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Abstract: Nonlinearity is a prominent limitation to the calibration performance for two-axis fluxgate
sensors. In this paper, a novel nonlinear calibration algorithm taking into account the nonlinearity of
errors is proposed. In order to establish the nonlinear calibration model, the combined effort of all
time-invariant errors is analyzed in detail, and then harmonic decomposition method is utilized to
estimate the compensation coefficients. Meanwhile, the proposed nonlinear calibration algorithm
is validated and compared with a classical calibration algorithm by experiments. The experimental
results show that, after the nonlinear calibration, the maximum deviation of magnetic field magnitude
is decreased from 1302 nT to 30 nT, which is smaller than 81 nT after the classical calibration.
Furthermore, for the two-axis fluxgate sensor used as magnetic compass, the maximum error of
heading is corrected from 1.86◦ to 0.07◦, which is approximately 11% in contrast with 0.62◦ after the
classical calibration. The results suggest an effective way to improve the calibration performance of
two-axis fluxgate sensors.
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1. Introduction

Two-axis fluxgate sensors are widely used as magnetometers or magnetic compasses,
which determine the magnitude of magnetic fields or the heading of vehicles by measuring the
Earth’s magnetic field in a horizontal plane, with widespread application to autonomous air, ground
and ocean vehicles [1–4]. However, due to manufacturing technological limitations and magnetic
interferences, the output of fluxgate sensors is corrupted by various errors, making it difficult to satisfy
the precision requirement of practical applications [5]. Therefore, calibration of two-axis fluxgate
sensors involving both identifying and compensating the errors is essential.

A well-known calibration procedure called compass swinging has been used successfully [6],
which is based on the fact that the heading error is a Fourier function of the reference heading.
The procedure involves rotating the vehicle through a series of reference headings, the differences
between the raw heading measured by compass and the reference heading are used to compute
calibration parameters. To simplify the compass swinging procedure, the angular-rate method using
angular-rate information from low-cost micro-electro-mechanical system gyroscopes is presented
in [7], which requires turning the compass through a full circle and only a single reference heading
measurement, the difference of calibrated heading errors between these two methods is around 0.5◦.
In [8], the neural network algorithm is utilized to model the nonlinear mapping between the compass
output and the reference heading. The calibration method is verified to be effective and robust, even in
the presence of magnetic disturbances and large noises. The extreme learning machine algorithm is
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introduced to train a nonlinear error model in [9], of which the training speed is thousands of times
faster than that of traditional back propagation neural network, the heading error is decreased from
±3◦ before calibration to ±0.2◦ after calibration. Nevertheless, all the methods mentioned above are
only applicable for heading determination applications, and the quality of the calibration degrades
when the vehicle with the fluxgate sensors moves far away from the geographical point where the
calibration was performed, because the compensation coefficients are functions of the local magnetic
field magnitude [10].

More calibration algorithms based on error models are presented, in which the error models
are derived by analyzing the source of errors. The one-turn rotation scheme is to compensate for
magnetic interference that changes the radius and shifts the center of the magnetism circle [11]. It uses
the minimum and maximum value of each axis output to estimate the scale factor and bias errors,
the shortcoming is that the algorithm performance is sensitive to noise. The batch least squares
calibration algorithm in [12] accounts for the effects of hard iron, scale factor and part of soft iron.
In this algorithm, a non-linear two-step estimator provides the initial conditions, which involves
nonlinearly transforming compensation coefficients to ellipse parameters and fitting the best ellipse to
the measured data, the obtained estimate of the compensation coefficients is then iteratively processed,
the posterior covariance is used as a metric for the quality of the calibration. Furthermore, the batch
least squares calibration algorithm is improved by compensating for the non-orthogonal error in [13].
The ellipse fitting problem in [12] is considered as a general conic fitting problem with a quadratic
constraint, which is solved by using the Lagrange multiplier method [14]. A similar least squares
ellipse fitting algorithm is presented in [15], three analytical manipulation methods transforming
ellipse parameters to compensation coefficients are compared and discussed. However, there are at
least two common drawbacks for these methods. One is that some kinds of errors are ignored, such as
misalignment errors [16]. The other is that all error models are assumed to be linear models, and the
nonlinearity of all errors is neglected. These drawbacks prominently limit the calibration performance.

The nonlinearity of errors is influenced by many aspects. Cross-field effect and hysteresis are
two important factors. The cross-field effect in perpendicular and transverse direction is described as
an unwanted sensitivity or linearity error in [17], of which measurements are performed on fluxgate
sensors with various constructions in [18], the results show that cross-field effect causes errors up to
40 nT in the earth’s magnetic field, and for miniature fluxgate sensor the error increases to 60 nT [19].
Several techniques for overcoming the cross-field effect have been presented in [20]. A nonlinear
polynomial hysteresis model is proposed to analyze the influence on the sensitivity of sensor [21],
and an actual hysteresis curve of a material is used for the theoretical analysis of the fluxgate sensor
output [22]. Besides, nonlinear effects of the signal processing circuit and soft iron nearby are also
worth of concern. A calibration algorithm with nonlinearity suppression is proposed in [23], which uses
a third-order polynomial to parameterize the scale factor error, the magnetic field magnitude error is
reduced by three times compared with that without nonlinearity suppression.

To improve the calibration performance for two-axis fluxgate sensors, a novel nonlinear calibration
algorithm taking into account the nonlinearity of errors is proposed in this paper. The nonlinear
error model is established by analyzing all time-invariant errors, harmonic decomposition method is
presented for estimating the compensation coefficients. The performance of the proposed algorithm is
experimentally validated and compared with a classical calibration algorithm.

2. Error Modeling

In vehicle coordinate frame, the true value of magnetic field vector is denoted as ht, the measured
vector of two-axis fluxgate sensors is denoted as hs. Due to the presence of errors, hs 6= ht. The errors
should be equivalent parameterized, to establish the error model of two-axis fluxgate sensors.

Error model is to describe the measured vector hs as a function of the true magnetic field vector
ht. In this paper, the function is divided into two parts: linear term and nonlinear term. Two vectors,
hs and h̃s, are defined as the linear and nonlinear term about ht, thus, hs can be written as:
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hs = hs + h̃s (1)

There are six typical error sources for two-axis fluxgate sensors, which are zero bias error bzb,
scale factor error Sm, non-orthogonal error Cno, soft iron error Csi, hard iron error bhi, and misalignment
error Cma [24]. Each of these errors is discussed next in more detail.

Zero bias error, also known as offset error, shifts the sensor output by a constant amount, which can
be modeled as a 2 × 1 vector:

bzb = [bzbx bzby]
T (2)

where bzbx and bzby are the non-zero value for the x-sensor and y-sensor of two-axis fluxgate sensors.
Scale factor error is modeled using a 2 × 2 diagonal matrix Sm given by:

Sm =

[
sx 0
0 sy

]
(3)

where sx and sy represent the constant of proportionality relating the output of fluxgate sensor to the
true value of magnetic field component for each axis. Due to scale factor errors, sx 6= sy. In other
words, when x-sensor and y-sensor of two-axis fluxgate sensors are subjected to an identical magnetic
field, the output will not be the same.

Non-orthogonal error comes from the nonorthogonality between x-sensor and y-sensor of two-axis
fluxgate sensors. When x-sensor is assumed to be perfectly aligned with the x-axis in the vehicle
coordinate frame, and an angle ρ is defined as being between the y-sensor and the y-axis [25],
non-orthogonal error can be parameterized by a 2 × 2 lower triangular matrix:

Cno =

[
1 0

sin(ρ) cos(ρ)

]
(4)

Hard iron error is the result of unwanted magnetic fields generated by permanent magnets in
the vicinity of sensors. It is constant in the vehicle coordinate frame, and can be represented as a
2 × 1 vector:

bhi = [bhix bhiy]
T (5)

where bhix and bhiy are the null shift for each axis.
Soft iron error is caused by the magnetization of soft magnetic materials, which generates their

own field in response to the external magnetic field, the resulting magnetic field depends on the
magnitude and direction of the applied external magnetic field. Here we assume that the relationship
between the generated field and the externally applied field is linear and without hysteresis, soft iron
error can be represented as a 2 × 2 matrix:

Csi =

[
cxx cxy

cyx cyy

]
(6)

The cij terms represent the proportional constants between the magnetic field applied to soft
magnets and the resulting magnetic field. For example, cxy represents the effective coefficient relating
the resulting field generated in the x-axis direction in response to an applied field in the y-axis
direction [12].

Misalignment error results from the misalignment between the individual sensors of the two-axis
fluxgate sensor and the vehicle axes during installation. Referring to the vehicle coordinate frame,
misalignment is equivalent to the rotation of a fluxgate sensor in a small angle ϕm, and the error can
be expressed as a 2 × 2 orthogonal matrix:
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Cma =

[
cos ϕm − sin ϕm

sin ϕm cos ϕm

]
(7)

From the above, the linear term hs in (1), as a linear function of the true magnetic field vector ht,
is described by:

hs = bzb + SmCno(bhi + CsiCmaht)

= bzb + SmCnobhi + SmCnoCsiCmaht
(8)

Defining vectors Ke = SmCnoCsiCma and be = bzb + SmCnobhi, Equation (8) is transformed into

hs = be + Keht (9)

and the expanded form is: [
hsx

hsy

]
=

[
be1

be2

]
+

[
ke11 ke12

ke21 ke22

][
htx

hty

]
(10)

For error analysis of general sensors with nonlinearity, error model can usually be represented by
the high order polynomial:

y = α0 + α1x + α2x2 + α3x3 + · · · (11)

where y is the sensor output, x is the sensor input, and a0, a1, a2, a3, · · · are the polynomial coefficients.
Here, regarding the nonlinearity of the scale factor error, soft iron error and cross-field effect of two-axis
fluxgate sensors, this high order polynomial is used to parameterize the errors, then the error model (8)
can be expanded in expansion form as:[

hsx
hsy

]
=

[
αx0 + αx1htx + αx2hty + αx3(htx)

2 + αx4(hty)
2 + αx5htxhty + · · ·

αy0 + αy1htx + αy2hty + αy3(htx)
2 + αy4(hty)

2 + αy5htxhty + · · ·

]
(12)

According to the definition of matrices in Equations (1) and (9), the nonlinear error model (12)
including the nonlinearity of errors is rearranged in the matrix form as follows:

hs = hs + h̃s

= be + Keht + ξeνt
(13)

where be =

[
αx0

αy0

]
, Ke =

[
αx1 αx2

αy1 αy2

]
, ξe =

[
αx3 αx4 αx5 · · ·
αy4 αy4 αy5 · · ·

]
, νt =

[
(htx)

2 (hty)
2 htxhty · · ·

]T
.

The expanded form is:[
hsx
hsy

]
=

[
be1

be2

]
+

[
ke11 ke12

ke21 ke22

][
htx
hty

]
+

[
ξe11(htx)

2 + ξe12(hty)
2 + ξe13htxhty + · · ·

ξe21(htx)
2 + ξe22(hty)

2 + ξe23htxhty + · · ·

]
(14)

3. Calibration Algorithm

Given an error model, calibration is the process that compensates the erroneous measured vector
hs to get the true magnetic field vector ht by using the inverse function of the error model. Here,
the inverse function of the error model is named as the calibration model. In the classical calibration
algorithm, the nonlinear term in (1) is ignored, then the error model is expressed as:

hs = hs

= be +Keht
(15)

which is a linear error model, and the linear calibration model can be acquired directly from (15)
through algebraic computation [26], yielding:
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ht = Kc(hs + bc) (16)

where Kc = K−1
e , bc = −be. However, in the nonlinear calibration algorithm, as described in the

nonlinear error model (14), the relationship between hs and ht is nonlinear, the inverse function of (14)
cannot be obtained algebraically.

In order to formulate the nonlinear calibration model, the characteristics of vector ht and hs are
analyzed. While a two-axis fluxgate sensor is rotated in the horizontal plane, as shown in Figure 1,
htx and hty can be expressed as functions of the reference heading ϕ by:{

htx(ϕ) = Hh sin(ϕ)

hty(ϕ) = Hh cos(ϕ)
(17)

where x and y in subscripts indicate the corresponding axis direction in the vehicle coordinate frame,
Hh is the magnitude of the horizontal component of the earth’s magnetic field. hsx and hsy are also
functions of ϕ, and satisfy: {

hsx(ϕ) = hsx(2πi + ϕ)

hsy(ϕ) = hsy(2πi + ϕ)
(18)

where i = ±1, ±2, ±3, · · · .
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As expressed in (18), hsx(ϕ) and hsy(ϕ) are periodic functions with a period of 2π, it is known
that any periodic function satisfying the Dirichlet Condition can be expanded into the Fourier series in
the form of trigonometric functions, thus hsx(ϕ) and hsy(ϕ) can be expressed as:

hsx(ϕ) = d0x +
∞
∑

j=1

(
djx sin(jϕ) + ejx cos(jϕ)

)
(a)

hsx(ϕ) = d0y +
∞
∑

j=1

(
djy sin(jϕ) + ejy cos(jϕ)

)
(b)

(19)

Taking (a) in Equation (19) for example, it is expanded as

hsx(ϕ) = d0x + d1x sin(ϕ) + e1x cos(ϕ) + d2x sin(2ϕ) + e2x cos(2ϕ) + · · · (20)
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On the right side of (20), there are constant term, fundamental terms and harmonic terms, thus,
(20) is the harmonic decomposition of hsx(ϕ). The properties of the Fourier series are known that
the base functions are orthogonal to each other, and the coefficients are uncorrelated with each other.
In conjunction with Equations (17) and (20) is transformed into:

hsx(ϕ) = (d0x + e2x + o0x)

+( d1x
Hh

+ o1x)htx(ϕ) + ( e1x
Hh

+ o2x)hty(ϕ)

+( 2d2x
Hh

2 + o3x)htx(ϕ)hty(ϕ) + (− 2e2x
Hh

2 + o4x)(htx(ϕ))2 + · · ·

(21)

where o0x, o1x, o2x, o3x and o4x are the coefficient sums of constant, htx(ϕ), hty(ϕ), htx(ϕ)hty(ϕ) and

(htx(ϕ))2 terms in expansion of the third and higher harmonic terms, respectively. The simplified form
of (21) is expressed as:

hsx = (d0x + e2x + o0x)

+( d1x
Hh

+ o1x)htx + ( e1x
Hh

+ o2x)hty

+( 2d2x
Hh

2 + o3x)htxhty + (− 2e2x
Hh

2 + o4x)(htx)
2 + · · ·

(22)

Given the same expansion process (20)–(22) for (b) in Equation (19), hsy is expressed as:

hsy = (d0y − e2y + o0y)

+(
d1y
Hh

+ o1y)htx + (
e1y
Hh

+ o2y)hty

+(
2d2y
Hh

2 + o3y)htxhty + (
2e2y
Hh

2 + o4y)(hty)
2 + · · ·

(23)

The two expressions above can be rewritten into the matrix form as the nonlinear error model (13):

hs = be + Keht + ξeνt (24)

where be =

[
d0x + e2x + o0x
d0y − e2y + o0y

]
, Ke =

 d1x
Hh

+ o1x
e1x
Hh

+ o2x

d1y
Hh

+ o1y
e1y
Hh

+ o2y

, ξe =

 − 2e2x
Hh

2 + o4x 0 2d2x
Hh

2 + o3x · · ·

0
2e2y
Hh

2 + o4y
2d2y
Hh

2 + o3y · · ·

,

νt =
[
(htx)

2 (hty)
2 htxhty · · ·

]T
. Compared with expression (13), it should be noted that some

elements in matrix ξe of expression (24) are zero, which means that only a part of high order terms in
(13) is sufficient to describe the nonlinear error model.

From Equation (24), ht is given by:

ht = Kc(bc + hs) + ξcνt (25)

where Kc = K−1
e , bc = −be, ξc = −K−1

e ξe. Defining ht = Kc(bc + hs), (25) is rewritten as:

ht = ht + ξcνt (26)

νt is composed of the high-order terms about ht, which comes from the harmonic terms in (20). As the
total linearity of fluxgate sensors is relatively good, coefficients of the harmonic terms in (20) are much
smaller than that of the fundamental terms, i.e., for j ≥ 2, there are dj � d1 and ej � e1. Thus, ht in νt
can be replace with ht, and (26) is transformed into:

ht ≈ ht + ξcνt

= ht + h̃t
(27)
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where νt = [(htx)
2
(hty)

2
htxhty · · · ]

T
. Equation (27) is the approximate expression of the nonlinear

calibration model, and the expansion form is given by:[
htx
hty

]
=

 htx + ξc11(htx)
2
+ ξc12htxhty + · · ·

hty + ξc21(hty)
2
+ ξc22htxhty + · · ·

 (28)

where

[
htx
hty

]
=

[
kc11 kc12

kc21 kc22

]([
bc1
bc2

]
+

[
hsx
hsy

])
.

To complete the nonlinear calibration algorithm, compensation coefficients in (28) should be
determined. According to the relationship between Equations (20) and (24), it is known that the error
coefficients be, Ke and ξe are weak correlated with each other. Thus, the determination of compensation
coefficient can be performed iteratively, and in each iteration the linear compensation coefficients bc

and Kc, the nonlinear compensation coefficients ξc are estimated respectively. The iterative steps are
as follows:

1. For N raw data collected from the two-axis fluxgate sensor, set the highest order of the harmonic
terms in (19), denoted by J, the initial value h̃t

(0)= [0 0]T, and the number of iterations i = 0.
Define the error of magnetic field δht

(0) = ht.
2. Calculate the linear compensation coefficients Kc

(i) and bc
(i) by solving the linear equation:

δht
(i) = Kc

(i)
(

bc
(i) + hs

)
(29)

3. Calculate the nonlinear compensation coefficients ξc
(i) by solving the linear equation:

δht
(i) − ht

(i) = ξc
(i) νt

(i) (30)

4. Calculate the error of magnetic field by:

δht
(i+1) = δht

(i) − (ht
(i) + h̃t

(i)) (31)

and the root mean square (RMS) error of magnetic field by:

σ =

√√√√ 1
N − 1

N

∑
n=1

(δht(n))
2 (32)

where n = 1, 2, · · · , N. Repeat step 1 to step 3 until σ reaches a predefined threshold or the
minimum value.

In the iteration, the highest order of the harmonic terms J is limited by the number of raw data N.
In practice, more raw data are usually collected to reduce the influence of random errors and improve
the accuracy of calibration, and the least square method is used to solve Equations (29) and (30).

After the iteration, the true magnetic field vector ht can be calculated by:

ht =
I

∑
i=1

[
Kc

(i)(bc
(i) + hs) + ξc

(i)νt
(i)
]

(33)

where I is the maximum number of iterations.
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4. Experiments and Discussions

The proposed nonlinear calibration algorithm is verified by experiments, and compared
with a classical calibration algorithm which is based on the linear error model (15) mentioned
earlier. The experiment is performed in the laboratory, and the Earth’s magnetic field is used for
measurement. The experimental platform, as shown in Figure 2, consists of a CTM-6W magnetometer,
a two-axis fluxgate sensor (to be calibrated) [27], and a 3SK-150 nonmagnetic turntable. The CTM-6W
magnetometer, with accuracy of ±1 nT, is used to measure the true value of magnetic field magnitude.
The 3SK-150 nonmagnetic turntable, of which the heading accuracy is less than 0.05◦, is adopted to
provide the reference heading for the two-axis fluxgate sensor. The two-axis fluxgate sensor is rigidly
mounted onto the nonmagnetic turntable to obtain experimental data with different headings.Sensors 2018, 18, x FOR PEER REVIEW  8 of 12 
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using Equation (17). The total 24 sets of data are displayed in Figure 3.
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Using the data set in Figure 3, the performance of the proposed nonlinear calibration algorithm is
evaluated. Before calibration, the RMS errors of magnetic field is 920.0 nT. After calibration, while the
highest order of harmonic terms J is set to 2, 3, 4, 5, 6 and 7, the RMS error of magnetic field is reduced
to about 26.3 nT, 20.0 nT, 18.3 nT, 11.6 nT, 11.9 nT and 11.7 nT, respectively. The detailed calibration
processes are illustrated in Figure 4. As can be seen, the nonlinear calibration algorithm converges fast,
and after 2 iterations, the RMS errors of magnetic field nearly reach the minimum value, this is mainly
because that the correlation between error coefficients in (24) is weak. With the increase of the highest
order value of harmonic terms J, the RMS error of magnetic field decreases. When the highest order of
harmonic terms J is large than 5, there is no significant difference between the RMS errors of magnetic
field, which means that harmonic errors with orders no greater than 5 are the main components of
the error. Although the errors are reduced by tens of times, there are residual errors after calibration,
this is mainly because that hysteresis, temperature error and random noise have not been completely
solved. In addition, due to the digital output of the two-axis fluxgate sensor, quantization noise is also
an important factor.Sensors 2018, 18, x FOR PEER REVIEW  9 of 12 
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Comparison of performance between the proposed nonlinear calibration algorithm and the
classical calibration algorithm is performed. Here, the highest order of harmonic terms J is set to 5.
The calibration results are illustrated in Figures 5–7. Figure 5 shows the error of the magnetic field
component for each axis before and after calibration. It is obvious that, in the raw data there are
harmonic errors, especially the fundamental terms, in the classical calibrated data the fundamental
errors have been eliminated and the second harmonic terms are the main components of errors,
in the nonlinear calibrated data there are no significant harmonic errors. Figure 6 shows the error of
magnetic field magnitude. Before calibration. There are an offset of about 860.4 nT and harmonic errors,
peculiarly the fundamental term. After classical calibration, the offset and the fundamental error are
compensated, and the third harmonic term becomes the major component of error. After nonlinear
calibration, all the harmonic errors are well compensated. Figure 7 shows the heading error when
the two-axis fluxgate sensor is use as magnetic compass. Before calibration, an offset of about 0.84◦

and fundamental term are the main part of error. After classical calibration, the offset are eliminated,
and the fundamental error is significantly reduced, which is still the major part of error. After nonlinear
calibration, the harmonic errors are well corrected.



Sensors 2018, 18, 1659 10 of 12

Sensors 2018, 18, x FOR PEER REVIEW  9 of 12 

 

 
Figure 4. The RMS errors of magnetic field after each iteration when the highest order of harmonic 
terms J  is set from 2 to 7. 

Comparison of performance between the proposed nonlinear calibration algorithm and the 
classical calibration algorithm is performed. Here, the highest order of harmonic terms J  is set to 5. 
The calibration results are illustrated in Figures 5–7. Figure 5 shows the error of the magnetic field 
component for each axis before and after calibration. It is obvious that, in the raw data there are 
harmonic errors, especially the fundamental terms, in the classical calibrated data the fundamental 
errors have been eliminated and the second harmonic terms are the main components of errors, in 
the nonlinear calibrated data there are no significant harmonic errors. Figure 6 shows the error of 
magnetic field magnitude. Before calibration. There are an offset of about 860.4 nT and harmonic 
errors, peculiarly the fundamental term. After classical calibration, the offset and the fundamental 
error are compensated, and the third harmonic term becomes the major component of error. After 
nonlinear calibration, all the harmonic errors are well compensated. Figure 7 shows the heading error 
when the two-axis fluxgate sensor is use as magnetic compass. Before calibration, an offset of about 
0.84° and fundamental term are the main part of error. After classical calibration, the offset are 
eliminated, and the fundamental error is significantly reduced, which is still the major part of error. 
After nonlinear calibration, the harmonic errors are well corrected.  

  
(a) (b) 

Figure 5. Errors of the magnetic field component for each axis before and after calibration: (a) x-axis; 
(b) y-axis. 
Figure 5. Errors of the magnetic field component for each axis before and after calibration: (a) x-axis;
(b) y-axis.Sensors 2018, 18, x FOR PEER REVIEW  10 of 12 

 

 
Figure 6. Errors of the magnetic field magnitude before and after calibration. 

 
Figure 7. Heading errors before and after calibration. 

From Figures 5–7, it can be seen that the offset and the harmonic errors are prominent before 
calibration, only the offset and the fundamental errors can be partially compensated with the classical 
calibration algorithm, and all the harmonic errors with orders no greater than 5 are effectively 
compensated with the nonlinear calibration algorithm. The maximum value of the errors in these 
figures are listed in Table 1. 

In a word, the experimental results show that the proposed nonlinear calibration algorithm is 
more effective than the classical calibration algorithm, and it should be a trade-off between 
computational complexity and calibration accuracy for the nonlinear calibration algorithm.  

Table 1. The maximum error before and after calibration. 

 
x-axis Magnetic 

Field (nT) 
y-axis Magnetic 

Field (nT) 
Magnetic Field 
Magnitude (nT) Heading (°) 

Before calibration 1345 1483 1302 1.86 
After classical calibration 419 464 81 0.62 

After nonlinear calibration 36 34 30 0.07 

5. Conclusions 

A novel nonlinear calibration algorithm is proposed and successfully validated for calibrating 
two-axis fluxgate sensors. The combined effort of all time-invariant errors are analyzed to establish 

Figure 6. Errors of the magnetic field magnitude before and after calibration.

Sensors 2018, 18, x FOR PEER REVIEW  10 of 12 

 

 
Figure 6. Errors of the magnetic field magnitude before and after calibration. 

 
Figure 7. Heading errors before and after calibration. 

From Figures 5–7, it can be seen that the offset and the harmonic errors are prominent before 
calibration, only the offset and the fundamental errors can be partially compensated with the classical 
calibration algorithm, and all the harmonic errors with orders no greater than 5 are effectively 
compensated with the nonlinear calibration algorithm. The maximum value of the errors in these 
figures are listed in Table 1. 

In a word, the experimental results show that the proposed nonlinear calibration algorithm is 
more effective than the classical calibration algorithm, and it should be a trade-off between 
computational complexity and calibration accuracy for the nonlinear calibration algorithm.  

Table 1. The maximum error before and after calibration. 

 
x-axis Magnetic 

Field (nT) 
y-axis Magnetic 

Field (nT) 
Magnetic Field 
Magnitude (nT) Heading (°) 

Before calibration 1345 1483 1302 1.86 
After classical calibration 419 464 81 0.62 

After nonlinear calibration 36 34 30 0.07 

5. Conclusions 

A novel nonlinear calibration algorithm is proposed and successfully validated for calibrating 
two-axis fluxgate sensors. The combined effort of all time-invariant errors are analyzed to establish 

Figure 7. Heading errors before and after calibration.



Sensors 2018, 18, 1659 11 of 12

From Figures 5–7, it can be seen that the offset and the harmonic errors are prominent before
calibration, only the offset and the fundamental errors can be partially compensated with the classical
calibration algorithm, and all the harmonic errors with orders no greater than 5 are effectively
compensated with the nonlinear calibration algorithm. The maximum value of the errors in these
figures are listed in Table 1.

In a word, the experimental results show that the proposed nonlinear calibration algorithm is more
effective than the classical calibration algorithm, and it should be a trade-off between computational
complexity and calibration accuracy for the nonlinear calibration algorithm.

Table 1. The maximum error before and after calibration.

x-axis Magnetic
Field (nT)

y-axis Magnetic
Field (nT)

Magnetic Field
Magnitude (nT) Heading (◦)

Before calibration 1345 1483 1302 1.86
After classical calibration 419 464 81 0.62

After nonlinear calibration 36 34 30 0.07

5. Conclusions

A novel nonlinear calibration algorithm is proposed and successfully validated for calibrating
two-axis fluxgate sensors. The combined effort of all time-invariant errors are analyzed to establish
the nonlinear error model, and harmonic decomposition method is presented for estimating the
compensation coefficients. The performance of the proposed nonlinear calibration algorithm is
compared with that of a classical calibration algorithm by performing experiments on a nonmagnetic
turntable, the experimental results show that after the nonlinear calibration, the maximum deviation
of magnetic field magnitude is decreased from 1302 nT to 30 nT, which is smaller than 81 nT after
the classical calibration. Furthermore, for the two-axis fluxgate sensor used as magnetic compass,
the maximum error of heading is corrected from 1.86◦ to 0.07◦, which is approximately 11% in contrast
with 0.62◦ after the classical calibration. The proposed algorithm can be effectively applied to calibrate
any two-axis sensor. Future work will exploit the adaptation of this algorithm to three-axis sensors.
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