frame.
The simulation model can be described as follows:

x(t) =

{
x1(t) · sin

(
x2(t) · t + π

2
)

0 < t ≤ 100

200 · sin
(
60π · t + π

2
)

100 < t ≤ 120
(14)

x1(t) = 20 · t2 (15)

x2(t) =
3

10
π · t (16)

The sample rate was set to 100 S/s. The acquired data are shown in Figures 5 and 6.Sensors 2018, 18, x FOR PEER REVIEW  9 of 16 
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3.2. Simulation Result by Using VMD

After the generation of the simulated signal, VMD was employed to decompose the signal into four
IMFs, as shown in Figure 7. For comparison, IMFs by EMD were also calculated, as shown in Figure 8. It is
obvious that the IMFs obtained by EMD are chaotic and cannot accurately represent the characteristics
of the signal under different operating conditions. On the contrary, each IMF obtained by VMD is able
to precisely represent the information of the signal in a certain stage. IMF1, IMF2, IMF3 correspond
to different sequential stages under variable conditions and appear to be spindle. IMF4 corresponds
to the stable stage and the amplitude is almost constant. Compared with EMD, VMD can decompose
the signal more effectively, especially under variable operating conditions.
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3.3. Simulation Result by Using SKE

Based on the IMFs obtained by VMD, the proposed SKE was tested to verify whether it has strong
robustness to variable conditions and bandwidth settings. In this study, the bandwidth (BW) was
assigned to 5, 7, 10, 13, 15, 17, 20 Hz sequentially.

First, the spectral kurtosis was obtained by means of a protrugram. For instance, when the BW was
10 Hz, the results of the protrugram were calculated and are shown in Figure 9. It is implied that there are
notable differences among the spectral kurtosis of different IMFs, especially the IMF4, which represents
the stable stage. That means the spectral kurtosis is under the influence of the operating condition.

Second, the spectral kurtosis entropies of IMFs were calculated, as shown in Table 3. It can be
observed that the SKEs of each IMF are almost identical while the BW varies from 5 to 20 Hz, which means
SKE is insensitive to the setting of the BW. Moreover, the SKEs of different IMFs are also roughly
similar. As previously mentioned, each IMF represents a stage with a corresponding operating condition.
Therefore, it is implied that SKE has a strong robustness to the operating condition and can be employed
for feature extraction under variable conditions.
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Table 3. The calculated spectral kurtosis entropies.

Signal
BW(Hz)

Mean
5 7 10 13 15 17 20

IMF1 4.9846 4.9144 4.8798 4.8779 4.8745 4.8631 4.8472 4.8916
IMF2 4.9693 4.8807 4.8194 4.8092 4.8211 4.8379 4.8740 4.8588
IMF3 4.9974 4.9118 4.8411 4.8197 4.8184 4.8349 4.8898 4.8733
IMF4 4.8032 4.7621 4.75766 4.7565 4.7552 4.7679 4.7992 4.7717

4. Case Study

4.1. Experimental Setup

The real vibration signals of bogies were acquired from A-type trains by a Chinese metro company.
The weights of the trains involved were roughly 38 tons without load during the experiments. This study
utilized a simplified signal acquisition system to obtain the vibration signals of the bogies. There were
four accelerometers deployed on each bogie, and the locations are shown in Figure 10. The accelerometers
were type 787T and produced by the Wilcoxon Company. The signals were gathered with a sampling rate
of 10 kS/s. Then, the access points were utilized to transfer the acquired data to an industrial computer
(Advantech TPC-1251H) and the analog-to-digital conversion and digital signal filtering were conducted
by signal conditioners. Finally, the industrial computer collected and stored the data.
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Figure 10. Locations of the accelerometers.

The trains were running at a fluctuant speed of 35 ± 10 km/h while gathering the signals.
Therefore, all data were acquired under uncertain and variable conditions. The collected data contained
four types of bogie conditions: normal condition (Normal), wheel out-of-roundness or tread peeling
(Fault1, as shown in Figure 11), axle misalignment (Fault2), wheel runout (Fault3). Each type had
a different number of samples, as shown in Table 4 and Figure 12. It is obvious that the imbalanced data
problem existed.
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Table 4. Datasets of bogie fault diagnosis.

Type Bogie of A-Type Train Total

Normal Fault1 Fault2 Fault3

No. of training
samples 1500 60 60 300 1920

No. of test
samples 500 30 30 50 610

Sum 2000 90 90 350 2530

4.2. Feature Extraction

In the beginning, VMD was utilized to decompose the raw vibration signal into n IMFs. Here, n was
assigned to 8. For instance, the result of a normal signal obtained by VMD is shown in Figure 13.
Then, the SKE of each IMF was calculated. In this study, the BW was assigned to 10 Hz by default.
Finally, an 8-dimensional feature vector from each sample was obtained.



Sensors 2018, 18, 1705 13 of 15
Sensors 2018, 18, x FOR PEER REVIEW  13 of 16 

 

 

Figure 13. An example of results by VMD under normal conditions. 

4.3. Fault Classification 

On the basis of the features extracted by means of VMD and SKE, the proposed WSaE-ELM was 

employed for bogie fault diagnosis under variable conditions. For comparison, the conventional ELM, 

SaE-ELM, and the traditional weighted ELM (WELM) [26] were also utilized for bogie fault 

classification. The results are illustrated in Table 5. 

Table 5. Results of bogie fault diagnosis. 

 Test Accuracy Rate False 

Positive 

Rate 

False 

Negative 

Rate 
 Normal Fault1 Fault2 Fault3 Total 

ELM 96.20% 63.33% 70.00% 74.00% 91.48% 3.80% 26.36% 

SaE-ELM 96.80% 70.00% 73.33% 82.00% 93.11% 3.20% 20.91% 

WELM 94.80% 80.00% 86.67% 90.00% 93.28% 5.20% 8.18% 

WSaE-ELM 98.40% 90.00% 96.66% 96.00% 97.70% 1.60% 4.55% 

As shown in Table 5, the total accuracy rates of the four models are all greater than 90%, which 

implies that the proposed feature parameter SKE is able to precisely extract fault characteristics with 

little influence of variable conditions. However, although the total accuracy rates of ELM and SaE-

ELM seem to reach a satisfactory level, their false negative rates are 26.36% and 20.91%, respectively, 

which is extremely high in practice. For example, if Fault1 happened, there is only a 63.33% 

Figure 13. An example of results by VMD under normal conditions.

4.3. Fault Classification

On the basis of the features extracted by means of VMD and SKE, the proposed WSaE-ELM
was employed for bogie fault diagnosis under variable conditions. For comparison, the conventional
ELM, SaE-ELM, and the traditional weighted ELM (WELM) [26] were also utilized for bogie fault
classification. The results are illustrated in Table 5.

Table 5. Results of bogie fault diagnosis.

Test Accuracy Rate False
Positive

Rate

False
Negative

RateNormal Fault1 Fault2 Fault3 Total

ELM 96.20% 63.33% 70.00% 74.00% 91.48% 3.80% 26.36%
SaE-ELM 96.80% 70.00% 73.33% 82.00% 93.11% 3.20% 20.91%
WELM 94.80% 80.00% 86.67% 90.00% 93.28% 5.20% 8.18%

WSaE-ELM 98.40% 90.00% 96.66% 96.00% 97.70% 1.60% 4.55%

As shown in Table 5, the total accuracy rates of the four models are all greater than 90%,
which implies that the proposed feature parameter SKE is able to precisely extract fault characteristics
with little influence of variable conditions. However, although the total accuracy rates of ELM and
SaE-ELM seem to reach a satisfactory level, their false negative rates are 26.36% and 20.91%, respectively,
which is extremely high in practice. For example, if Fault1 happened, there is only a 63.33% probability
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of identifying the fault accurately by using ELM. The SaE-ELM performs better than ELM, but still only
has an accuracy rate of 70%. Their high false negative rates are unacceptable in practice. Obviously, these
are caused by the imbalanced training data. If the training data are imbalanced, the classifiers may tend
towards the category with a larger sample size. Since the normal samples for training are much more than
the faulty ones, the fault classifiers tend to classify test samples into the normal category. The traditional
WELM is able to eliminate the influence of imbalanced data to some extent and reduces the false negative
rate to 8.18%. However, weights of the WELM are set a priori according to the number of samples
belonging to each class and cannot be optimized during the training process. Therefore, the total accuracy
of WELM, which is restricted to the non-optimal sample weights and hidden neurons, has no significant
improvement. WSaE-ELM not only gives each training sample an extra weight, but also optimizes these
weights as well as the parameters of the hidden neurons. Therefore, WSaE-ELM performed effectively in
this study and increased the total accuracy significantly. By using actual data that had been acquired
from A-type trains by a Chinese metro company, the WSaE-ELM has been verified as being usable for
bogie fault diagnosis with imbalanced data under variable conditions.

5. Conclusions

This paper discusses mainly bogie fault diagnosis under variable conditions. To this end, a novel
feature parameter SKE was proposed first. The simulation results show that the SKE, in conjunction
with VMD, has strong robustness under operating conditions and parameter crations and can be used
for feature extraction under variable conditions. Then, a novel learning algorithm WSaE-ELM was
proposed for bogie fault classification. WSaE-ELM gives each training sample an optimizable weight
to deal with the imbalanced data and utilizes the self-adaptive differential evolution algorithm for
parameter optimization. A hybrid method based on VMD, SKE, and WSaE-ELM was implemented
for fault diagnosis of real bogies under variable conditions. Compared with the conventional methods,
the proposed method increases the accuracy rate by up to 6.22% and reduces the false negative rate to
4.55%. The results demonstrate that the proposed method performs effectively and efficiently in dealing
with imbalanced training data under variable conditions.

However, in view of the hardware conditions, this study involved only three typical fault modes of
bogies. Besides, the running speed fluctuated only in a narrow region; increased fluctuating conditions
might cause additional difficulties. Thus, further work is needed to verify the generality and efficiency of
the method.
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