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Abstract: In a maglev train levitation system, signal processing plays an important role for the
reason that some sensor signals are prone to be corrupted by noise due to the harsh installation
and operation environment of sensors and some signals cannot be acquired directly via sensors.
Based on these concerns, an architecture based on a new type of nonlinear second-order discrete
tracking differentiator is proposed. The function of this signal processing architecture includes
filtering signal noise and acquiring needed signals for levitation purposes. The proposed tracking
differentiator possesses the advantages of quick convergence, no fluttering, and simple calculation.
Tracking differentiator’s frequency characteristics at different parameter values are studied in this
paper. The performance of this new type of tracking differentiator is tested in a MATLAB simulation
and this tracking-differentiator is implemented in Very-High-Speed Integrated Circuit Hardware
Description Language (VHDL). In the end, experiments are conducted separately on a test board and
a maglev train model. Simulation and experiment results show that the performance of this novel
signal processing architecture can fulfill the real system requirement.

Keywords: maglev train; signal processing architecture; tracking differentiator (TD); FPGA

1. Introduction

The magnetic levitation (maglev) train is a kind of promising transportation system that replaces
wheels by electromagnets and levitates on the guideway via non-contact electromagnetic force. It offers
numerous advantages over the conventional wheel-on-rail system: (1) it is suitable to operate as a city
transportation tool without disturbing the residents due to its low noise; (2) electromagnets and
specially designed tracks prevent the trains from derailing; (3) its property of small turning radius and
strong climbing ability lowers the difficulty for route planning in mountainous landscapes and densely
populated areas; and (4) it provides a consequent reduction in maintenance costs, and so forth [1,2].
Recent running maglev trains in the Changsha Maglev Express (Figure 1) and the Beijing Maglev S1
have shown its widespread application prospects.

In a maglev levitation system, a dynamic regulated electromagnet force is utilized to neutralize
the load. To accomplish this control purpose, it is necessary to acquire sufficient information about
the levitation system as the feedback, so as to calculate the control output based on all this feedback.
The system information necessary for control purposes is usually acquired directly or indirectly from
sensors in the maglev train. Currently, the original sensor signals available contain the levitation
gap of the train from the gap sensor, vertical acceleration of the electromagnet from the accelerator,
and the current in the electromagnet windings from the current sensor. The quality of the system
information plays an important role in improving levitation performance since the information is
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served as feedback for control purposes. Therefore, a signal processing unit that is in charge of
offering sufficient information for control output computation based on the original sensor signals is
indispensable. The main challenges for this signal processing unit can be categorized as follows:

(1) Since there exist inevitable electromagnetic disturbances, which exert an influence on the working
condition of the gap sensor, the gap sensor generates not only real signals that reflect the real gap
information, but also noise that may influence the normal functioning of the controller if this
noised gap sensor is utilized directly as the feedback without preprocessing. To minimize the
influence caused by this kind of noise disturbance, a gap sensor signal must be filtered before
it is used by the controller. At present, most commonly used filters for gap signals are simple
first-order low-pass filters, for which the filtering performance and the real-time requirement
contradict each other. To enhance the filter’s performance, a big filtering coefficient is required,
whereas a big filtering coefficient usually causes a large phase lag that undermines the stabilities
of the levitation system [3]. A new filtering strategy with higher filtering performance and smaller
phase lag is needed.

(2) Train-track coupled vibration is a special phenomenon for a maglev system due to the elastic
property of the steel track [4]. It is found that if the information of the movement of the track is
obtained for computation of the control output, this vibration can be effectively suppressed [5,6].
Since the differential of gap is the relative velocity between the electromagnet and the track,
this information is effective for suppression of this kind of vibration. However, the acquisition
of differential for a discrete signal is a difficult task. The differential of a given discrete signal
can amplify the noise, especially the high frequency noise. Sometimes, the real differential result
can be overwhelmed by this amplified noise. Therefore, a differentiator that can acquire the
differential for signals within the given frequency region without amplifying the high frequency
noise is needed.

(3) Model based signal processing strategy is effective in filtering and obtaining derivative signals
under the condition that the object model is time invariant and precisely known a priori;
however, the maglev model is sometimes not precise and is always time varying due to the
changing passenger amount and the varying relative position between the electromagnet and
the track [7]. For this reason, the signal processing method with less dependence on the system
model is more suitable for the maglev train levitation system.

Based on the particular requirement of the maglev train levitation system on signal processing
tasks, the tracking-differentiator (TD) with the property of fast tracking and a small phase lag is an
appropriate choice. Filtering and the differential of the input signal can be accomplished at the same
time via a tracking differentiator. The tracking differentiator began to attract researchers’ attention in
the late 1980s due to pursuing the high performance of control systems [8,9]. Since then, much effort
has been devoted to the problem of designing a differentiator, such as a high-gain observer-based
differentiator, linear time-derivative tracker, super-twisting second-order sliding-mode algorithm,
robust exact differentiator, and finite time-convergent differentiator among others [10]. Levant proposed
differentiators based on slide-mode techniques, which highlighted the later development of tracking
differentiator [11,12]. In this kind of differentiator, the upper bound for Lipschitz constant is needed.
However, the output of derivative estimation is not smooth because of the existence of discontinuous
function. Therefore, the chattering phenomenon exists in the derivative estimation. In some works,
the global robust exact differentiator was designed by combining the high-gain differentiator with
sliding modes differentiation though a switch function [13,14]. Wang Xinhua proposed a hybrid
continuous nonlinear differentiator in which the chattering phenomenon can be reduced sufficiently [15].
Angulo et al. proposed a tracking differentiator that could uniformly converge with initial differentiator
error and finite-time exact convergence [16]. Utkin has also done a series of studies on the features of
sliding differentiator [17,18].
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Since the digital controller is widely used in the maglev train levitation control system as well
as in other industry control systems, the research on the discrete-form tracking differentiator is of
more practical importance. Han put forward a noise-tolerant time-optimal system based practical
discrete tracking differentiator in early time [19]. The advantage of this TD is that it sets a weak
condition on the stability of the systems to be constructed for TD and requires a weak condition on the
input. In addition, it has advantageous smoothness compared with the obvious chattering problem
encountered by sliding-mode-based differentiators [20]. Yao Guo uses a tracking differentiator for
compass signal tracking [21]. Dai and Xue apply tracking differentiators in the field of filtering for
sensor signals [22,23]. Zhang makes use of the tracking differentiator in the field of X-ray pulsar
profile recovery [24]. Zhang et al. make use of the tracking differentiator to get a transient profile,
improving power control performance of wind generation system [25]. Dou et al. solve a problem
of filtering and direction identification in relative position estimation based on induction loop-cable
using a tracking differentiator [26]. These works demonstrate the widespread interest in tracking
differentiators. Further research about tracking differentiators is of great importance in promoting its
practical application.

A few new forms of tracking differentiators are also proposed in recent research [27–31]. However,
many works mentioned above present only simulation results and the forms of tracking differentiators
in these papers are much too complicated. In addition, in the maglev train levitation control system,
an Field-Programmable Gate Array (FPGA) processor is responsible for signal processing, and no
literature has given a method to implement a tracking differentiator in an FPGA processor.

This article gives a further study of tracking differentiator, which is concise in its form and
easy to be implemented in hardware. A maglev train signal processing architecture based on this
novel tracking differentiator is described in detail. Influences of different parameters on the tracking
differentiator’s performance and effect of this signal processing architecture on the maglev train
levitation system are analyzed then via MATLAB simulations (MATLAB 8.3, MathWorks, Natick,
MA, USA). Following this, a Very-High-Speed Integrated Circuit Hardware Description Language
(VHDL) implementation of this tracking differentiator is made and a MATLAB-Modelsim simulation
is conducted to verify the VHDL implementation’s effectiveness. In the end, a maglev test bench is
used to verify the effectiveness of the tracking differentiator based signal processing architecture.

Figure 1. Changsha Maglev Express train in a small-radius circle.
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2. Signal Processing Architecture Based on Tracking Differentiator

A simplified maglev system is presented in Figure 2, which consists of carriages, track,
electromagnet and sensor. In this simplified maglev system, the sensor embedded on the electromagnet
is an integrated sensor offering gap signal and acceleration signal. It acquires gap between the lower
surface of the track and the upper surface of the electromagnet, the acceleration of the electromagnet
and transmits these signals to the controller via field bus. The current sensor and the voltage sensor are
located inside the controller, which offer the current value through the coil and the voltage exerted on
the coil. After acquiring these sensor signals, the controller computes control output based on particular
control law and then generates output voltage onto the coil. When there is voltage exerted, current is
generated inside the coil, and the magnetic force levitates the electromagnet upwards together with
the carriages. During this process, the controller regulates the output voltage dynamically to maintain
the balance between the electromagnetic levitation force and the weight of the carriage.

Figure 2. Signal flow chart in a maglev train levitation system.

Under ideal condition, assuming:

• there is no magnetic flux leakage,
• there is no external disturbance force,
• there is only the vertical movement of the electromagnet,
• the track is rigid,

a linearized model of the maglev system can be derived as [2]: ż
v̇
i̇
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kz
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0 0 − R
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 z

v
i

+

 0
0
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 uc, (1)

where z, v, and i are the system state variables representing displacement of the electromagnet,
velocity of the electromagnet, and current inside the windings , uc is the control voltage, m and
R represent the mass of the electromagnet and resistance of the windings, kz , kc and L0 are the gap
coefficient, current coefficient and inductance of the electromagnet windings at the equilibrium point.
Ideally, a state feedback type control law (2), which is a linear combination of system states with Kz, Kv,
and Kc denoting the displacement coefficient, velocity coefficient, and current coefficient, respectively,
can stabliize the maglev system described in Equation (1):

uc = Kzz + Kvv + Kci. (2)

In the real system, the displacement z is substituted by the levitation gap δ from the gap
sensor, and the velocity v is substituted by the integral of the acceleration a from the accelerator.
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Additionally, to reduce static error, the integral of the levitation gap error is also included into the
control output. Thus, Equation (2) can be transformed into:

uc = Kzδ + Kv

∫
a + Kci + Ki

∫
(δ− zre f ), (3)

where zre f is the target levitation gap, and Ki is the coefficient of the integral term. In this control
strategy, the quality of the sensor signal plays an important role, especially the quality of levitation
gap signal and its differential. For current signal, (1) current sensor is installed in the controller on the
train body instead of the electromagnet, the electromagnetic disturbance for current sensor is weak
compared with that for gap sensor and accelerometer; (2) the coefficient for gap and velocity is far
larger than the coefficient for current, which means the influence of noise in the current sensor is not
comparable with that of noise in gap sensor. Supposing the original current signal time series are
i0(k), k = 1, 2, 3, · · ·, then a two-step current signal processing method represented by Equations (4)
and (5) is adopted, with ĩ(k) the filtered result:

i1(k) = i0(k) + i0(k− 1) + i0(k− 2)−max(i0(k), i0(k− 1), i0(k− 2))

−min(i0(k), i0(k− 1), i0(k− 2)) k = 3, 4, 5, · · ·,
(4)

ĩ(k) =

{
i1(k− 1) i f |i1(k− 1)− i1(k)| > 1,

i1(k) i f |i1(k− 1)− i1(k)| ≤ 1.
k = 4, 5, 6, · · ·, (5)

For the acceleration signal, it is integrated as velocity feedback. Since noise is usually treated as an
additive white noise, and the integral of white is close to zero, the influence of noise in the acceleration
signal is trivial. Sensor biases, which may become a big problem if the biased acceleration signal is
processed by the integral directly, should be filtered first. Considering the fact that acceleration of
the electromagnet is supposed to be of high frequency, a first order high pass filter (6) is used for
processing of the acceleration signal, which is also effective in filtering low frequency sensor biases:

Ghp(s) =
s

s + Ta
, (6)

where Ta is a constant related with the threshold of the high pass filter. Both the processing of current
signal and acceleration signal is easy, the challenge is on the processing of the gap signal. The eddy
current type gap sensor is located next to the electromagnet windings, and the magnetic field and the
heat generated by the electromagnet windings cause disturbances to the acquisition of the gap signal
and the acquisition of its differential. To get rid of the influence of sensor noise, the first order low-pass
filter (7) is commonly used, in which Tf is the time constant. The disadvantage is that, when a high
filtering quality is needed, the phase lag is relatively too large, which has a bad influence on system
stability. The task is to find a filter with a good filtering performance and small phase lag as well:

G f (s) =
1

Tf s + 1
. (7)

For acquisition of the gap differential signal, a classic method (8) is commonly used. In which the
smaller Td is, the closer is (8) to the real differential value of the given signal. However, if there exist
noise in the given signal, then there will be 1/Td times this noise in the differentiated result. Since Td is
usually pretty small, this noise will be amplified dramatically. So the task is to find a differentiator
which will not amplify high frequency noise:

Gd(s) =
1
Td

(1− 1
Tds + 1

). (8)
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Based on the analysis above, a maglev train signal processing architecture based on the tracking
differentiator is proposed (Figure 3).

Electro
magnet

Power 
amplifier

Kc

Ki

Kv

∫

Kz

Kb

∫

Tracking 
Differentiator

Control law

Ref
gap

acceleration
currentCurrent 

filter

Acceleration 
filter

Signal Processing
Controller

Figure 3. Maglev train signal processing architecture based on the tracking differentiator.

The levitation gap sensor and accelerator, which are embedded on the electromagnet transmit
levitation gap signal and acceleration signal to the controller, the current sensor transmits current
signal to the controller. These are all the original signals to be processed. In the controller, these
signals are processed for computation of control output. The acceleration signal a is processed first
by acceleration filter (6), and then the filtered signal ã is integrated as the absolute velocity feedback;
the current signal is processed first by the current filter (4) and (5). Then, the filtered current signal
ĩ can be employed as the current feedback; the levitation gap signal is processed with the proposed
tracking differentiator, one output is employed as the filtered gap feedback δ̃, the other output of the
tracking differentiator is employed as the differential feedback ˙̃δ, which is used for suppression of the
train-track coupled vibration; and, to diminish the static error, gap error is integrated as an additional
feedback

∫
(δ− zre f )dt. Then, the levitation control law can be concluded as :

uc = Kz δ̃ + Kv

∫
ã + Kc ĩ + Kb

˙̃δ + Ki

∫
(δ− zre f ), (9)

where Kz, Kv, Kc, Kb, and Ki are, respectively, the corresponding coefficients.

3. Nonlinear Second Order Discrete Tracking Differentiator Based on Boundary Characteristics

In this part, the core of this signal processing architecture, the tracking differentiator, is introduced
in detail.

3.1. Preliminaries of the Discrete Tracking Differentiator

A typical form of the discrete tracking differentiator is [21,25,26,32]:{
x1(k + 1) = x1(k) + hx2(k),

x2(k + 1) = x2(k) + h ftd(x1(k)− vin(k), x2(k), r, c0h),
(10)

in which x1(k) and x2(k) are the state variables describing the tracking differentiator, vin(k) is the input
signal of the tracking differentiator (usually the polluted signal), h is the discrete sampling time, ftd is
the control comprehensive function, and r and c0 are, respectively, the rapid coefficient and filtering
coefficient. Under the condition that the values of the parameter r and c0 are chosen properly and
comprehensive function ftd works well, x1 → vin and x2 → v̇in can be realized.
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3.2. Procedure to Calculate the Control Comprehensive Function

According to optimal control theory for the linear time-invariant (LTI) system, for a given
continuous second order cascaded integral system:{

ẋ1(t) = x2(t),

ẋ2(t) = ftd(t), | ftd(t)| ≤ r,
(11)

with respect to cost index:

J[ ftd(t)] =
∫ τ

0
1 dt = τ, (12)

the fastest optimal control strategy is [33,34]:

ftd(t) = −r · sign(x1(t) +
x2(t)|x2(t)|

2r
), (13)

and any state point P(x1(t), x2(t)) on the phase plane needs at most the changing sign once from
ftd(t) = r (or ftd(t) = −r ) to ftd(t) = −r (or ftd(t) = r). The sign changing takes place as soon as the
point reaches the boundary line:

x1(t) +
x2(t)|x2(t)|

2r
= 0. (14)

When it comes to a discrete system, most of the time, the state point cannot change sign exactly
when the point arrives at the boundary line since there is a one-step sampling (or “delay”). Under this
condition, a chattering in which the state point moves back and forth the boundary line will happen,
and this chattering will deteriorate the working performance of the controller. Thus, some special
measures should be taken around the boundary line.

There are two boundaries in the phase plane, one is the switching line constituted by those initial
points that converge to origin if control values are always ftd = r or ftd = −r. This characteristic line
can be defined as ΓA:

x1(t) +
x2(t)|x2(t)|

2r
+

1
2

hx2(t) = 0. (15)

The other characteristic line is constituted by those initial points that converge to the origin when
control value adopts ftd = r first and then ftd = −r always or the control value adopts ftd = −r first
and then ftd = r always. This characteristic line can be defined as ΓB:

x1(t)− s
x2

2(t)
2r

+
5
2

hx2(t)− sh2r = 0, s = sign(x1(t) + hx2(t)). (16)

The state points that are able to arrive at the origin within two steps are girdled by two pairs of
parallel lines, and this region can be defined as reachable zone Ωr:

Ωr = {(x1(t), x2(t))||x1(t) + 2hx2(t)| ≤ h2r, |x1(t) + hx2(t)| ≤ h2r}. (17)

Define the zone between ΓA and ΓB except Ωr as linear zone Ωl . The other two zones are defined
as negative zone Ω−: the zone on the right upward region, and positive zone Ω+: the zone on the left
downward region. Thus, it can be seen in Figure 4 that the phase plane can be divided into four parts:
Ωl , Ωr, Ω+ and Ω−.



Sensors 2018, 18, 1697 8 of 22

Figure 4. The division of phase plane.

It is obvious that, in region Ω−, ftd = −r; in the region Ω+, ftd = r. The difference for control
strategy between continuous system and discrete system exists when the state point belongs to the
linear region Ωl and the reachable region Ωr. When state P(k) is in the linear region Ωl , to avoid the
chattering, a linearly changing comprehensive function ftd is chosen to make the next state P(k + 1)
moves along the switching line towards the origin steadily. Make a horizontal line through point P(k)
on the phase plane, thus this horizontal line has two cross points with ΓA and ΓB. Then, define the cross
points as A, B, and their x-axis values are defined as XA, XB; then, a linearly changing control variable:

ftd(t) = −r
(XB + XA − 2|x1(t)|)

XB + XA
sign(x2(t)) (18)

can be adopted to make the next state P(k + 1) and all other following states fall within the linear
region Ωl , and converge to the origin along the boundary ΓA. When the state is within the reachable
region Ωr, the control strategy can be derived from the system equation as:

ftd(t) = −
1
h2 (x1(t) + 2hx2(t)). (19)

In conclusion, the basic strategy of this nonlinear tracking differentiator is: given a point P(x1, x2)

in the phase plane, the value of control comprehensive function ftd(x1, x2) is determined so that
the state point can converge to the origin as soon as possible. The strategy of calculating control
comprehensive function ftd is: make a horizontal line through point P(x1, x2) on the phase plane,
get the value of XA and XB, then obtain the value of ftd according to which zone P(x1, x2) belongs
to. As an instance, the locus for an initial point P(x1, x2) = (1.1, 2.0) in phase plane can be seen
in Figure 5a; here, the parameters are r = 10, h = 0.1, and c0 = 1. In this figure, point P(x1, x2)

moves from zone Ω− to the linear zone Ωl , entering reachable zone Ωr along the switching line ΓA,
and eventually converging to the origin in 10 steps, with no fluttering during this whole process.
The locus of the state point is so close to the optimal convergence locus owing to the proper choosing
of control comprehensive function ftd(x1, x2), which can be seen in Figure 5b.
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Figure 5. Convergence of a state point on the phase plane. (a) locus of the state point; (b) value of ftd.

3.3. Influence of the Parameters

The fast parameter r and filtering parameter c0 are strongly related to the performance of the
tracking-differentiator. In order to select proper parameters and make adjustments if it is needed,
influences of different parameters on TD’s frequency characteristics are indispensable. A frequency
scanning method can be employed to obtain these relationships. The frequency characteristics
at different values of the parameter r can be seen in Figure 6. At the low-frequency section
(frequency < 40 Hz), the amplitude gain is close to 1, the phase lag is small. At high-frequency
section (frequency > 100 Hz), the amplitude gain decreases and phase lag increases, which makes it
able to suppress high-frequency noise. The crossover frequency for amplitude gain increases and the
phase lag decreases as r increases, which means the increase of r strengthens the tracking property
while weakens the filtering property. The frequency characteristics at different values of the parameter
c0 can be seen in Figure 7. As c0 increases, the amplitude gain decreases gradually, which means that
the filtering ability increases and correspondingly the phase lag increases with c0 at the same time.
When c0 = 15, the phase lag is pretty large, which is not a good thing for the system’s stability [3].
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Figure 6. Frequency characteristics of the tracking differentiator at different fast coefficients r for
filtering purposes.
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Based on the filtering frequency characteristics on different fast parameter r in Figure 6,
on different filtering parameter c0 in Figure 7, a trade-off between the phase lag and restraining
effects for the noise can be made comprehensively. Supposing the filtering parameter is chosen as
c0 = 10, and the fast parameter is chosen as r = 6π × 106, when the frequency of the input sinusoidal
signal is 50 Hz, the amplitude gain of the tracking differentiator is −0.048 dB, the ratio between the
amplitude of input and output signal is 1:0.9945, the phase lag is 8.52 degree, and both the amplitude
attenuation and the phase lag are tolerable.

The influences of different parameters on the differential frequency characteristics of TD can be
acquired in the same way. Figure 8 is the case for different values of parameter r and Figure 9 is the
case for different values of parameter c0. The explanation of these differential results are similar to
those for the filtering case in Figures 6 and 7, so it will not be made in detail. The key point is that
there is a turning point for the amplitude–frequency relationship in Figures 8 and 9,which means that
the high frequency noise will not be amplified by the differential of TD compared with the classic
differentiator (8).

Remark 1. For the differential, the turning point increases with the parameter r, which means that high
frequency input signal needs a large parameter r. A large parameter c0 will increase the ability of noise
suppression, while, at the same time, affect the phase lag, so the value of c0 should not be chosen too large.
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Figure 8. Frequency characteristics of the tracking differentiator at different fast coefficient r for
differential purposes.
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Figure 9. Frequency characteristics of the tracking differentiator at different filtering coefficient c0 for
differential purpose.

4. Simulation and Experiment Analysis

4.1. Simulation of TD Based Signal Processing Architecture in MATLAB-Simulink

In this part, a maglev system with TD based signal processing architecture shown in Figure 3
is simulated in MATLAB-Simulink under control law (9). To highlight major issues and to save
the space, only noise disturbance in gap sensor signal is considered in this part. The procedure of
this simulation is: (1) it is an ideal condition with no sensor noise in the beginning 1 s, under the
predesigned control law, the levitation gap will change from an initial value of 20 mm to a desired
target value of 12 mm; (2) after the system stabilizes at the equilibrium point, white noise with mean
value 0 and magnitude 0.25 mm is added into the gap signal from t = 1 s to simulate the disturbed
gap signal; and (3) signal processing architecture proposed in this paper is then adopted to process the
noised gap signal from t = 2 s. After this simulation, the levitation gap value during this whole process
is recorded and displayed in Figure 10. The levitation gap at different time sections is distinguished
with different colors, and partial zooms are made in the first and last section, respectively. After the
simulation begins, the levitation gap diminishes quickly and smoothly from the initial value to the
target value within 0.4 s, with no overshoot and no static error. When noise is added into the gap
sensor without processing, the levitation gap begins to fluctuate dramatically and the deviation is
about 3 mm the maximum. Then, after the signal processing method is employed, the fluctuation is
suppressed within 0.015 mm, which can be seen in the partial zoom window. From a statistical point
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of view, the mean value of gap and its variance when noise is added is 12.2875 and 0.32, respectively,
while when the filter is employed, it is 12.0384 and 0.0216, respectively. This simulation presents
a demonstration for the influence of the gap sensor noise and the effective performance of the proposed
signal processing architecture.
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Figure 10. Levitation gap when the gap sensor signal is polluted by noise.

4.2. VHDL Implementation and MATLAB-Modelsim Simulation for TD

FPGA is widely used in signal processing with the advantages of high speed and mass
processing [35,36]. In the maglev system, an FPGA processor is employed in charge of signal
processing tasks. Therefore, to make this TD able to function in a real maglev levitation system,
a VHDL implementation has to be made to make it work in an FPGA processor. In addition, this TD’s
performance can be tested in a simulation first. Usually, a VHDL program is simulated in simulation
software Modelsim (Modelsim 14.1, Mentor Graphics, Wilsonville, OR, USA). However, Modelsim is
not powerful enough in generating desired input signal, while MATLAB has the advantages of flexible
input signal configuration and powerful input–output data process ability. In this section, the new
MATLAB-Modelsim simulation is introduced in detail and the results are given. A MATLAB-Modelsim
simulation process can be completed in five steps:

(1) Generate the desired input signal in a MATLAB file and store the signal data into a text document.
In this process, signals with almost any properties can be generated easily.

(2) Import of the input signal. In this step, Modelsim reads the text document generated in step (1),
and import the stored data as the input data for the tracking differentiator.

(3) Operation of tracking differentiator. This is the core step of this entire simulation.
(4) Storage of the output data. All data are stored in a text file.
(5) Reading of the output data and make some necessary signal processing via MATLAB’s signal

processing tools.

This procedure and corresponding files used can be seen in Figure 11. All simulation files are
available in supplementary materials attached.



Sensors 2018, 18, 1697 14 of 22

Figure 11. MATLAB-Modelsim Simulation procedure.

Given a gap signal w, which comprises of a 12 mm constant component, a 50 Hz, 1 mm sinusoidal
component, and 0.1 mm white noise. Through a digitization process in (20), this gap signal is converted
into a 12-bit digital signal:

wn = round(w/20× (212 − 1)). (20)

Through a simulation in Modelsim, the simulation result is shown in Figure 12a. This result
consists of three columns: signal name, value and the wave. In the column “signal name”, clk_25 is
the sampling clock, v is the input signal, y1 is the filtered output, and u is the control comprehensive
function. If a cursor is placed on the wave, the corresponding value can be seen in the middle
column. In Modelsim, waveforms can be displayed in different formats: binary, decimal or hex.
Especially, the result can be displayed in analog waveforms, like that in Figure 12b. Comparing the
input signal with the output signal , the output signal can track the input signal and the noise in the
output signal is suppressed, which in turn indicates that the VHDL program is effective. A simulation
for differential of TD is more or less the same so the simulation result for the differential is omitted here.

To get a more precise analysis of the filter’s performance, observing the waveform in Modelsim is
neither convenient nor sufficient. Therefore, processing all these input and output data in MATLAB
is a better way. First, computation in MATLAB has a more precise result, which can be treated
as a standard to judge whether the result obtained from the VHDL program is accurate or not.
Second, MATLAB has a more powerful signal processing ability, not only displaying the signal in the
time domain but also displaying the signal in frequency domain. Figures 13 and 14 are comparisons of
the computation results in VHDL and the computation results in MATLAB. For filtering, the average
error between MATLAB result and VHDL result is 0.509, the ratio of this error to the mean value of the
output signal is 0.02%; for the differential, the average error between MATLAB result and VHDL result
is 2.316, the ratio of this error to the mean absolute value of the output signal is 0.21%. The two results
are very close; both the red signals obtained in MATLAB and the black signals obtained in Modelsim
are effective processed results. Assuming the results in MATLAB are accurate, the simulation results
indicate that the computation results in VHDL are precise as well.

Remark 2. The differential results in Figure 14 are normalized results; here, only the “shape” of the waves are
considered, and the normalization is convenient for comparison.

4.3. Experiment Analysis of the Proposed Signal Processing Architecture

After the MATLAB-Modelsim simulation, an independent experiment is made to check out this
TD’s performance in an FPGA processor. The idea is generating the desired test signal, processing it
in an FPGA processor and making a comparison between the input and the output signals in an
oscilloscope. Given a 50 Hz sinuous test input signal, the filtering performance is shown in Figure 15
while the differential performance is shown in Figure 16. In both figures, the blue signal in channel 1
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is the input signal and red signal in channel 2 is the processed signal. It can be concluded that both
filtering and differential results are satisfactory.

(a)

(b)

Figure 12. Simulation result in Modelsim. (a) a binary waveform display of simulation result in
Modelsim; (b) an analog waveform display of simulation results in Modelsim.
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Figure 13. Comparative simulation performances for filtering in MATLAB and Modelsim.



Sensors 2018, 18, 1697 16 of 22

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time(s)

A
m

pl
itu

de

 

 

Test Input
MATLAB Output
Modelsim Output

Figure 14. Comparative simulation performances for differential in MATLAB and Modelsim.

Figure 15. Tracking differentiator (TD) test for filtering at an onboard test bench.

Figure 16. TD test for differentiating at an onboard test bench.
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The final step is to verify the effectiveness of the signal processing algorithm in a real maglev
system. For this purpose, an experiment on a maglev test bench is performed. The designed signal
processing architecture is applied on the sensors’ signals, and control output value is computed taking
the processed signals as the feedback. The experiment procedure is making this maglev vehicle
levitate from initial gap x0 = 10 mm to a desired set value of x0 = 5 mm and then fall off from the
target position to its initial position. The performance of the signal processing algorithm is shown
in Figure 17 for the filtering and in Figure 18 for the differential. The results show that this signal
processing architecture can make the maglev train levitate steadily, and, in steady state, the sensor
noise is filtered and the track-train coupled vibration is effectively suppressed.
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Figure 17. Cont.
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Figure 17. Original gap signal and filtered signal. (a) rising process; (b) levitation process; and
(c) falling process.
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Figure 18. Gap signal differential results. (a) rising process; (b) levitation process; (c) falling process.

In addition, the filter’s performance for filtering in the frequency domain can be seen in Figure 19,
which shows that the filter can maintain the signal’s less than 50 Hz low-frequency components while
suppressing the high frequency noise disturbance effectively.
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Figure 19. Frequency spectrum of the input and output signals.

5. Conclusions

A tracking differentiator based signal processing architecture for a maglev train levitation system
is proposed and evaluated in this paper for its performance and practicality. Design and tuning
issues for the core of this signal processing architecture, the tracking differentiator, is studied in
detail. The advantages of this nonlinear discrete time tracking differentiator are demonstrated
in MATLAB-based simulations, VHDL-based implementation and maglev train signal processing.
In particular, this new type of tracking differentiator can suppress the noise effectively with a relatively
small phase lag and can acquire the differential for a given signal without amplifying the high
frequency noise. The work of this paper is helpful for maglev train signal processing and for the usage
of a tracking differentiator in a real system. Further research and applications can be done based on
this work.
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