
sensors

Article

Geometric Positioning Accuracy Improvement
of ZY-3 Satellite Imagery Based on Statistical
Learning Theory

Niangang Jiao 1,2,3,*, Feng Wang 1,2, Hongjian You 1,2,3, Mudan Yang 1,2,3 and Xinghui Yao 1,2,3

1 Key Laboratory of Technology in Geo-Spatial Information Processing and Application Systems,
Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China;
fwang2@mail.ie.ac.cn (F.W.); hjyou@mail.ie.ac.cn (H.Y.);
mdyang1993@163.com (M.Y.); Yaoxinghui1992@163.com (X.Y.)

2 Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China
3 School of Electronic, Electrical and Communication Engineering, University of Chinese

Academy of Sciences, Beijing 100049, China
* Correspondence: jiaoniangang16@mails.ucas.ac.cn; Tel.: +86-188-1118-6751

Received: 22 April 2018; Accepted: 23 May 2018; Published: 24 May 2018
����������
�������

Abstract: With the increasing demand for high-resolution remote sensing images for mapping
and monitoring the Earth’s environment, geometric positioning accuracy improvement plays a
significant role in the image preprocessing step. Based on the statistical learning theory, we propose a
new method to improve the geometric positioning accuracy without ground control points (GCPs).
Multi-temporal images from the ZY-3 satellite are tested and the bias-compensated rational function
model (RFM) is applied as the block adjustment model in our experiment. An easy and stable weight
strategy and the fast iterative shrinkage-thresholding (FIST) algorithm which is widely used in the
field of compressive sensing are improved and utilized to define the normal equation matrix and
solve it. Then, the residual errors after traditional block adjustment are acquired and tested with the
newly proposed inherent error compensation model based on statistical learning theory. The final
results indicate that the geometric positioning accuracy of ZY-3 satellite imagery can be improved
greatly with our proposed method.

Keywords: statistical learning theory; multi-temporal; block adjustment; rational function model (RFM);
improved fast iterative shrinkage-thresholding algorithm; inherent error compensation model

1. Introduction

ZY-3 is the first civilian high-resolution stereo mapping satellite in China [1], and provides a
tangible improvement in the monitoring capabilities for many fields, such as agriculture, forestry,
geology, and so on. It has been designed for 1:50,000 scale stereo mapping requirements, which is of
great significance to strengthen China’s ability to independently obtain more geospatial information.
The revisit period of the ZY-3 satellite is 5 days, and so abundant high-resolution satellite (HRS) stereo
image pairs can be collected over a short period. These stereo image pairs are acquired from a three-line
camera (TLC) sensor on the satellite platform. The ground sampling distance (GSD) of the forward-,
backward-, and nadir-directed cameras are 3.5 m, 3.5 m, and 2.1 m, respectively.

Before making use of these remote sensing images for mapping and monitoring, their geometric
characteristics must be considered [2], in which the block adjustment can improve the geometric
consistency and accuracy [3]. There are three types of adjustment approaches used in current research,
namely bundle adjustment [4], direct georeferencing (rigorous sensor model) [5], and the rational
function model (RFM) [6]. All three methods were compared in [7], and the results showed that the
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geometric performances were almost identical. However, considering the simplicity of implementation
and standardization [8], the RFM method is widely used in the field of remote sensing image
processing. During the procedure of geometric positioning accuracy improvement, a large number of
well-distributed ground control points (GCPs) are usually required [9]. Due to limitations of manpower
and finance, it is always difficult to acquire enough GCPs to meet the accuracy requirement [10],
especially in some areas which are difficult for humans to reach, such as deserts and mountains. Many
research works have proved that block adjustment with few GCPs can also achieve a high geometric
positioning accuracy [11], while considering the processing mission of block adjustment for large-scale
regions it may be not as good as the results in small areas. Therefore, some effective methods of block
adjustment are proposed to achieve the accuracy requirement without using GCPs [6]. Nowadays,
such methods can be divided into two classes: using some other known information such as the digital
elevation model (DEM) [12], or taking advantage of the stereo image pairs [13]. The first case depends
on the precision of the auxiliary data, while the other has a requirement of additional image data sets.
In 2010, a DEM-aided block adjustment method was presented by Teo et al. [7] which is significant for
improving the geometric consistency between overlapping images, and this method has been improved
in [14] for nadir viewing images that constrains the elevations of tie points to improve the relative
accuracy. These tie points can serve to build links between neighboring images. The relative accuracy
means the relative errors between tie points which represent the same object on neighboring images.
High relative accuracy of these tie points can guarantee the accuracy of image stitching. Recently,
a Shuttle Radar Topography Mision(SRTM) DEM-aided block adjustment procedure was developed
in [15] which was highly dependent on the DEM resolution.

Considering the characteristics of ZY-3 satellite stereo images pairs, Wang et al. [13] reported
that the same accuracy can be obtained for block adjustment supported with DEM and using ZY-3
satellite stereo image pairs. Tang et al. [16] proved that the nadir image from the ZY-3 satellite can
achieve a high positioning accuracy without GCPs, while using a 0.5 m vertical accuracy DEM for
reference. After that, Zheng and Zhang [17] conducted experiments on multi-source of ZY-3 and
GF-1 using DEM-assisted bundle block adjustment for ortho-map production. The global positioning
system (GPS) is used in [18] for multi-strip long-orbit bundle block adjustment by a rigorous sensor
model. The results obtained above are not always satisfactory because of the limitations of the
quality of the ancillary data (e.g., DEMs). Considering that ZY-3 satellite remote sensing images can
satisfy the requirements of 1:50,000 scale topographic mapping, Cao [19] undertook block adjustment
of multi-temporal images of ZY-3, and the residual errors were reduced because of the redundant
observation. In this way, multi-temporal images are helpful in the process of block adjustment. Moreover,
multi-temporal images have been applied in many fields of image processing. For example, Gao et al. [20]
presented a registration algorithm of multi-temporal images based on image geometric structural and
gray information. Shaunak proposed a novel deep learning based weakly-supervised framework for
urban change detection using multi-temporal polarimetric synthetic aperture radar (SAR) data in [21].
Pablo [22] introduced an automatic image orientation method with multi-temporal images, which is
helpful for the use of multi-temporal images in the procedure of block adjustment.

However, methods to solve the rank-deficient normal equations have seldom been detailed
in previous studies. Traditional methods such as the preconditioned conjugate gradient (PCG)
algorithm [19] and the spectrum correction (SC) method [23] are time-consuming and complicated.
In this way, an advanced fast iterative shrinkage-thresholding (FIST) algorithm [24] which is widely
used in the field of compressive sensing is improved and detailed here to solve the singularity of
the normal equation matrix. The FIST algorithm has proven to be an optimal method at the first
order in algorithm complexity for solving the problem of minimizing smooth convex functions [25].
Compared with the traditional FIST algorithm, the improved FIST algorithm can make a better
convergence with good efficiency [26].

Moreover, the rational function model is an approximation of the rigorous sensor model after the
sensor calibration and on-orbit geometry calibration [27]. The geometric positioning errors calculated
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with the help of rational polynomial coefficients (RPCs) contain the systematic errors of the satellite
orientation (position, altitude, camera, jitter errors, and so on) and image point errors (systematic or
random errors). The image point errors are mainly random errors in the acquisition of their coordinates.
Compared with systematic errors, image point errors can be reduced to a small value with an accurate
acquisition method. In fact, the traditional free block adjustment method without using GCPs can
reduce random errors in geometric positioning to a large extent [28]. Usually, the residual errors are
distributed in a specific direction and within a certain range due to the inherent errors of sensors on
the satellite platform. Based on this, the inherent error compensation model is proposed to remedy the
inherent errors of the satellite platform. The inherent errors of the satellite platform are also known
as systematic errors. The density-based spatial clustering of applications with noise (DBSCAN) [29]
algorithm is compatible with analysing the error distribution as a popular clustering method in the
field of statistical learning. Compared with traditional clustering methods such as K-means [30] and
decision trees [31], the DBSCAN method can automatically classify the dataset without a specified
number of categories.

The remainder of this paper is organized as follows: The mathematical details of the control point
free block adjustment with the improved FIST algorithm and the inherent error compensation model
are presented in Section 2. Some experiments are conducted to verify the proposed model and the
results are analysed in Section 3. Finally, the conclusions of our experiments are presented in Section 4.

2. Methodology

Figure 1 shows the main steps of our proposed method. Unlike some traditional methods,
our proposed method includes two stages, which are summarised as follows and described in detail
below: coarse correction and accurate correction, which are comprised of the following five steps.
Firstly, the tie point sets are obtained after the image registration step with the help of the cascade
scale-invariant feature transform(SIFT) algorithm and features from accelerated segment test (FAST)
method and the space intersection step. With the extracted dataset clustered by the DBSCAN algorithm,
traditional block adjustment with the improved FIST algorithm and the proposed weight strategy
are applied to improve the geometric positioning accuracy. Then, the data clustering method is
applied for a second time to analyze the distribution of residual errors in order to extract the inherent
satellite platform errors of our experimental dataset. Finally, the inherent error compensation model is
established with the help of the clustering method, aiming to reduce the inherent errors. The main
steps of our experiments are introduced in detail in the following context.

2.1. Cascade SIFT Method and Space Intersection Method

Initially, the tie point sets can be obtained with the help of the cascade SIFT method and FAST
method. The cascade SIFT method is derived from the traditional SIFT [32] method. Since the SIFT
operator is invariant with position, scale, and rotation, it is suitable to be applied for remote sensing
image registration. It can be written as follows:{

L(x, y; kσ) = I(x, y) ∗ G(x, y; kσ),

D(x, y; σ) = L(x, y; kσ)− L(x, y; σ),
(1)

where k is the scale operator; I(x, y) is the original image space, and G(x, y; kσ) is a Gaussian function
with a standard deviation of σ; L(x, y; σ) and D(x, y; kσ) represent the Gaussian scale space and the
difference of Gaussian (DoG), respectively.
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Figure 1. Flow chart of our proposed method. DBSCAN: density-based spatial clustering of
applications with noise; FAST: features from accelerated segment test; IFIST: improved fast iterative
shrinkage-thresholding.

The cascade SIFT method can be divided into two parts: the large coverage adapted anisotropic
Gaussian-SIFT (AAG-SIFT) algorithm and the local-SIFT algorithm. The large coverage AAG-SIFT
algorithm [33] is applied to a whole remote sensing image to achieve the coarse registration.
Firstly, the DoG is applied in image scale to detect most points which can represent the integral
structure features of the image. Removing unstable points with low contrast in all extremal points,
the final feature points in image scale are obtained. Next, the gradient of these feature points are
calculated and the histogram of these gradients around detected feature points are counted. The main
directions of these feature points are extracted based on the histogram. After this, the descriptors of
these feature points are generated, and the random sample consensus (RANSAC) algorithm is applied
to screen out the correct matching points. With all coarse correct matching points in the image space
detected, the coarse registration is finished.

After the coarse registration step, a small window around the object-space coordinate is extracted
with the help of the RPCs. A local SIFT matching method is utilized and accurate matching points
are obtained with a local-scale DoG. With the local matching method, the matching points searching
process is undertaken in the local region of the image with the interference of other unrelated regions
removed. The coarse correct matching points of the same local area and the accurate matching points
are combined together to ensure the accurate registration.

After the accurate image registration, an effective corner detection method—the features from
accelerated segment test (FAST) method [34]—is applied to acquire the tie point sets. A 9× 9 window is
used to strengthen the stability of the tie point matching process, as shown in Figure 2. The characteristics
of the neighborhood of a tie point is calculated by the ratio as:{

Ratio(k) =
µ(p)
µ(k)

, f ork = 1, 2, ..., 16, (2)
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where µ(p) represents the pixel value in central point p in Figure 2, and µ(k) denotes the pixel value in
template k. For each ratio value, the similarity is measured by comparing it with a threshold as follows:

dk =


0, f or 1/Th < Ratio(k) < Th,

1, f or Ratio(k) < Th,

2, f or Ratio(k) > 1/Th,

(3)

where Th is a threshold value set defined by experience. We consider the searched point as a candidate
tie point if more than half of the numbers of dk of the searched point are continuous and they all equal
to 1 or 2.

Figure 2. Twelve-point segment test corner detection in an image patch. The highlighted squares are
the pixels used in the corner detection. The pixel at p is the centre of a candidate corner. The arc is
indicated by the dashed line passing through 12 contiguous pixels which are brighter than p by more
than the threshold.

After the detection process, many candidate matching points are selected, while there exist some
false detections and duplicate detections. In order to solve this issue, a false point elimination method
is employed. First, we assign a score function to each candidate point based on its dk values [35]. For a
candidate matching point, the more continuous nonzero values of dk, the higher its score. Then, a
non-maximal suppression is utilized to select the best matching point. The tie point sets can be obtained
accurately with this efficiency method.

Traditionally, object-space coordinates of these tie point sets have been calculated with the aid
of DEM [36] or GPS data [19], which means their accuracy is highly dependent on the precision of
the auxiliary data. However, as the satellite acquires overlapping images, the space intersection
method is suitable for ZY-3 stereo image pairs to derive initial values of these tie point sets.
Moreover, traditional methods may cause the problem of weak convergence. Figure 3a displays
an example of weak convergence. A and A′ are different observations of the same object at different
times. Due to the systematic errors of the platform and image distortion, the calculated coordinates of
A and A′ with the help of each stereo image pair usually disagree. Therefore, the multi-observation
dataset provides redundant information and strong constraints which can lead to faster convergence
and more accurate solutions in object-space. In this procedure, all stereo image pairs which contain the
same object are used together to form overdetermined equations.
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with 
Gr =

NumL(P, L, H)

DenL(P, L, H)
· Line_Scale + Line_O f f − r,

Gc =
NumS(P, L, H)

DenS(P, L, H)
· Sample_Scale + Sample_O f f − c,

(5)

with 
NumL(P, L, H)

DenL(P, L, H)
=

aTu
bTu

,

NumS(P, L, H)

DenS(P, L, H)
=

cTu
dTu

,
(6)

where (Gn
r , Gn

c ) represent the error functions between the calculated and extracted image-space
coordinates in the nth image; (r, c) are the extracted image-space coordinates of an object, and (P, L, H)

are the object-space coordinates and (∆P, ∆L, ∆H) are the corrections of the object-space to be solved;
Line_O f f , Line_Scale, Sample_O f f , and Sample_Scale are the scale and translation operators of the
calculated image-space coordinates with RPCs [6]; l is the vector of residual errors; NumL, DenL, NumS,
and DenS are the rational polynomial model including 80 rational polynomial coefficients (RPCs) with
degree no more than three, and u = [1 L P H LP LH PH L2 P2 H2 PLH L3 LP2 LH2 L2P P3 PH2 L2H
P2H H3], a = [a0 a1 ... a19], b = [b0 b1 ... b19], c = [c0 c1 ... c19], and d = [d0 d1 ... d19] are the rational
polynomial coefficients.

To solve the overdetermined equations, the least square method (LSM) is applied. The problem of
Equation (4) can be simplified as 

Gx = l,

min{
n

∑
i=1

x2},
(7)

where G is the design matrix which consists of the partial derivatives of Gr, Gc to P, L, and H; and l is
the residual errors vector between the calculated and observed image coordinates.

(a) (b)

Figure 3. Comparison of (a) tie point pair and (b) tie point set. A and A′ are different observations
of the same object at different times. FWD, BWD, and NAD are the ZY-3 satellite images from the
forward-, backward-, and nadir-directed cameras, respectively, for the same observation.

Through the singular value decomposition of the designed matrix G, the least-squares solutions
can be obtained and the coordinates of the object in all images will be determined uniquely. With the
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help of multi-temporal images used together in the overdetermined equations, different observations
will converge to the object A as shown in Figure 3b.

2.2. Data Classification and Preprocessing

The object-space coordinates of tie points are obtained through the space intersection step from
the stereo image pairs. However, there are always some points with large geometric positioning errors
compared with errors in other points which may be caused by errors in the image registration step or
other factors. Therefore, points with large geometric positioning errors must be separated from the
other data. Fortunately, this step can be regarded as a data classification problem. The object-space
coordinates of the tie points are calculated from the extracted image-space coordinates and the
RPCs, and the extracted object-space coordinates can be obtained from the space intersection step.
Ideally, the original errors between these two values of the tie points should distribute around
their extracted object-space coordinates within a certain range. Therefore, the density-based spatial
clustering of application with noise (DBSCAN) method [29] based on statistical learning theory which
is widely used in the field of machine learning is suitable here for data screening.

Supposing we have a dataset as shown in Figure 4a, and all points in this dataset can be
divided into three types: core points (green points distributed inside the dense regions in Figure 4b),
border points (blue points distributed at the edge of the dense regions in Figure 4b), and noise points
(red points distributed in sparse regions in Figure 4b). In order to separate each type of these points
with no a priori knowledge, their density distribution is important information that we can rely on.
Two parameters are set before the density-based searching: Eps represents the max distance between
neighborhood points in the same category and Minpts, which means the minimum number of points
in one category. Searching from one point randomly in the tested dataset at first, if there are more
than Minpts points in the Eps neighborhood of this point, it can be regarded as a core point and it
can form a category. If the distances between points which do not belong to this category and the
number of points in the formed category are smaller than Minpts, then these points are added to
the formed category. If there are points which do not belong to any category, they are regarded as
noise points. In this way, different categories can be formed and the noise points are separated from
each category as shown in Figure 4c. An appropriate set of Eps and Minpts can achieve a satisfactory
output of the classification process. Compared with other classification algorithms, the DBSCAN
algorithm can detect the number of categories in the test dataset with no bias in the shape of clusters.
Moreover, noise points can be quickly separated from other information in the dataset with no prior
knowledge. With the help of the DBSCAN algorithm, we classify our dataset while identifying noise
points to achieve a better convergence.

2.3. Free Block Adjustment

Because of its simplicity of implementation and standardization, the rational function model is
widely used as a block adjustment model for the exterior orientation of high-resolution satellite images.
It describes the relationship between image space and object space by a ratio of two cubic polynomials
with 80 coefficients [6] as: 

X =
NumL(P, L, H)

DenL(P, L, H)
=

aTu
bTu

,

Y =
NumS(P, L, H)

DenS(P, L, H)
=

cTu
dTu

,
(8)

where (X, Y) is the normalized image-space coordinates.
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(a) (b)

(c)

Figure 4. The explanation of the density-based spatial clustering of applications with noise (DBSCAN)
algorithm. (a) is the original distribution of the dataset. (b) is the distribution of different type of the
dataset: core (green) points, border (blue) points and noise (red) points. (c) is the cluster results with
the DBSCAN algorithm applied to the dataset.

However, due to the lack of accuracy in measuring the exterior orientation elements of spaceborne
sensors, the RPCs have a low precision. Therefore, an affine transformation model (AFM) is usually
applied here to compensate for the bias in the RPCs to improve their precision. The AFM is defined
as follows: {

Fr = a0 + a1 · Sample + a2 · Line− r,

Fc = b0 + b1 · Sample + b2 · Line− c,
(9)

where a0, a1, a2, b0, b1, and b2 are affine transformation coefficients, Sample and Line represent the
image-space coordinates determined by RPCs, and (r, c) are the real image-space coordinates measured
automatically. As a result, the error equations for the least squares solution can be derived in the
form of [16]:

V = At + Bs− l, (10)

where V is the residual vector, A and B are the design matrices which consist of the partial derivatives
of Fr, Fc to a0, a1, a1, b0, b1, b2, and P, L, H; t and s are the correction vectors of the affine transformation
parameters and object-space coordinates, respectively; l is the difference of the calculated and observed
image point coordinates [17].

Moreover, Equation (9) applying the Gauss–Newton model can be rewritten in the matrix form
as follows: [

AT PA AT PB
BT PA BT PB

] [
t
s

]
=

[
AT Pl
BT Pl

]
, (11)

where P is the weight matrix.
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For simplicity, Equation (9) can be written as[
U WT

WT V

] [
t
s

]
=

[
lu
lv

]
. (12)

As a result, matrices U and V are both diagonal. s and t are dependent on each other, and usually
the number of unknowns in s is much larger than t. Therefore, we use a Gauss elimination method to
reduce the complexity of the unknown matrix, and the normal equation is reduced to{

(U −WV−1WT)t = lu −WV−1lv,

Vs = lv −WTt.
(13)

2.4. Weight Strategy

In order to acquire a better convergence of the results, a good weight strategy plays an important
role in the iteration step. However, researchers have seldom mentioned it in detail in their papers.
With gross points removed from the experimental dataset in the data classification and preprocessing
step, we can make sure that values of all tie points are valid estimations. Thus, it is appropriate to
apply a stable and effective weight strategy. In our study, all observations are independent and the
measurement accuracy of each element in s is the same. The bias in the RPCs of different images vary,
which means that elements in the matrix t of each image share the same value. Thus, the initial weight
of s and t as unity. During the iteration, the weight of s and t are updated separately under our weight
strategy as follows:

Pm
si
=

1
σsm−1

i · ∆sm
i

, (14)

Pm
tj
=



kj

σlm−1
j ∑kj

t=1

√
∆x2

t +∆y2
t

for aj
0,bj

0,

kj

σlm−1
j ∑kj

t=1

√
∆x2

t +∆y2
t

/Hj for aj
1,bj

1,

kj

σlm−1
j ∑kj

t=1

√
∆x2

t +∆y2
t

/Wj for aj
2,bj

2,

(15)

where Psi and Ptj represent the weights of the ith tie point set in s and the weight of the jth image in t
in the mth iteration, respectively; ∆sm

i and σsm−1
i represent the bias and standard deviation of elements

in s, respectively; ∆xt and ∆yt are the image coordinate errors of the tth point in the jth image, and kj

is the number of image points in the jth image; σlm−1
j is the standard deviation of the difference of

all tie points between the calculated coordinates in the iteration step and coordinates extracted in the
space intersection step in the jth image; (Hj, Wj) is the length and width of the jth image.

2.5. The Improved FIST Algorithm

The fast iterative shrinkage-thresholding algorithm is an advanced algorithm originating from
the traditional iterative shrinkage-thresholding algorithm (ISTA). It is a popular algorithm in solving
the minimization of the L1 norm problem in the compressive sensing field. Based on the algorithm
proposed by Nesterov to solve the problem of minimizing smooth convex functions, the FIST algorithm
has proved to be an “optimal” method at first order in algorithm complexity [25]. This method is
attractive due to its simplicity and suitability for solving large-scale problems as well as achieving
better convergence.

Considering a basic linear inverse problem as

Res = Ax, (16)
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with an ill-conditioned coefficient matrix A, regularization methods are required to stabilize the
solution, in which l1 regularization has attracted a revival of interest and a considerable amount of
attention. In this way, the linear inverse problem can be expressed as follows:

min
x
{F(x) = ‖Ax− Res‖2 + λ ‖x‖1} = min

x
{F(x) = f (x) + g(x)}, (17)

with L(∇ f ) is the Lipschitz constant of ∇ f . An approximate mapping of the problem is [26]

prox(x) = argmin
1
2
‖x− z‖2 + ρg(z)(ρ > 0), (18)

where ρ is the fixed step size within the range of (0, 2
L(∇ f ) ) to guarantee the convergence of Equation (18).

To solve Equation (18), the FIST algorithm consists of the following three steps:
(1) Initialization: x0 = 0, z1 = x0, t1 = 1,ρ < 2

L(∇ f ) .
(2) Iteration:

xk = prox(zk −∇ f (zk)),

tk+1 =
1 +

√
1 + 4 ∗ t2

k

2
,

zk+1 = xk +
tk − 1
tk+1

(xk − xk−1).

(19)

(3) Estimation: if ‖xk − xk−1‖2 < ε, then xk is the expected result; else return to the iteration step.
where xk is the unknowns vector, zk is a combination vector of the unknowns.

To accelerate the rate of convergence in the above iteration, an improved step size operator ρk
based on the Barzilai–Borwein (BB) algorithm [37] is applied, and the iteration step can be rewritten
as (2) Iteration:

xk = prox(zk − ρk∇ f (zk))T(bk) = sgn(bk)(|bk| − λ)+,

rk−1 = xk − xk−1, gk−1 = sk − sk−1, sk = ∇ f (zk),

ρk =
rT

k−1 · rk−1

rT
k−1 · gk−1

(if ρk >
1
L

, ρk = φρk),

tk+1 =
1 +

√
1 + 4 ∗ t2

k

2
,

zk+1 = xk +
tk − 1
tk+1

(xk − xk−1),

(20)

where ρk is the ratio of ∆xk and ∆sk, which represents the rate of convergence; φ is an arithmetic factor
to guarantee the convergence of the iteration. According to the Barzilai–Borwein (BB) algorithm [37],
the iteration step factor can be decided by the information from the current iteration and the former
one which represents the rate of convergence at xk .

Compared with the traditional FIST algorithm, the parameters ρk cannot only optimize the
iteration step of xk, but also contribute to better convergence rates. Furthermore, the parameter zk+1
is a specific linear combination of xk−1, xk, which can significantly outperform the traditional IST
algorithm and other classical gradient methods.

2.6. Inherent Error Compensation Model

With the random errors reduced efficiently by the above free block adjustment model,
the remaining errors are mainly composed of three parts: errors due to the inaccuracy of RPCs,
systematic errors, and image points errors. Errors of image points and RPCs can be constrained into
a small range with an affine transformation model added in the free block adjustment procedure.
Furthermore, the RPCs are an approximation of the rigorous sensor model, which means errors due to
the inaccuracy of RPCs originate from the systematic errors of the satellite platform to some extent.
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The systematic errors include errors of the satellite orientation such as those due to position, altitude,
camera, jitter, etc. Most of the systematic errors of the satellite platform can be corrected manually
to a great extent. However, there will always be residual errors in the satellite orientation caused by
the limitations of current technology, which is the cause of the bias between RPCs and the real sensor
model. Therefore, the analysis of the distribution of the residual errors based on the statistical learning
theory is an important aspect in our experiment.

Firstly, the residual errors of all tie points after block adjustment are clustered by the DBSCAN
algorithm and graphed with the aid of location information. Considering the statistical property of
our dataset, experimental data with few noise points are analysed and a cluster center is obtained.
Since all residual errors in images from a stable sensor on the satellite platform may share the
same inherent errors, all errors should have the same distribution after control point free block
adjustment. Without ground control points, the actual bias between the calculated coordinates and
actual coordinates is unknown. Thus, the average of the calculated coordinates contains the inherent
errors of the sensor before they are removed from each point, given that the block adjustment method
without GCPs does not enable their determination. Corrections based on a rigorous sensor model are
helpful in restricting systematic errors of the sensor, but are not suitable for a general rational function
model with RPCs. A control point free block adjustment method can result in better convergence of
the computation of the correspondence between images by reducing the random errors, which means
a high precision of relative positioning accuracy can be achieved. Since systematic errors exist during
the whole process of block adjustment, the statistical analysis is helpful in handling them.

According to the analysis above, residual errors after control point free block adjustment are
mainly the systematic errors of the sensor with small RPC errors and images point errors, which we
refer to as inherent errors. Therefore, the error distributions of all tie points are consistent. Furthermore,
the relationship between the relative positions of images with respect to each other are improved
greatly by the above free block adjustment method. We need to improve the absolute geometric
positioning accuracy. Considering that the clustering center of all residual errors are the same, an affine
transform model in image-space is inefficient and not straightforward. In order to achieve accurate
absolute positioning, a perspective transformation model of the object-space is added as an additional
condition. The scale of errors in object-space are quite different from that in image-space, and a 1 pixel
difference in image space can cause a 3 m error in the object-space. Therefore, a constraint in the
object-space based on the perspective transformation model is appended with a translation model in
the image-space as follows: 

Fr = a0 + Sample− r,

Fc = b0 + Line− c,

FP = k00 + k01 · Pc + k02 · Lc + k03 · Hc − P,

FL = k10 + k11 · Pc + k12 · Lc + k23 · Hc − L,

FH = k21 · Pc + k21 · Lc + k23 · Hc − H,

(21)

where (k00, k01) are the estimated inherent errors obtained from the former experiment of the
homologous dataset in the direction of longitude and latitude, or the direction of the along-track
and cross-track; (P, L, H) is the average of the calculated object-space coordinates (Pc, Lc, Hc),
and (FP, FL, FH) are the residual errors of the object-space coordinates. In order to simplify the
computation, a linear transformation model of the image-space coordinates is applied as a result of the
achievement of the free block adjustment. The last three lines of Equation (21) can be written in matrix
form as: FP

FL
FH

 =

k00

k10

0

+

k01 k02 k03

k11 k12 k13

k21 k22 k23


Pc

Lc

Hc

−
P

L
H

 , (22)



Sensors 2018, 18, 1701 12 of 21

where the vector of [k00 k10 0]T is a translation coefficient in object-space obtained according to the
distribution of inherent errors, which is the main compensation item of the formula. The matrix which
includes the elements from k01 to k23 of Equation (22) are aimed to strengthen the relative relationships
between images in both image-space and object-space. Equation (22) originates from the perspective
transformation in the object-space as

[
P L H

]
=
[

Pc Lc Hc

] k01 k02 k03

k11 k12 k13

k21 k22 k23

 . (23)

3. Experimental Results

3.1. Study Area and Data Set

In our experiment, 95 multi-observation images of Beijing and Songshan from ZY-3 were tested,
covering a total area of about 35,000 km2 and acquired from February 2012 to January 2015, with the
largest time interval being 2 years and 11 months. In the Beijing area, the elevation ranges from
30 m to 1900 m with a few mountainous areas. There were 26 tie point sets in the experimental area,
18 of which were check point sets and all 281 tie points were extracted in 35 images. The maximum
number of overlapping images was 22. For the Songshan area, there were 20 groups of ZY-3 image
pairs and 27 tie point sets. Twenty of them were check point sets and a total of 423 tie points were
distributed in all 60 stereo images. The elevation of this area ranges from 72 m to 1200 m, with most
mountains distributed throughout the area. The maximum number of overlapping images was 31.
The experimental area and distribution of the tie point sets are shown in Figure 5.

(a) (b)

Figure 5. Experimental data distribution of (a) Beijing and (b) Songshan area.

3.2. Tie Point Sets Acquisition

Based on the cascade SIFT and FAST algorithms, we developed an automatic matching program to
detect the potential tie points in every test image. Firstly, the large coverage scale adapted anisotropic
Gaussian-SIFT(AAG-SIFT) algorithm was applied at image scale, which is helpful to find the matching
areas between images quickly. Then, 300 × 300 pixel windows covering the tie points were calculated
with RPCs to ensure the accuracy of the matching points during the accurate matching process.
After this, the FAST method was applied in the local accurate registration regions to obtain the tie
points in all images. Figure 6 shows some examples of the extracted tie point sets.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. Examples of tie point sets. (a,b) are two examples of the extracted image-space points from
different images in tie point set P14, where the centers of the crosses are the extracted image-space point
correlated with the object in object-space. (c,d) are two examples of the extracted image-space point
from different images in tie point set P22, (e,f) are two examples of the extracted image-space point
from different images in tie point set P34, and (g,h) are two examples of the extracted image-space
point from different images in tie point set P53.

3.3. Control Point Free Block Adjustment

After data preprocessing, the traditional method of block adjustment was applied to the selected
dataset. A stable and efficient weight strategy was applied here after the previous clustering and
filtering, which means all test data is credible. To evaluate the performance of the free block adjustment
method, we calculated the root mean square error(RMSE) of the absolute errors of the check points
and the positioning accuracy in-plane was measured by the distance as follows

µX =

√
(Xc − X)2

n
,

µY =

√
(Yc −Y)2

n
,

µP =

√
(Xc − X)2 + (Yc −Y)2

n
,

(24)

where (Xc, Yc) and (X, Y) represent the calculated and actual coordinates of the check points in
object-space, and (µX , µY, µP) are used for the accuracies in X, Y and the resulting vector directions.

By the aid of the DBSCAN algorithm, the errors of all tie points were clustered together. In other
words, the distribution of the absolute values of these check points indicates that almost all “noise”
points in the previous dataset were removed, which contributed to a better convergence and faster
computation. The error distributions of each check point set of Beijing and Songshan areas are
compared in Figure 7. The directions of the arrows in the graphs indicate the directions of the error
distribution, and the length represents the value of the error point. From the figure, we can see that
the use of the stable weight strategy and IFIST algorithm to solve the normal equations is efficient in
handling the free block adjustment. With the help of the multi-temporal dataset, the random errors of
the image-space coordinates could be reduced by the multi-observation images. With the effect of the
random errors in image-space reduced, the residual errors were mainly the systematic errors.
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(a) (b)

(c) (d)

Figure 7. Comparison of error distribution of each check point set of (a,b) Beijing and (c,d) Songshan
area. (a,c) Represent the original error distribution, while (b,d) represent the residual error distribution
after block adjustment.

Considering the error distributions graphed in Figure 7, the absolute errors of the experimental
areas were almost the same in direction and numeric value, and therefore not dependent on the
geographical locations of the test datasets. As for the ZY-3 satellite, cameras of this satellite are static
on the platform so that the systematic errors for all homologous data should be the same, which
demonstrates consistency between the residual errors derived during the block adjustment process
and the theoretical analysis. Furthermore, the error distribution converged in a certain direction, and
the numerical values of the RMSE of these errors were small, as shown in Table 1.

Table 1. Comparison of positioning accuracy in different areas. (BA is the abbreviation of control point
free block adjustment, RMSE is the root mean square error and STD represents the standard deviation).

Study
Area

RMSE
Before BA (m)

RMSE
After BA (m)

Lat Long Plan Lat Long Plan

Beijing 11.54 11.61 16.37 6.94 5.75 9.68
Songshan 8.39 9.01 12.31 5.78 2.44 8.47

The absolute errors of all check points are displayed together in Figure 8. Based on the DBSCAN
theory, the green point in Figure 8c–e is the cluster center point, which shows the convergence of
the block adjustment. Comparing the results in Figure 8a,c, the error distribution after the block
adjustment showed an obvious convergence. While considering the error distribution of Figure 8c,d,
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we can see that the errors of different experimental areas converged in almost the same direction,
and the cluster center was almost the same for the Songshan area as for the Beijing test area.

At the same time, a verification of the proposed weight strategy and the improved FIST method
was conducted. A unit weight strategy and some traditional solutions were tested. The following four
methods were applied on the Beijing test dataset: the improved fast iteration shrinkage-thresholding
(IFIST) algorithm, the fast iteration shrinkage-thresholding (FIST) algorithm, the preconditioned
conjugate gradient (PCG) algorithm, and the spectrum correction (SC) algorithm with a unit weight
strategy and the proposed weight strategy, respectively. With the same dataset of the Beijing area
and 20 times iterations, the time consumed and relative accuracy of the tie points were calculated.
The relative accuracy was calculated by the mean of the quadratic sum of the difference between the
calculated image-space coordinates and the average of these image-space coordinates in the same tie
point set. Moreover, the absolute errors of these check points were calculated with different weight
strategy and the RSME and STD of the absolute errors in the resulting vector directions of latitude and
longitude were calculated to validate the stability of our proposed weight strategy. The calculation
formulae of the RMSE and STD are:

XRMSE =

√
∑N

t=1 X2
i

N
,

XSTD =

√
∑N

t=1(Xi − X)2

N
,

(25)

where Xi is the residual error of the ith tie point in the resulting directions of latitude and longitude; X
is the mean of all residual errors Xi, and N is the number of the tie points.

The advantage of our proposed method which we tested with dataset of the Beijing area can
be obtained by comparing the outputs of each method, which are shown in Figure 9 and Table 2.
The accuracy refers to the mean value of the residual errors in image-space of each tie point, and the
time consumed was conducted with the same condition of 15 iterations. Figure 9 displays the
convergence of different methods with the same dataset. The IFIST algorithm was the fastest with
a convergence of 13 iterations, the SC and PCG algorithms converged to stable results with almost
18 iterations, while the FIST and IST algorithms needed more than 22 iterations for their convergence.
The time consumed by each method is the product of iterations and the time consumed for each
iteration. Thus, the time consumed for 15 iterations and the accuracy of each method are shown in
Table 2. The convergence of our proposed weight strategy of the Beijing and Songshan areas with the
IFIST algorithm are shown in Table 3.

(a) (b)

Figure 8. Cont.



Sensors 2018, 18, 1701 16 of 21

(c) (d)

(e) (f)

Figure 8. A Comparison of error distribution of all check points of Beijing and Songshan areas.
(a,b) represent the original error distribution of Beijing and Songshan areas, respectively; (c,d) represent
the residual error distribution after control point free block adjustment of Beijing and Songshan areas,
respectively; (e,f) represent the error distribution after inherent error compensation of Beijing and
Songshan areas, respectively.

Figure 9. A Comparison of different methods to solve the rank-deficient equation matrix. FIST: fast
iterative shrinkage-thresholding; IFIST: improved FIST; IST: iterative shrinkage-thresholding; PCG:
preconditioned conjugate gradient; SC: spectrum correction.
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Table 2. Comparison of different methods.

Method IFIST FIST IST PCG SC

Time (s) 7.97 8.07 11.52 10.44 15.05
Accuracy (pixels) 1.11 2.31 2.93 1.54 1.26

Table 3. Comparison of residual errors with different weight strategies (m). (BA is the abbreviation of
control point free block adjustment).

Weight
Strategy

Error of Beijing Area Error of Songshan Area

Before BA After BA Before BA After BA

RMSE STD RMSE STD RMSE STD RMSE STD

Unity 16.37 5.53 10.79 4.42 12.31 4.82 9.84 3.74
Proposed 16.37 5.53 9.68 3.09 12.31 4.82 8.47 2.57

3.4. Inherent Error Compensation

After the data cluster step for the test dataset following the control point free block adjustment,
residual errors of all tie points were clustered into the same category in which the cluster center can
represent most of their characteristics. With the random errors reduced by the free block adjustment,
the distribution of the residual errors indicated a systematic error in the test dataset. Considering the
error distribution of different areas, the residual errors were similar while the original errors were
distributed differently. With the random errors reduced, the cluster center of the residual errors are
considered to be the inherent error of the sensor of ZY-3 satellite images.

In order to verify the theory of the inherent error compensation model, we developed a
confirmatory experiment based on our test dataset, in which 23, 38, and 54 images were randomly
chosen from the whole dataset to form a total of 1.8× 10+27 combinations of images. With the free
block adjustment applied to each group, the residual errors could be calculated and the cluster center
of each group could be obtained with the help of DBSCAN algorithm. Then, the convergence of the
results of each group were verified and all cluster centers were extracted from each group of these
data sets stored in an Excel file. To reduce the time consumed, the cluster centers of 3416 groups of
the combinations of 23 images, 5468 groups of the combinations of 38 images, and 8437 groups of the
combinations of 54 images were randomly chosen to be graphed, and the cluster center distributions in
each case are shown in Figure 10a–c. The purple points are the cluster centers of each combination and
the green points are the newly calculated cluster centers in all purple points. The consistency of the
residual errors indicates that all data in the test dataset shared the same characteristics. Furthermore,
the coordinates of the cluster centers of the three combinations were (5.08 m, 6.82 m), (5.17 m, 6.82 m),
and (5.09 m, 6.87 m) in the vector directions of longitude and latitude, respectively, which indicates that
the computation of three groups converged at almost the same position. Therefore, the residual errors
were considered as an inherent error of the ZY-3 satellite images based on the statistical learning theory.
The inherent error compensation model is proposed to improve the geo-positioning accuracy further.
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(a) (b) (c)

Figure 10. Examples of the error cluster center distribution of each combination. (a) The cluster centers
distribution of 3416 groups of the combinations of 23 images; (b) The cluster centers distribution of
5468 groups of the combinations of 38 images; and (c) The cluster centers distribution of 8437 groups of
the combinations of 54 images.The purple points are the cluster centers of each combination and the
green points are the newly calculated cluster centers in all purple points.

In order to acquire a more credible value of the inherent error, we put all images together to
conduct the block adjustment process, and the cluster center of the residual errors of the whole dataset
was located (5.13 m, 6.83 m) in the direction of longitude and latitude. Based on experiments with all
data in the test dataset, this result is closer to the real value of the inherent error. As a result, the cluster
center of the whole dataset was considered as an approximation of the inherent error of ZY-3 satellite
imagery. The coordinates of the cluster center were utilized to propose the inherent error compensation
model as k00 and k10 in Equation (21). With the help of the inherent compensation model, the RMSE
of the geometric positioning accuracy of the test dataset was improved greatly to 4.27 m and 3.39 m
in plane for the Beijing and Songshan areas, respectively. Comparison of the error distribution of the
geometric positioning accuracy after the inherent error compensation model is detailed in Table 4.

Furthermore, the results in Figure 8e,f are more intuitive to show the improvement of the
geometric positioning accuracy of the tested datasets, and the convergence of the computations
performed better compared with the results before the inherent error compensation. Figure 11 displays
the improvement of the control point free block adjustment model and the inherent error compensation
model. The blue line represents the error distribution of all check points in the resulting vector
directions of latitude and longitude, the orange line represents the error distribution after control point
free block adjustment, and the green line is the error distribution after the inherent error compensation.

(a)

Figure 11. Cont.
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(b)

Figure 11. Plane error distribution of (a) Beijing and (b) Songshan areas. BA is the abbreviation of
control point free block adjustment.

Table 4. Error distribution after inherent error compensation.

Study
Area

STD (m) RMSE (m)

Lat Long Plan Lat Long Plan

Beijing 3.03 2.31 2.09 3.21 2.94 4.27
Songshan 2.37 2.16 1.52 2.37 2.44 3.39

4. Conclusions

In this paper, we put forward a new inherent error compensation model based on statistical
learning theory to improve the geometric positioning accuracy of ZY-3 satellite images. Datasets of
Beijing and Songshan areas were separately processed to conduct the free block adjustment together
with an affine transformation model to compensate the bias of the RPCs. Simultaneously with the help
of a stable and efficient weight strategy and the improved FIST algorithm which is widely used in
the field of compressive sensing, the geometric positioning accuracy reduced to 9.68 m and 8.47 m
in plane for the Beijing and Songshan areas. Previous studies terminated once the improvement
of the affine transformation model was achieved. Therefore, we put our focus on studying the
distribution of the residual errors after the free block adjustment. With the random errors reduced,
the distribution of the residual errors of all check points had similar characteristics. With the aid of
the DBSCAN algorithm, we could obtain a regular distribution of the residual errors by statistical
analysis. Based on this, the inherent error compensation model is put forward and the geometric
positioning accuracy of the test datasets was improved to 4.27 m and 3.39 m in plane for the Beijing
and Songshan areas, respectively. The final experimental results showed that the residual errors of the
test datasets converged to within 2 pixels in geometric positioning accuracy of ZY-3 remote sensing
images. Further research of this method will be tested on remote sensing images from other platforms
and multi-source datasets.
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