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Abstract: We developed a multiband imaging CMOS image sensor (CIS) with a multi-storied
photodiode structure, which comprises two photodiode (PD) arrays that capture two different images,
visible red, green, and blue (RGB) and near infrared (NIR) images at the same time. The sensor
enables us to capture a wide variety of multiband images which is not limited to conventional visible
RGB images taken with a Bayer filter or to invisible NIR images. Its wiring layers between two PD
arrays can have an optically optimized effect by modifying its material and thickness on the bottom
PD array. The incident light angle on the bottom PD depends on the thickness and structure of the
wiring and bonding layer, and the structure can act as an optical filter. Its wide-range sensitivity and
optimized optical filtering structure enable us to create the images of specific bands of light waves in
addition to visible RGB images without designated pixels for IR among same pixel arrays without
additional optical components. Our sensor will push the envelope of capturing a wide variety of
multiband images.

Keywords: CMOS image sensor; 3D stacked; near infrared; multiband imaging

1. Introduction

There has been demand for a CMOS image sensor (CIS) that captures not only visible red, green,
and blue (RGB) images, but also invisible infrared (IR) images [1,2]. In the case of optical cameras,
IR light is eliminated intentionally by inserting an IR cut filter in front of the surface of an image sensor
to avoid color degradation. An IR signal, however, is valuable for getting additional information such as
the veins lying beneath the skin because IR penetrates into deep skin where visible light doesn’t [3,4].

Conventionally, there are three methods to capture RGB and NIR mixed images at the same time;
one is a method to make RGB and NIR mixed images by combining two different images taken by two
CISs with a dichroic mirror, which separates visible RGB light and NIR light [5]. This combination
method requires additional optical components and precise placement adjustment in order to make
two images in the exact same frame. However, the required additional components increase the cost
and difficulty of assembly. The second one is a method to insert an extra NIR color filter among the
RGB color filter array, which means that the pixels with the NIR filter become defective pixels for
RGB images [6]. This method can get RGB and NIR mixed images at the same time; however, pixel
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interpolation is needed to construct the RGB image. Those pixels for RGB and NIR are on the same
chip, which means both pixels could not satisfy the optimized optical and electrical characteristics at
the same time. The third option is to split incident light into three different wavelength regions or
more by using silicon substrate as a kind of filter. Foveon demonstrated a CMOS image sensor with
multi-layered different depth photodiodes in one silicon substrate [7]. This technology may make it
possible to capture RGB and NIR images with one sensor and causes color degradation because of
signal mixing among layered photodiodes which need a complicated device structure.

In this paper, we show the basic characteristics of the multi-storied photodiode CMOS image
sensor. As a sophisticated and effective way to capture a wide variety of multiband images, in this case
RGB and NIR images, at the same time without any image degradation and additional optical components,
we proposed and demonstrated a multi-storied photodiode CIS with 3D stacking technology.

Section 2 describes the concept and structure of the multi-storied photodiode CMOS image sensor [8].
Section 3 presents and discusses measurement results of the basic characteristics [9]. Conclusions are
presented in Section 4.

2. Multi-Storied Photodiode Concept and Structure

Figure 1 shows a conceptual diagram of the multi-storied photodiode CMOS image sensor.
The top substrate has a pixel array for mainly visible RGB light, and the bottom substrate has a pixel
array for IR light that passes through the top substrate. This means that our CIS splits incident light
into 6 kinds of signals, RGB signals in the top substrate, and in the bottom substrate, the other three
optical signals passing through one of three color filters and the top semiconductor layer. It enables us
to select specific multiband imaging by modifying the top semiconductor layer thickness or changing
the characteristics of optical filters, such as the color of the filters and a multi-layered dielectric filter,
on or between two substrates. Additionally, both the top and bottom substrate have their own driver
circuits to adjust the driving speed and electrical shutter speed and to select read out pixels between
two photodiode (PD) arrays. This function improves the dynamic range of incident light by modifying
the exposure time and adapting it to the light intensity in different wavelength regions. Our novel
3D stacking technology [8,9] enables us such functions and to put the top pixels in alignment with
bottom pixels to get an exact position to avoid aberrations between images obtained from the top and
bottom substrates, which means no extra PDs designated for IR, which would result in a complicated
fabrication process and pixels that cannot be used for visual signals would be needed on the same
substrate. 3D stacking technology is also useful to achieve other functions like distance measurement
or phase difference detection for lens focusing using the pixels in the bottom substrate.
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Figure 1. Concept of multi-storied photodiode CMOS image sensor based on 3D silicon stacked
technology. The sensor comprises two layers of PD arrays, one in the top and the other in the bottom
semiconductor. The top PD array converts a part of incident light into corresponding signals and works
as an optical filter for the bottom PD array. The bottom PD array converts light that penetrates through
the top substrate into signals, which means the top substrate acts mainly as a visible light sensor and
the bottom one is an invisible IR light sensor.
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Figure 2 shows a cross-sectional SEM image of the image sensor. There are micro lenses and color
filters on the top PD array in the top semiconductor layer, which is 3 µm in this case. Both the top
and bottom substrates have their own multilayer wiring layers to function individually. Substrates
were bonded by our 3D stacked technology, which connects two substrates physically and electrically
without any harm to the PDs. We measured the image sensor specification with 0.2 µm or less
alignment accuracy. A part of the incident light, a longer wavelength, penetrates the top substrate and
is absorbed by the bottom substrate. Incident light is absorbed by the two substrates in accordance
with the wavelength so that we can have a broader range of light information and manipulate the
obtained images by using two devices, e.g., we can extract IR signals from the top substrate signals
with an IR reduction algorithm and IR signals from the bottom substrate to show only a visible light
image. We can also show IR images from the bottom substrate at the same time.
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semiconductor layer. Micro lenses and color filters lie on the top substrate.

3. Measurement Results and Discussion

3.1. Photoelectric Conversion Characteristics

Figure 3 shows photoelectric conversion characteristics of the PDs in the top and bottom substrates
with a halogen lamp, which emits a broad range of light including visible RGB light and invisible IR
light. Each PD array on the substrates captures incoming light as it is designed for and shows linear
photoelectric conversion characteristics. These sensitivities show the light absorption efficiency of each
pixel. All PDs in the bottom substrate under both the color filters and the top substrate show linear
photoelectric conversion characteristics, which means enough light passes through to be detected by
the PDs in the bottom substrate.
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Figure 3. Photoelectric conversion characteristics of PDs in top and bottom substrates. Each PD array on
the substrates captures incoming light properly and shows linear photoelectric conversion characteristics.

3.2. Spectral Response Characteristics

Figure 4 shows measured and calculated normalized quantum efficiencies of the PDs in the bottom
substrate; the measured data are dots, and calculated are dashed lines. Three types of color filters
are arranged on the top substrate, and the incident light penetrates the filters and the top substrate.
The blue, green, and red pixels in the bottom substrate showed different spectral characteristics,
which means our multi-storied photodiode CMOS image sensor can obtain six kinds of spectral
information. The pixels in the bottom substrate are aligned directly below the pixels in the top
substrate, which means that incoming light for the pixels in the bottom substrate passes through the
color filters and the top semiconductor layer. We calculated the spectral response characteristics of the
bottom PDs with the optical characteristics. The measured normalized quantum efficiencies show the
same tendency as our calculations with the optical constants of the filters and the substrate materials.
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3.3. RGB and NIR Images Taken by the Multi-Storied Photodiode CMOS Image Sensor

Figure 5a shows an RGB image obtained with the signals from both substrates of the image sensor
by using an IR reduction algorithm. The image does not show any color distortion without an IR
filter since IR signals are subtracted adequately by the algorithm. Figure 5b shows an IR image from
the bottom substrate signals taken by the same sensor at the same time. In the image, the intensity
difference between pixels was adjusted by averaging the blue, green, and red pixels’ signals. These
RGB and IR images, which were taken without additional optical components or additional dedicated
pixels, showed no interference between the RGB image and IR signals.
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Figure 5. (a) RGB and (b) NIR images taken by image sensor. The RGB image was reconstructed
by using both signals from PD arrays in the top and bottom substrates with IR reduction algorithm.
The NIR image was obtained by using only signals from the bottom PD array.

Figure 6 shows the effect of IR subtraction much more clearly. We put an additional IR light
emitting diode (LED), whose wavelength and bandwidth were 900 and 60 nm, respectively, as a light
source to create a bright spot to degrade images. The IR subtraction algorithm was performed based
on Equation (1). Here signalRGB, signalTop, and signalBottom are the RGB signal after the subtraction,
signal from the top photodiodes, and signal from the bottom photodiodes, respectively. In addition,
the coefficient, A, is based on the quantum efficiencies and exposure times of the top and bottom
photodiodes. The noise characteristics are described in Equation (2). This means that a bigger bottom
signal decreases the signal to noise ratio of the RGB signal after IR reduction. Figure 7a shows an RGB
image obtained with only the top substrate signals of a sensor. There was a bright spot caused by the
extra IR light source. Figure 7b shows a RGB image with IR reduction using the bottom signals and IR
reduction algorithm. Neither degradation to the color or abnormal brightness in the RGB image were
caused by the extra IR light source, which means that interference to the RGB image by the extra IR
was eliminated from the top substrate signals. The extra IR light can be identified as a bright spot in
the image in Figure 7c. Table 1 shows the design specifications of the image sensor. The image sensor
was fabricated by using a 0.18-µm 1P6M process, and the top substrate has a back-illuminated structure.
The pixel size and pixel area of the multi-storied photodiodes is 3.8 µm × 3.8 µm and 16.1 mm × 0.9 mm,
respectively. The photodiodes are arrayed as 4224 × 240 pixels by using our original stacking process.
The top and bottom substrates were designed with the same design rule and architecture.

SignalRGB = SignalTop − A × SignalBottom (1)

NoiseRGB =
√(

NoiseTop
)2

+ A × (NoiseBottom)
2 (2)
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Table 1. Design specifications of the demonstrated multi-storied photodiode CMOS image sensor.

Items Specifications

Fabrication process 0.18-µm 1P6M
Chip size 20.1 mm × 19.7 mm
Pixel size 3.8 µm × 3.8 µm
Multi-storied photodiode pixel area 16.1 mm × 0.9 mm
Number of multi-storied photodiodes 4224 × 240
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3.4. RGB and NIR Images Taken by the Multi-Storied Photodiode CMOS Image Sensor

Figure 7 shows the incident angle dependence of the normalized sensitivities of the PDs in the
bottom substrate measured with 560-, 640-, and 800-nm wavelength light, respectively. The two
substrates were aligned precisely within an accuracy of 0.2 µm, and both pixel sizes were 3.8 µm as
mentioned. Their sensitivity strongly depends on the incident angle of light because the wiring layers
between both substrates also work as a kind of filter and the total thickness of the wiring layers and
the bonding layer was 15 µm. Figure 8 shows a cross-sectional schematic diagram of the multi-storied
PD CIS. The incident light reaches the bottom PDs after penetrating the top semiconductor layer,
two wiring layers, and the bonding layer. The incident light angle for the bottom PDs is less than
14 degrees because of the geometries of the wiring layouts. The measurement results show a relatively
low sensitivity of over 10 degrees because the incident light is screened by the wiring layers. This means
that we can design and control the incident angle characteristics of the bottom PDs by modifying
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the wiring layer layouts and structure along with the optical design to meet specifications. In this
case, our CIS has as many as six layers of metal wiring, which limit the incident light angle as shown,
and degrades the sensitivity of the bottom PDs. The quantum efficiency ratio between the top and
bottom photodiode at 800 nm was 8.8% in the case of vertical incident light. Twenty percent of the
incident light gets lost through the 3-µm thick silicon substrate at 800 nm and 71.2% of incident light is
blocked or scattered through the wiring layers and bonding layer. The aperture ratio of wiring layers
between the substrates is approximately 30%. This means incident light is refracted by the microlens
and more than the aperture ratio of incident light is blocked by wiring layers. It is possible to improve
the sensitivity by as much as twice by reducing the number of wiring layers to three layers in each
CIS and broadening the incident light angle limit. This also suggests that modifying the material and
thickness of the wiring layers between the two PD arrays can have an optical optimized effect by
working as a filter for the bottom PD array.
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Figure 8. Cross-sectional schematic diagram of the multi-storied PD CIS. Incident light penetrates the
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Incident light is limited by the wiring layers.

4. Conclusions

We demonstrated multiband imaging and showed the characteristics of a multi-storied PD CIS
which comprises two individually functioning layered devices in different substrates. The sensor
was confirmed to capture a wide variety of multiband images, which is not limited to conventional
visible RGB images taken with a Bayer filter or to invisible IR images, at the same time. Our device
can make the conventional combination of IR and RGB imaging sensors smaller and provide a
variety of multiband images. This cutting-edge multi-storied photodiode concept achieves not only
multiband imaging but also other functions like distance measurement with phase difference detection
for lens focusing and much more with specific pixels and circuits in both substrates. Our sensor
will push the envelope of capturing a wide variety of multiband and time-divided multi-images.
This article demonstrates the two layered PD CIS, however, we need to identify the absorption,
blocking, scattering, and crosstalk between the substrates. An optical simulation should be performed
to categorize attenuations.
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