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Abstract: Nowadays, fog computing provides computation, storage, and application services to 

end users in the Internet of Things. One of the major concerns in fog computing systems is how 

fine-grained access control can be imposed. As a logical combination of attribute-based encryption 

and attribute-based signature, Attribute-based Signcryption (ABSC) can provide confidentiality 

and anonymous authentication for sensitive data and is more efficient than traditional 

“encrypt-then-sign” or “sign-then-encrypt” strategy. Thus, ABSC is suitable for fine-grained access 

control in a semi-trusted cloud environment and is gaining more and more attention recently. 

However, in many existing ABSC systems, the computation cost required for the end users in 

signcryption and designcryption is linear with the complexity of signing and encryption access 

policy. Moreover, only a single authority that is responsible for attribute management and key 

generation exists in the previous proposed ABSC schemes, whereas in reality, mostly, different 

authorities monitor different attributes of the user. In this paper, we propose OMDAC-ABSC, a 

novel data access control scheme based on Ciphertext-Policy ABSC, to provide data confidentiality, 

fine-grained control, and anonymous authentication in a multi-authority fog computing system. 

The signcryption and designcryption overhead for the user is significantly reduced by outsourcing 

the undesirable computation operations to fog nodes. The proposed scheme is proven to be secure 

in the standard model and can provide attribute revocation and public verifiability. The security 

analysis, asymptotic complexity comparison, and implementation results indicate that our 

construction can balance the security goals with practical efficiency in computation. 

Keywords: Internet of Things; fog computing; Attribute Based Signcryption; multi-authority; 

access control; anonymous authentication 

 

1. Introduction 

With the rapid development of cloud computing, more people are coming to prefer moving 

both the large burden of data storage and computation overhead to cloud servers in a cost-effective 

manner [1]. However, the advance of the Internet of Things (IoTs) has posed a challenge to the 

centralized cloud computing system due to its geo-distribution, location awareness, and low latency 

requirements. To solve the problem, Cisco proposed the concept of fog computing in 2014, where a 

layer consisting of fog devices (such as routers, access points, and IP video cameras) bridges 

between the cloud server and end users [2]. In a fog computing system, the fog devices, termed as 

fog nodes, are distributed and implemented at the edge of networks [3]. Since fog nodes are much 
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closer to end users than the cloud server and have plentiful computing resources and wireless 

communication facility, some of the computing tasks can be outsourced to fog nodes from the 

nearby end user, which alleviates the computation burden of the users and significantly improve the 

efficiency. Thus, the fog computing paradigm can be applied in many real-time and geographically 

distributed applications, such as wireless sensors, smart grids and health fog applications [4]. 

However, there are still various challenging obstacles in fog computing systems, such as the 

privacy and security of users’ data [5,6]. Traditionally, a cloud server is not fully trusted by the data 

owner in cloud computing system, and the data uploaded may contain sensitive information; hence, 

the data should be encrypted before outsourcing to the cloud. In accord with cloud computing, 

message confidentiality should also be considered in fog computing systems. Moreover, since the 

fog nodes are more easily compromised than cloud servers [6], it is required that fog nodes should 

alleviate the computation burden of end devices without degrading the privacy in fog computing 

systems. In addition to confidentiality, data owners may wish to impose fine-grained access control 

such that only users with certain attributes have access to the data [7]. For example, in a health fog 

system, which combines the advantage of both the fog computing and original cloud-based 

healthcare services [8], personal health records usually contain abundant sensitive information, such 

as weight, heart rate, and blood type. After gathering by sensors, the personal health record may be 

uploaded to the cloud for the user’s individual needs or to perform real-time analytics. To ensure the 

privacy of the health data, an access control system should guarantee that only the users authorized 

by the data owner can access the data. For instance, to analyze whether the blood pressure is normal, 

the owner “Alice” wants to share her health data to users with attributes “𝐼𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛 = 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙 ∧

𝑅𝑜𝑙𝑒 = 𝐷𝑜𝑐𝑡𝑜𝑟 ∧ 𝐺𝑒𝑛𝑑𝑒𝑟 = 𝐹𝑒𝑚𝑎𝑙𝑒”. One of the effective techniques to address this fine-grained 

access requirement is attribute-based encryption (ABE) [9]. It realizes the confidentiality and access 

control on data based on encryption under an access policy defined over the set of attributes. 

Besides the confidentiality and fine-grained access control, it is also necessary to provide 

anonymity authentication for data sharing between users in the access control mechanism. For 

instance, the owner “Alice”, aged 20, would like to encrypt and store some sensitive health 

information in the cloud but does not want to be recognized. When a data user, such as the doctor or 

researcher, accesses the data, he/she can verify that the data is actually uploaded by a patient with 

certain credentials such as “𝐺𝑒𝑛𝑑𝑒𝑟 = 𝐹𝑒𝑚𝑎𝑙𝑒 ∧ 𝐴𝑔𝑒 ∈ [18,30]” without knowing the patient’s real 

identity “Alice” or her real age. 

A feasible and promising solution is the Attribute Based Signcryption (ABSC) scheme, which 

takes advantages of Attribute-Based Encryption (ABE) and Attribute-Based Signature (ABS), and is 

more efficient than do the traditional “encrypt-then-sign” or “sign-then-encrypt” strategies. ABSC 

employs ABE to provide confidentiality and fine-grained access control, and uses ABS to achieve 

authentication without revealing the data owner’s sensitive attributes. Traditionally, ABE can be 

classified into two categories: Key-Policy ABE (KP-ABE) and Ciphertext-Policy ABE (CP-ABE). In 

KP-ABE, the secret key is associated with an access structure (predicate), and the message is 

encrypted with a set of attributes. While in CP-ABE, predicate is assigned to the plaintext message. 

Similarly, ABS has two categories: Signature-Policy ABS (SP-ABS) wherein the predicate is 

embedded in the signature, and Key-Policy ABS (KP-ABS) wherein the predicate is associated with 

the secret key. The Ciphertext-Policy ABSC (CP-ABSC) [10] supports CP-ABE and SP-ABS, and the 

Key-Policy ABSC (KP-ABSC) [11] supports KP-ABE and KP-ABS. Recently, many data access 

control schemes based on ABSC have been proposed, as in [12–15]. Although some of them are 

efficient, three problems must be considered when implementing ABSC scheme in fog computing 

environment. The first one is performance. The traditional ABSC scheme is typically 

computationally intensive. In particular, the cost of signcryption and designcryption on the user 

side are proportional to the complexity of predicates. One possible strategy to alleviate the 

computation overhead required on end user is to outsource the most computation-consuming job of 

signcryption and designcryption to the fog node. Although many ABE schemes with outsourcing 

encryption and decryption, as in [16–20], have been proposed in recent years for secure data sharing in 

fog computing system, realizing ABSC scheme with anonymous authentication and efficient 
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computation outsourcing is still a challenge since ABSC schemes contain both of the signing and 

encryption protocols. The second problem is multi-authority. In traditional ABSC schemes, as in [12–

15], a central authority is responsible for attribute management and key generation. However, in 

many applications, the predicate embedded in the ciphertext or signature can be written over 

attributes issued by different trust domains and authorities. For example, the health data uploaded 

by “Alice” may contain the encryption predicate as “(𝐷𝑜𝑐𝑡𝑜𝑟 ∨  𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟)  ∧ 𝐹𝑒𝑚𝑎𝑙𝑒”. Since only 

a hospital can authorize a person the attribute “𝐷𝑜𝑐𝑡𝑜𝑟” and only a research organization can certify 

that a person is a “𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟”, it is not practical to authorize access right to a person by a single 

authority. Therefore, it is necessary to distribute attribute management and secret key generation 

from a single central authority over many authorities. Some multi-authority ABE schemes for fog 

computing, as in [17], have been proposed, whereas constructing multi-authority ABSC scheme with 

outsourcing capability is still a blank. The third one is attribute revocation. For example, when the 

attributes of a doctor are updated from 𝐴 = {𝐼𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛 = 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙 ∧ 𝑅𝑜𝑙𝑒 = 𝐷𝑜𝑐𝑡𝑜𝑟 ∧ 𝐺𝑒𝑛𝑑𝑒𝑟 =

𝐹𝑒𝑚𝑎𝑙𝑒} to 𝐵 = {𝐼𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛 = 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙 ∧ 𝐺𝑒𝑛𝑑𝑒𝑟 = 𝐹𝑒𝑚𝑎𝑙𝑒}, her access rights should be modified 

accordingly. Attribute revocation is not trivial and straightforward in ABE schemes. However, it has 

not been taken into account in multi-authority ABSC schemes with outsourcing capability. 

The problem of designing a multi-authority data access control scheme based on ABSC with 

signcryption and designcryption outsourcing capabilities and attribute revocation for fog computing 

system, has received very little attention so far, although some schemes based on Multi-Authority 

ABE (MA-ABE) and ABS (MA-ABS) for cloud storage setting have been proposed, as in [21–26]. 

Meng et al. [27] proposed a decentralized KP-ABSC scheme for secure data sharing in the cloud. 

However, the scheme is just a combination of identity signature and MA-ABE, and only supports the 

threshold predicate. It also does not provide any security definition or computation outsourcing. Hong 

et al. [28] proposed a KP-ABSC scheme with outsourced designcryption and key exposure protection. 

However, the computation overhead of signcryption increases with the complexity of the predicate, 

and since the verification and decryption both have to be performed on the user side, the number of 

pairing operations evaluated on the user side is proportional to the sum of the required attributes, 

which is not acceptable to IoT devices. Moreover, the scheme in [28] does not support multi authorities 

and attribute revocation. We focus on CP-ABSC in access control application, as CP primitives are 

more suitable for the data owner to choose the predicate to determine who can access the sensitive 

data [14]. 

1.1. Contributions 

In this paper, we propose OMDAC-ABSC, a novel data access control scheme for fog 

computing system based on Multi-Authority CP-ABSC (MACP-ABSC) supporting the computation 

outsourcing for both signcryptor (data owner) and designcryptor (data user). To the best of our 

knowledge, OMDAC-ABSC is the first scheme that significantly reduces computation burden from 

both data owners and data users in the multi-authority ABSC setting. Public verifiability, 

expressiveness and attribute revocation are also considered in our scheme. The main contributions 

can be summarized as follows: 

(1) We propose a data access control scheme OMDAC-ABSC for fog computing system, in which 

fog nodes serve as a bridge between the cloud server and end users. In our scheme, heavy 

signcryption and designcryption operations can be outsourced from end users (e.g., tablet 

computers and smartphones) to fog nodes. In signcryption phase, the fog nodes are in charge 

of generating part of the ciphertext. In designcryption phase, the fog nodes can perform the 

partial decryption without degrading the data confidentiality, and the data user only requires a 

constant number of exponentiations to decrypt the ciphertext. Additionally, unlike other 

existing works such as [27,28], our scheme supports public verification, since the verification 

mechanism does not require the plaintext message or the data owner’s public key. Thus the 

verification algorithm can be performed by any trusted party, which alleviates the computation 

burden of the end user. Therefore, our construction is efficient from computation point of view. 
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(2) Unlike some existing ABE schemes for fog computing such as [16,18,19] and ABSC schemes 

such as [15,27,28], the proposed OMDAC-ABSC scheme is more expressiveness and supports 

any monotone Boolean function predicates represented by monotone span programs (MSP) for 

both signing and encryption. Moreover, we remove the limitation that the labeling functions 𝜌 

in signing and encryption predicates should be injective functions. 

(3) Our OMDAC-ABSC scheme is proven to be secure in the standard model. We also formally prove 

that our construction satisfies the properties of signcryptor privacy and collusion resistance. 

(4) We also consider the attribute revocation in our OMDAC-ABSC scheme. In attribute revocation 

phase, the authority supervising the revoked attribute only distributes the update keys to the 

non-revoked users and the cloud server to update the corresponding components. It is also 

proved that our scheme guarantees both the forward and backward revocation security. 

1.2. Paper Organization 

The remainder of this paper is organized as follows: in Section 2, we discuss some related 

works. Then in Section 3, we review the necessary notations and cryptographic background that are 

used throughout the paper. In Section 4, we give the definition of our scheme and the security 

requirements. The details of the scheme and the security proof are elaborated in Sections 5 and 6, 

respectively. Section 7 is dedicated to discussing the functionality and performance of the scheme. 

Finally, we conclude this paper in Section 8. 

2. Related Works 

2.1. Access Control Schemes Based on ABE 

ABE was first introduced by Sahai and Waters [9]. In ABE, a data owner can share sensitive 

data with others according to predicates (or access policies). Several works on ABE have been 

presented to address data access control in untrusted cloud servers. Recently, the ABE scheme was 

adopted in fog-computing systems to guarantee confidentiality and fine-grained access control. 

Heavy computations of encryption or decryption are outsourced to fog nodes to improve the 

efficiency. In [16], an anonymous user authentication in ciphertext update phase was realized, whereas 

the scheme only supports AND-gate predicate. Zuo et al. [18] proposed a CCA-secure ABE scheme 

with decryption outsourcing. However, the encryption phase of the scheme in [18] incurs heavy 

computation cost. Additionally, the scheme in [18] is only provably secure in the random oracle 

model and only supports the AND-gate encryption predicate. Zhang et al. [19] presented an ABE- 

based access control scheme for fog computing with outsourced encryption and decryption. 

Although the computation operations (pairings and exponentiations) for users to encrypt and 

decrypt are irrelevant to the complexity of predicate, the scheme only supports threshold encryption 

predicate, and requires both the cloud server and fog nodes to be trusted. Lounis et al. [29] proposed 

a cloud-based architecture for medical wireless sensor networks, in which the resource-constrained 

end devices outsource the costly computations to the trusted gateway. However, the decryption 

phase incurs heavy computation cost. Xiao et al. [30] constructed a fine-grained hybrid scheme for 

fog computing with the advantages of efficient data search and access authorization through 

online/offline encryption, delegation of search task and decryption to fog nodes, and provable 

security. Mao et al. [20] proposed an ABE scheme with verifiable outsourced decryption, whereas it 

incurs a heavy computation overhead in encryption phase. Li et al. [31] also proposed a fully 

verifiable ABE scheme with outsourcing capability. However, Liao et al. [32] showed that the 

verification mechanism proposed in [31] is not always correct. 

In many ABE schemes, the attribute universe is assumed to be managed by a single authority. 

In reality, however, users’ attributes may be monitored by different authorities. To track this 

problem, MA-ABE scheme was proposed by Chase et al. [33]. In MA-ABE, the attribute universe is 

divided into multiple disjoint sets, and each authority controls one of these attribute sets. The user 

can successfully decrypt the ciphertext if and only if the user possesses at least a pre-specified 

number of attributes from each authority. Furthermore, Chase et al. [34] proposed an improved 
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MA-ABE scheme to remove the fully trusted central authority by adopting a Pseudo Random 

Function (PRF) and a secure 2-party anonymous secret-key-issuing protocol. However, the multiple 

authorities must cooperate with each other, and the number of authorities must be determined in the 

initialization phase. Recently, many distributed access control schemes based on MA-ABE have been 

proposed, such as [21–26,35,36]. Han et al. [21] proposed a privacy-preserving decentralized 

CP-ABE based access scheme (PPDCP-ABE) to protect the user’s privacy. However, PPDCP-ABE 

cannot resist collusion attack or support anonymous authentication. Rui et al. [22] constructed a 

MA-ABE scheme with secure attribute-level immediate attribute revocation. The scheme is only 

provably secure under the random oracle model. Lewko et al. [23] proposed a decentralized 

attribute-based encryption using the dual system encryption methodology. The secret keys of the 

user are tied to his global identity in order to resist collusion attack. However, the scheme realizes 

the security in random oracle model using the composite-order bilinear group, which incurs great 

computation overhead. Sourya et al. [25] proposed a decentralized data sharing scheme with 

outsourced decryption and user revocation. They also proposed a decentralized data sharing 

scheme where multiple attribute authorities distribute secret keys to the user [24]. In [26], the 

authors outsourced the main computation overhead in a decryption algorithm to the cloud. 

However, the security cannot be guaranteed if the revoked user eavesdrops to obtain the update keys 

and retrieves the ability to decrypt as a non-revoked user. To implement multi-authority ABE in fog 

computing system, Fan et al. [17] proposed a VO-MAACS scheme with verification mechanism. 

Although the encryption and decryption algorithms are outsourced, the scheme cannot support 

anonymous authentication and attribute revocation, and does not have security proof. Jung et al. [35] 

presented an anonymous privilege control scheme to address data and identity privacy in 

multi-authority cloud storage system. To guarantee the confidentiality of user’s identity information, 

the scheme in [35] decomposes the central authority to multiple ones while preserving tolerance to 

compromise attack on the authorities. However, the security is realized in random oracle model, and 

the encryption predicate is the AND gate. In [36], the authors constructed a multi-authority data access 

control scheme with decryption outsourcing and attribute-level user revocation. The scheme supports 

any monotone encryption predicate and is adaptively secure in the standard model. Nevertheless, the 

scheme in [36] needs to deal with large composite-order group elements and thus incurs heavy 

computation overhead. 

2.2. Attribute-Based Signature and Multi-Authority Attribute-Based Signature 

ABS was first introduced by Maji et al. [37]. Due to their anonymity and authentication 

properties, many ABS schemes have been proposed. Like ABE, to overcome the drawback that only 

a single authority exists in the system, the concept of MA-ABS was introduced in [38]. In MA-ABS, 

there are multiple authorities and each authority controls one of disjoint attribute sets. The user is 

able to successfully sign the plaintext if he/she possesses a pre-specified number of attributes from 

multiple authorities. 

2.3. Access Control Schemes Based on ABSC 

ABSC scheme, first introduced by Gagné et al. [10], is a logical combination of ABE and ABS 

and can support many practical properties, including confidentiality, fine-grained access control, 

and authentication. Recently, many data access control schemes based on ABSC have been 

proposed, as in [11–15,27,28]. Y. Sreenivasa [11] proposed a Key-Policy attribute-based signcryption 

scheme that supports any monotone Boolean function and constant size ciphertext. However, the 

message confidentiality and unforgeability of the scheme against selectively adversary are proven in 

the random oracle model. Chen et al. [12] focused on the joint security of signature and encryption 

schemes and presented a CP-ABSC scheme in the joint security setting. However, it cannot support 

public verifiability since plaintext is required in verification mechanism. Liu et al. [13] proposed a 

secure PHR data access control scheme based on CP-ABE [39] and ABS [37]. However, it is only 

provably secure in a random oracle model. In [14], the authors constructed a CP-ABSC based access 

control scheme with public verifiability, but the scheme does not support computation outsourcing. 
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Yu et al. [15] proposed the hybrid access policy ABSC scheme that supports KP-ABS and CP-ABE. 

The size of the ciphertext is constant, and the scheme realizes security in the standard model. 

Nevertheless, it only supports the threshold predicate in the encryption phase. Moreover, the above 

ABSC schemes only have a single authority and cannot be applied in the multi-authority system. 

3. Preliminaries 

By 𝑎
𝑅
← 𝐴, we denote that 𝑎 is selected randomly from 𝐴. |𝐴| denotes the cardinality of a finite 

set 𝐴. ℤp denotes a finite field with prime order 𝑝, and ℤ𝑝
∗  stands for ℤ𝑝\{0}. 𝑦 ← 𝐴(𝑥) denotes 

that 𝑦 is computed by running algorithm 𝐴 with input 𝑥. [𝑛] represents the set {1,2, … , 𝑛}. 𝑎⃗(𝑖) 

denotes the ith element of the vector 𝑎⃗. A function 𝜖: ℤ → 𝑅 is negligible if, for any 𝑧 ∈ ℤ, there 

exists a 𝑘 such that 𝜖(𝑥) < 1 𝑥𝑧⁄  when 𝑥 > 𝑘. We use 𝑠 and 𝑒 as superscripts for signing and 

encryption, respectively. 𝑃𝑟[𝐸]  denotes the probability of an event 𝐸  occurring. For an 

unambiguous presentation of the paper, we define the important notations used in our scheme in 

the Appendix A. 

Definition 1. Bilinear maps [22]: Let 𝔾 and 𝔾𝑇 be two cyclic groups with the prime order 𝑝, and 𝑔 ∈ 𝔾 be 

the generator of 𝔾. Then the bilinear map 𝑒: 𝔾 × 𝔾 → 𝔾𝑇 can be defined as follows: 

• Bilinear. For all 𝑢, 𝑣 ∈ 𝔾, 𝑎, 𝑏 ∈ ℤ𝑝, 𝑒(𝑢𝑎, 𝑣𝑏) = 𝑒(𝑢, 𝑣)𝑎𝑏. 

• Non-degenerate. 𝑒(𝑔, 𝑔) ≠ 1. 

• Computable. There is an efficient algorithm to compute the map 𝑒. 

𝒢𝒢(1𝑘) → (𝑒, 𝑝, 𝔾, 𝔾𝑇)  takes as input a security parameter 1𝑘  and outputs a bilinear group 

(𝑒, 𝑝, 𝔾, 𝔾𝑇) with prime order 𝑝 and a bilinear map 𝑒: 𝔾 × 𝔾 → 𝔾𝑇. 

Definition 2. Decisional Bilinear Diffie-Hellman (BDH) Assumption [22]: Let 𝑔 be a generator of 𝔾 with 

prime order 𝑝 and 𝑎, 𝑏, 𝑐 ∈ ℤ𝑝
∗  be randomly chosen. Given a vector 𝒴⃗ = (𝑔, 𝑔𝑎, 𝑔𝑏 , 𝑔𝑐), the decisional BDH 

assumption holds if no PPT adversary 𝒜 can distinguish (𝒴⃗, 𝛺 = 𝑒(𝑔, 𝑔)𝑎𝑏𝑐) from (𝒴⃗, 𝛺
𝑅
←𝔾𝑇) with the 

advantage 𝐴𝑑𝑣𝒜 = |𝑃𝑟[𝒜(𝒴⃗, 𝛺 = 𝑒(𝑔, 𝑔)𝑎𝑏𝑐) = 1] − 𝑃𝑟 [𝒜 (𝒴⃗, 𝛺
𝑅
←𝔾𝑇) = 1]| ≥ 𝜖(𝑘). 

Definition 3. Decisional q-Parallel Bilinear Diffie-Hellman Exponent (q-PBDHE) Assumption [21]: Suppose 

that 𝑎, 𝑤, 𝑏1, 𝑏2, … , 𝑏𝑞

𝑅
← ℤ𝑝 , 𝒢𝒢(1𝑘) → (𝑒, 𝑝, 𝔾,𝔾𝑇)  and 𝑔  is a generator of 𝔾 . Given 𝒴⃗ =

(𝑔, 𝑔𝑤 , 𝑔𝑎 , … , 𝑔𝑎𝑞
, 𝑔𝑎𝑞+2

, … , 𝑔𝑎2𝑞
, ∀1 ≤ 𝑗 ≤ 𝑞, 𝑔𝑤𝑏𝑗 , 𝑔

𝑎

𝑏𝑗 , … , 𝑔
𝑎𝑞

𝑏𝑗 , 𝑔
𝑎𝑞+2

𝑏𝑗 … , 𝑔
𝑎2𝑞

𝑏𝑗 , ∀1 ≤ 𝑗, 𝑘 ≤ 𝑞, 𝑘 ≠

𝑗, 𝑔

𝑎𝑤𝑏𝑘
𝑏𝑗 , … , 𝑔

𝑎𝑞𝑤𝑏𝑘
𝑏𝑗 ), the decisional q-PBDHE assumption holds if no PPT adversary 𝒜  can distinguish 

(𝒴⃗, 𝛺 = 𝑒(𝑔, 𝑔)𝑎𝑞+1𝑤)  from (𝒴⃗, 𝛺
𝑅
←𝔾𝑇)  with the advantage 𝐴𝑑𝑣𝒜 = |𝑃𝑟[𝒜(𝒴⃗, 𝛺 = 𝑒(𝑔, 𝑔)𝑎𝑞+1𝑤) =

1] − 𝑃𝑟 [𝒜 (𝒴⃗, 𝛺
𝑅
←𝔾𝑇) = 1]| ≥ 𝜖(𝑘). 

Definition 4. Monotone Span Program (MSP) [11]: Assume {𝑣1, 𝑣2, … , 𝑣𝑚} is a set of variables. An MSP is 

a labeled matrix 𝛺 ≔ (𝑀ℓ×𝑛, 𝜌) , where 𝑀  is an ℓ × 𝑛  matrix over ℤ𝑝  and 𝜌  is the labeling function 

𝜌: [ℓ] → {𝑣1, 𝑣2, … , 𝑣𝑚}. 

Let 𝑥⃗ = (𝑥1, 𝑥2, … , 𝑥𝑚) ∈ {0,1}𝑚  and 𝑋𝜇 = {𝑖 ∈ [ℓ]: [𝜌(𝑖) = 𝑣𝑗] ∧ [𝑥𝑗 = 𝜇]}  where 𝜇 ∈ {0,1} . 𝑋1 ∪

𝑋0 = [ℓ]. Let 𝑀𝑖 be the 𝑖th row of 𝑀. We denote 𝛺(𝑥⃗) = 1 if 𝛺 accepts the input 𝑥⃗. Likewise, 𝛺(𝑥⃗) = 0 

means 𝛺 rejects 𝑥⃗. Then 𝛺(𝑥⃗) = 1 ⇔ [∃(𝑎1, 𝑎2, … , 𝑎ℓ) ∈ ℤ𝑝
ℓ  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∑ 𝑎𝑖𝑀

𝑖
𝑖∈[ℓ] = 1⃗⃗] where 𝑎𝑖 = 0 for 

all 𝑖 ∈ 𝑋0. 

An MSP 𝛺  computes a monotone Boolean function ℛ: {0,1}𝑚 → {0,1}  if 𝛺(𝑥⃗) = 1  for all 𝑥⃗ ∈

{𝑥⃗: ℛ(𝑥⃗) = 1}. 
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Lemma 1 [14]. If 𝛺(𝑥⃗) = 0, then there exists a vector 𝜔⃗⃗⃗ = (𝜔1, 𝜔2, … , 𝜔𝑛) ∈ ℤ𝑝
𝑛 with 𝜔1 = −1 such that 

𝜔⃗⃗⃗𝑀𝑖 = 0 for all 𝑖 ∈ 𝑋1. 

Definition 5. Predicates [14]: Assume 𝑈 is the universe of attributes. A predicate over 𝑈 is a monotone 

Boolean function whose inputs are associated with the attributes of 𝑈. Let 𝑊 ⊂ 𝑈 is a subset of attributes. A 

predicate ℛ accepts 𝑊 ⊂ 𝑈 if ℛ(𝑊) = 1. If 𝑊 does not satisfy ℛ then ℛ(𝑊) = 0. A predicate ℛ is said 

to be monotone, if ℛ(𝑊) = 1 ⇒ ℛ(𝐶) = 1 for every attribute set 𝐶 ⊃ 𝑊. 

Suppose ℛ is a predicate and 𝐿ℛ  is the set of attributes utilized in ℛ. Then the corresponding MSP for 

ℛ is a labeled matrix 𝛺 ≔ (𝑀ℓ×𝑛, 𝜌), where 𝜌: [ℓ] → 𝐿ℛ . 

Define 𝑋1 = {𝑖 ∈ [ℓ]: [𝜌(𝑖) = 𝑎] ∧ [𝑎 ∈ 𝑊]}  and 𝑋0 = {𝑖 ∈ [ℓ]: [𝜌(𝑖) = 𝑎] ∧ [𝑎 ∉ 𝑊]} . 𝑋1 ∪ 𝑋0 =

[ℓ]. Then 

ℛ(𝑊) = 1 ⇔ 𝛺(𝑊) = 1 ⇔ [∃(𝑎1, 𝑎2, … , 𝑎ℓ) ∈ ℤ𝑝
ℓ  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∑ 𝑎𝑖𝑀

𝑖
𝑖∈[ℓ] = 1⃗⃗ 𝑎𝑛𝑑 𝑎𝑖 = 0 ∀𝑖, 𝜌(𝑖) ∉

𝑊 ]. 

Lemma 2 [14]. If ℛ(𝑊) = 0, then there exists a vector 𝜔⃗⃗⃗ = (𝜔1, 𝜔2, … , 𝜔𝑛) ∈ ℤ𝑝
𝑛 with 𝜔1 = −1 such that 

𝜔⃗⃗⃗𝑀𝑖 = 0 for all 𝑖 where 𝜌(𝑖) ∈ 𝑊. 

Definition 6 [14]. Let 𝑀ℓ×𝑛  be a matrix of size ℓ × 𝑛  over a field 𝔽 . 𝑟𝑎𝑛𝑘(𝑀)  is rank of 𝑀ℓ×𝑛 . If 

𝑟𝑎𝑛𝑘(𝑀) < ℓ , then 𝕍 = {(𝑏1, 𝑏2, … , 𝑏ℓ) ∈ 𝔽ℓ: ∑ 𝑏𝑖𝑀
𝑖

𝑖∈[ℓ] = 0⃗⃗}  contains a polynomial number of vectors 

(𝑏1, 𝑏2, … , 𝑏ℓ), and the predicate for which MSP is 𝛺 ≔ (𝑀ℓ×𝑛 , 𝜌) consists of both AND and OR gates. 

Otherwise, 𝕍 = {0⃗⃗} and the predicate is an AND gate. In our construction, we consider the signing and 

encryption predicates consisting of both AND and OR gates. 

4. Scheme and Security Definitions 

Our OMDAC-ABSC scheme consists of a multi-authority attribute-based signcryption 

(MACP-ABSC) scheme. 

4.1. Multi-Authority Attribute-Based Signcryption 

The MACP-ABSC scheme consists of the following five algorithms: 

𝐺𝑙𝑜𝑏𝑎𝑙𝑆𝑒𝑡𝑢𝑝 (1𝑘). Taking as input a security parameter 1𝑘, the algorithm outputs the public 

parameters 𝑃𝑃. It also generates the public key 𝑃𝐾𝑢𝑖𝑑  for the user with identity 𝑢𝑖𝑑. 

𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑡𝑦𝑆𝑒𝑡𝑢𝑝(𝑃𝑃). It takes as input 𝑃𝑃 and outputs the public key and secret key pairs 

{𝑃𝐾, 𝑆𝐾} for the authority. 

𝑆𝑒𝑐𝑟𝑒𝑡𝐾𝑒𝑦𝐺𝑒𝑛(𝑃𝑃, 𝑃𝐾𝑎𝑖𝑑 , 𝑆𝐾𝑎𝑖𝑑 , 𝑃𝐾𝑢𝑖𝑑 , 𝑈̃) . Taking as input 𝑃𝑃 , {𝑃𝐾𝑎𝑖𝑑 , 𝑆𝐾𝑎𝑖𝑑}  of authority 

𝐴𝐴𝑎𝑖𝑑 , user’s public key 𝑃𝐾𝑢𝑖𝑑  and attribute set 𝑈 = 𝑈𝑑̃ ∪ 𝑈𝑠̃ , where 𝑈𝑑̃  denotes the set of 

decryption attributes, and 𝑈𝑠̃ is the set of signing attributes. 𝑈𝑑̃ ∩ 𝑈𝑠̃ = ∅. The algorithm outputs 

the secret signing and decryption keys 𝑆𝐾𝑢𝑖𝑑,𝑎𝑖𝑑 = {𝑆𝐾𝑢𝑖𝑑,𝑎𝑖𝑑
𝑠 , 𝑆𝐾𝑢𝑖𝑑,𝑎𝑖𝑑

𝑑 } for the user. 

𝑆𝑖𝑔𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 (ℳ,𝑃𝑃,ℛ𝑠, ℛ𝑒 , {𝑆𝐾𝑑𝑜,𝑘
𝑠 }

𝑘∈𝐼
). Taking as input the plaintext ℳ, public parameters 

𝑃𝑃 , signing and encryption predicates ℛ𝑠, ℛ𝑒 , and the set of signcryptor’s secret signing keys 

{𝑆𝐾𝑑𝑜,𝑘
𝑠 }

𝑘∈𝐼
, where 𝐼  is the set of involved authorities in signcryption and 𝑑𝑜  is signcryptor’s 

identity. The algorithm outputs the ciphertext 𝐶𝑇. 

𝐷𝑒𝑆𝑖𝑔𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 (𝑃𝑃, 𝐶𝑇, 𝑃𝐾𝑑𝑢 , {𝑆𝐾𝑢𝑖𝑑,𝑘
𝑑 }

𝑘∈𝐼
). This algorithm intakes the public parameters 𝑃𝑃, 

ciphertext 𝐶𝑇 , public key 𝑃𝐾𝑑𝑢  of the data user 𝑈𝑑𝑢  (designcryptor), and the set of 

designcryptor’s secret decryption keys {𝑆𝐾𝑢𝑖𝑑,𝑘
𝑑 }

𝑘∈𝐼
, outputs the plaintext ℳ or ⊥. 

Definition 7. Assume the signcryptor is denoted by 𝑈𝑑𝑜 and designcryptor is denoted by 𝑈𝑑𝑢. We say that 

the MACP-ABSC scheme is correct if ℛ𝑠(𝑈𝑑𝑢
𝑠̃ ) = 1,ℛ𝑒 (𝑈𝑑𝑢

𝑑̃ ) = 1 , then 𝑃𝑟 [ℳ ←
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𝐷𝑒𝑆𝑖𝑔𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 (𝑃𝑃, 𝐶𝑇, 𝑃𝐾𝑑𝑢 , {𝑆𝐾𝑑𝑢,𝑘
𝑑 }

𝑘∈𝐼
)] = 1 , where {𝑃𝑃, 𝑃𝐾𝑑𝑜𝑃𝐾𝑑𝑢} ← 𝐺𝑙𝑜𝑏𝑎𝑙𝑆𝑒𝑡𝑢𝑝(1𝑘) , 

{𝑃𝐾𝑘 , 𝑆𝐾𝑘} ← 𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑡𝑦𝑆𝑒𝑡𝑢𝑝(𝑃𝑃) , 𝑆𝐾𝑑𝑜,𝑘
𝑠 ← 𝑆𝑒𝑐𝑟𝑒𝑡𝐾𝑒𝑦𝐺𝑒𝑛(𝑃𝑃, 𝑃𝐾𝑘 , 𝑆𝐾𝑘 , 𝑃𝐾𝑑𝑜 , 𝑈𝑑𝑜̃) , 𝑆𝐾𝑑𝑢,𝑘

𝑑 ←

𝑆𝑒𝑐𝑟𝑒𝑡𝐾𝑒𝑦𝐺𝑒𝑛(𝑃𝑃, 𝑃𝐾𝑘 , 𝑆𝐾𝑘 , 𝑃𝐾𝑑𝑢 , 𝑈𝑑𝑢̃), 𝐶𝑇 ← 𝑆𝑖𝑔𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 (ℳ,𝑃𝑃,ℛ𝑠, ℛ𝑒 , {𝑆𝐾𝑑𝑜,𝑘
𝑠 }

𝑘∈𝐼
). 

4.2. High-Level Overview of OMDAC-ABSC Scheme 

Based on MACP-ABSC scheme, we propose OMDAC-ABSC scheme, a novel data access 

control scheme for fog computing system supporting the computation outsourcing for both 

signcryptor and designcryptor. 

4.2.1. Scheme Description 

As shown in Figure 1, our OMDAC-ABSC scheme has five types of entities: the global 

certificate authority (CA), cloud server, users (including signcryptors and designcryptors), 

independent attribute authorities (AAs) and fog nodes. 

Data Owner  

Cloud Server

Data User

Global Certificate Authority

registration registration

Partial Decryption

Fog Signcryption

…

AA1 AA2 AAn

registration

Secret/Update Key Generation Secret/Update Key Generation

User Signcryption

Full Decryption

Fog Node
Fog Node

Ciphertext Update Key

 

Figure 1. System Architecture. 

Global Certificate Authority: The global certificate authority (CA) is fully trusted in the system 

and generates the public parameters for the system. CA is also responsible for the users’ and 

authorities’ registrations. However, CA is not involved in any attribute management and the 

creations of the secret keys that are associated with attributes. With the help of CA, we can improve 

the privacy of our scheme by realizing the identity authentication and preventing authorities from 

forging a virtual user to decrypt the ciphertext. In secret key generation phase, the attribute 

authority verifies user’s certification using the verification key of CA and then generates the secret 

key for the user. In designcryption phase, the cloud server can verify user’s identifier and return the 

ciphertext to the fog node if the user is valid. 

Cloud Server: The cloud server is a semi-trusted party and also provides data storage and data 

access service to users. Since our scheme supports public verification, the cloud server can verify 

that the ciphertext is valid and is signcrypted by the data owner whose attributes satisfy the signing 

predicates contained in the ciphertext. If the ciphertext is not valid, the cloud server can reject it. 
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User: Users who are attached to fog nodes and equipped with IoT devices in our system include 

the signcryptor and designcryptor. When the signcryptor signcrypts a message, he/she can select the 

signing and encryption predicates over the attributes from multiple authorities and outsource the 

resulting ciphertext to the cloud server. We assume that the ciphertext implicitly contains the 

signing and encryption predicates. Only legally registered users can endorse the data, and only 

users satisfying the encryption predicate can decrypt the data. 

Attribute Authority: The authority can initialize itself to setup its public and secret keys. To 

compute the secret keys for users, the authority verifies the user’s identity and generates the secret 

keys according to the user’s attributes. 

Fog Node: Fog nodes, deployed at the edge of the network, offer a variety of services, such as 

low latency, location awareness, and real-time applications. Each of them is linked to the cloud 

server. Fog nodes are also in charge of part of signcryption and designcryption computations. Note 

that in designcryption phase, only if the data user’s attributes satisfy the encryption predicate will 

the fog nodes partially designcrypt the ciphertext with the proxy secret keys. 

The work flow of OMDAC-ABSC scheme is shown in Figure 2. The scheme consists of the 

following six phases. 

Cloud Server CA AA Data Owner Data User

Global Setup 1 Public Parameters

Fog Signcryption

Secret Key Generation Secret Key

Designcryption

Verify

System
Initialization

Secret Key
Generation

Signcryption

Designcryption

Fog Node

User Registration

Authority Registration

Global Setup 2 Public Key Pairs

Proxy Secret Key GenerationProxy Secret Key
Proxy Secret Key

Generation

User Signcryption

Verify & Store

Partial Decryption

Authority Setup User Setup User Setup

Partial Ciphertext

Ciphertext

Ciphertext

Partial Ciphertext

Full Decryption

Update Secret Key Generation
Update Secret Key

Generation
Update Key Update Key

Ciphertext Update
Secret Key

Update
Secret Key

Update

Attribute
Revocation

 

Figure 2. Work flow of OMDAC-ABSC scheme. 
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(1) System Initialization 

In this phase, CA generates the public parameters for the system, and also accepts the 

registrations of the attribute authorities and the users. The initialization phase contains the 

following six algorithms: 

𝐺𝑙𝑜𝑏𝑎𝑙𝑆𝑒𝑡𝑢𝑝1(1𝑘). This algorithm is run by CA. Taking as input the security parameter 1𝑘, the 

algorithm outputs the public parameters 𝑃𝑃. 

𝑈𝑠𝑒𝑟𝑅𝑒𝑔(𝑃𝑃) . This algorithm is run by CA and data user. Taking as input the public 

parameters, CA assigns the global identity 𝑢𝑖𝑑 and partial public key 𝑃𝑃𝐾𝑢𝑖𝑑  to the user. 

𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑡𝑦𝑅𝑒𝑔(𝑃𝑃). This algorithm is run by CA and the attribute authority. Taking as input 

the public parameters, CA assigns the global identity 𝑎𝑖𝑑 and partial public key 𝑃𝑃𝐾𝑎𝑖𝑑 for the 

attribute authority. 

𝑈𝑠𝑒𝑟𝑆𝑒𝑡𝑢𝑝(𝑃𝑃, 𝑃𝑃𝐾𝑢𝑖𝑑). Given the global identity 𝑢𝑖𝑑 , public parameters 𝑃𝑃 , and partial 

public key 𝑃𝑃𝐾𝑢𝑖𝑑 , the data user runs 𝑈𝑠𝑒𝑟𝑆𝑒𝑡𝑢𝑝(𝑃𝑃, 𝑃𝑃𝐾𝑢𝑖𝑑) to initialize himself/herself. The 

algorithm outputs the public key 𝑃𝐾𝑢𝑖𝑑 and secret key 𝑆𝐾𝑢𝑖𝑑  for the user. Additionally, the public 

key certificate 𝑐𝑒𝑟𝑡(𝑢𝑖𝑑) generated by CA is sent to the user for identity authentication. 

𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑡𝑦𝑆𝑒𝑡𝑢𝑝(𝑃𝑃, 𝑃𝑃𝐾𝑎𝑖𝑑). Given the global identity 𝑎𝑖𝑑, public parameters 𝑃𝑃, and partial 

public key 𝑃𝑃𝐾𝑎𝑖𝑑, the attribute authority runs 𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑡𝑦𝑆𝑒𝑡𝑢𝑝(𝑃𝑃, 𝑃𝑃𝐾𝑎𝑖𝑑) to initialize itself. The 

algorithm outputs the public key 𝑃𝐾𝑎𝑖𝑑 , 𝑃𝐾𝑢𝑖𝑑,𝑎𝑖𝑑
1  and secret key 𝑆𝐾𝑎𝑖𝑑  for the attribute authority 

𝐴𝐴𝑎𝑖𝑑. 

𝐺𝑙𝑜𝑏𝑎𝑙𝑆𝑒𝑡𝑢𝑝2 (1𝑘, 𝑃𝑃, {𝑃𝐾𝑎𝑖𝑑 , 𝑃𝐾𝑢𝑖𝑑,𝑎𝑖𝑑
1 }

𝑈𝑢𝑖𝑑∈𝑆𝑈,𝐴𝐴𝑎𝑖𝑑∈𝑆𝐴
). This algorithm is run by CA to end the 

system initialization phase. Taking as input the public parameters 𝑃𝑃 and authorities’ public keys 

{𝑃𝐾𝑎𝑖𝑑 , 𝑃𝐾𝑢𝑖𝑑,𝑎𝑖𝑑
1 }

𝑈𝑢𝑖𝑑∈𝑆𝑈,𝐴𝐴𝑎𝑖𝑑∈𝑆𝐴
, CA generates the public key 𝑃𝐾𝑢𝑖𝑑,𝑎𝑖𝑑 for each pair of user 𝑈𝑢𝑖𝑑 

and authority 𝐴𝐴𝑎𝑖𝑑. 

(2) Secret Key Generation 

After system initialization, the attribute authority 𝐴𝐴𝑎𝑖𝑑 can verify the user’s identity using the 

public key certificate 𝑐𝑒𝑟𝑡(𝑢𝑖𝑑) and then run 𝑆𝑒𝑐𝑟𝑒𝑡𝐾𝑒𝑦𝐺𝑒𝑛(𝑃𝑃, 𝑃𝐾𝑎𝑖𝑑 , 𝑆𝐾𝑎𝑖𝑑 , 𝑃𝐾𝑢𝑖𝑑 , 𝑈) algorithm to 

compute the secret signing and decryption keys for the valid user according to the user’s attribute set 𝑈. 

𝑆𝑒𝑐𝑟𝑒𝑡𝐾𝑒𝑦𝐺𝑒𝑛(𝑃𝑃, 𝑃𝐾𝑎𝑖𝑑 , 𝑆𝐾𝑎𝑖𝑑 , 𝑃𝐾𝑢𝑖𝑑 , 𝑈̃). The algorithm intakes the public parameters 𝑃𝑃, the 

public key and secret key pair {𝑃𝐾𝑎𝑖𝑑 , 𝑆𝐾𝑎𝑖𝑑} of the authority 𝐴𝐴𝑎𝑖𝑑, the public key 𝑃𝐾𝑢𝑖𝑑 and 

user’s attribute set 𝑈 , outputs the user’s secret signing and decryption keys 𝑆𝐾𝑢𝑖𝑑,𝑎𝑖𝑑 =

{𝑆𝐾𝑢𝑖𝑑,𝑎𝑖𝑑
𝑠 , 𝑆𝐾𝑢𝑖𝑑,𝑎𝑖𝑑

𝑑 }. 

(3) Proxy Secret Key Generation 

In this phase, the data user runs 𝑃𝑥𝑆𝑒𝑐𝑟𝑒𝑡𝐾𝑒𝑦𝐺𝑒𝑛(𝑆𝐾𝑢𝑖𝑑 , 𝑆𝐾𝑢𝑖𝑑,𝑎𝑖𝑑) algorithm to compute the 

proxy secret signing and decryption keys 𝑃𝑆𝐾𝑢𝑖𝑑,𝑎𝑖𝑑 = {𝑃𝑆𝐾𝑢𝑖𝑑,𝑎𝑖𝑑
𝑠 , 𝑃𝑆𝐾𝑢𝑖𝑑,𝑎𝑖𝑑

𝑑 }  and then sends 

𝑃𝑆𝐾𝑢𝑖𝑑,𝑎𝑖𝑑  to the fog nodes to outsource the signcryption and designcryption computation 

overhead. 

𝑃𝑥𝑆𝑒𝑐𝑟𝑒𝑡𝐾𝑒𝑦𝐺𝑒𝑛(𝑆𝐾𝑢𝑖𝑑 , 𝑆𝐾𝑢𝑖𝑑,𝑎𝑖𝑑). Taking as input the secret key 𝑆𝐾𝑢𝑖𝑑  and secret signing and 

decryption keys 𝑆𝐾𝑢𝑖𝑑,𝑎𝑖𝑑 , this algorithm outputs the proxy secret signing and decryption keys 

𝑃𝑆𝐾𝑢𝑖𝑑,𝑎𝑖𝑑 = {𝑃𝑆𝐾𝑢𝑖𝑑,𝑎𝑖𝑑
𝑠 , 𝑃𝑆𝐾𝑢𝑖𝑑,𝑎𝑖𝑑

𝑑 }. 𝑃𝑆𝐾𝑢𝑖𝑑,𝑎𝑖𝑑 are sent to the fog nodes. 

(4) Data Signcryption 

To achieve high efficiency, the signcryptor first encrypts the plaintext with a random content 

key by applying a symmetric encryption algorithm. Then the signcryptor defines the signing and 

encryption predicates ℛ𝑠 and ℛ𝑒, and signcrypts the content secret key with the following two 

algorithms: 

𝐹𝑜𝑔_𝑆𝑖𝑔𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 (𝑃𝑃, {𝑃𝑆𝐾𝑢𝑖𝑑,𝑘
𝑠 }

𝑘∈𝐼𝐴
𝑠 , 𝑃𝐾𝑢𝑖𝑑 , ℛ𝑠, ℛ𝑒). This algorithm is performed in the fog 

nodes. Taking as input the public parameters 𝑃𝑃, proxy secret signing key 𝑃𝑆𝐾𝑢𝑖𝑑,𝑘
𝑠  of the attribute 

authority 𝐴𝐴𝑘 whose attributes are selected for signing, the public key 𝑃𝐾𝑢𝑖𝑑  of signcryptor, the 

signing and encryption predicates ℛ𝑠, ℛ𝑒 , the algorithm outputs part of the ciphertext 𝐶𝑇′. 
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𝑈𝑠𝑒𝑟_𝑆𝑖𝑔𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛(ℳ,𝑃𝑃, {𝑃𝐾𝑎𝑖𝑑}𝑎𝑖𝑑∈𝐼𝐴
𝑒 , 𝑆𝐾𝑢𝑖𝑑 , 𝐶𝑇′). This algorithm intakes the message to be 

signcrypted, the public parameters 𝑃𝑃 , the public key 𝑃𝐾𝑎𝑖𝑑  of attribute authorities whose 

attributes are selected for encryption, secret key 𝑆𝐾𝑢𝑖𝑑  of signcryptor and partial ciphertext 𝐶𝑇′, 

outputs the ciphertext 𝐶𝑇 and sends 𝐶𝑇 to the cloud server. 

(5) Data Designcryption 

When the user queries the ciphertext, the cloud server verifies the user’s identifier and returns 

the ciphertext to the fog node if the user is valid. If the decryption attribute set 𝑈𝑑̃ satisfies the 

encryption predicate ℛ𝑒 embedded in ciphertext, the data user can obtain the plaintext by running 

𝐷𝑒𝑆𝑖𝑔𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 (𝑃𝑃, 𝐶𝑇, 𝑃𝐾𝑢𝑖𝑑 , {𝑃𝑆𝐾𝑢𝑖𝑑,𝑘
𝑑 }

𝑘∈𝐼𝐴
𝑒 , 𝑆𝐾𝑢𝑖𝑑) algorithm which includes the following three 

sub-algorithms: 𝑉𝑒𝑟𝑖𝑓𝑦(𝑃𝑃, 𝐶𝑇)  run by any trusted party (public verifiability), 

𝑃𝑎𝑟𝑡𝑖𝑎𝑙𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 (𝑃𝑃, 𝐶𝑇, 𝑃𝐾𝑢𝑖𝑑 , {𝑃𝑆𝐾𝑢𝑖𝑑,𝑘
𝑑 }

𝑘∈𝐼𝐴
𝑒)  run by fog nodes and 

𝐹𝑢𝑙𝑙𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛(𝑃𝑃, 𝐶𝑇𝑝, 𝑆𝐾𝑢𝑖𝑑) performed by the user. 𝐼𝐴
𝑠 (resp. 𝐼𝐴

𝑒) denotes the set of the indexes 

of the authorities involved in signing (resp. encryption). Note that 𝐼𝐴
𝑠 (resp. 𝐼𝐴

𝑒) can be obtained 

from ℛ𝑠 (resp. ℛ𝑒) which is implicitly contained in 𝐶𝑇. 

𝑉𝑒𝑟𝑖𝑓𝑦(𝑃𝑃, 𝐶𝑇). This algorithm takes as input the public parameters 𝑃𝑃 and ciphertext 𝐶𝑇, 

outputs ⊥  if 𝐶𝑇  contains an invalid signature corresponding to the signing predicate ℛ𝑠 

embedded in 𝐶𝑇. Otherwise, proceed 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 (𝑃𝑃, 𝐶𝑇, 𝑃𝐾𝑢𝑖𝑑 , {𝑃𝑆𝐾𝑢𝑖𝑑,𝑘}𝑘∈𝐼𝐴
𝑒 , 𝑆𝐾𝑢𝑖𝑑) algorithm as 

follows: 

𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 (𝑃𝑃, 𝐶𝑇, 𝑃𝐾𝑢𝑖𝑑 , {𝑃𝑆𝐾𝑢𝑖𝑑,𝑘}𝑘∈𝐼𝐴
𝑒 , 𝑆𝐾𝑢𝑖𝑑). This algorithm contains two sub-algorithms: 

𝑃𝑎𝑟𝑡𝑖𝑎𝑙𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 (𝑃𝑃, 𝐶𝑇, 𝑃𝐾𝑢𝑖𝑑 , {𝑃𝑆𝐾𝑢𝑖𝑑,𝑘
𝑑 }

𝑘∈𝐼𝐴
𝑒). This algorithm intakes the public parameters 

𝑃𝑃, the ciphertext 𝐶𝑇, the public key 𝑃𝐾𝑢𝑖𝑑  of the user and the proxy secret decryption key 

𝑃𝑆𝐾𝑢𝑖𝑑,𝑘
𝑑 , outputs the partial decryption result 𝐶𝑇𝑝 and returns 𝐶𝑇𝑝 to the user. 

𝐹𝑢𝑙𝑙𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛(𝑃𝑃, 𝐶𝑇𝑝, 𝑆𝐾𝑢𝑖𝑑) . Taking as input the public parameters 𝑃𝑃 , the partial 

decryption result 𝐶𝑇𝑝 and secret key 𝑆𝐾𝑢𝑖𝑑 , the algorithm outputs the final plaintext ℳ or ⊥. 

(6) Attribute revocation 

In this phase, suppose the attribute 𝑥 of the user 𝑈 is revoked from 𝐴𝐴𝑘. After randomly 

chooses a new attribute version key, the authority 𝐴𝐴𝑘 distributes the update keys implicitly 

containing the latest attribute version key to the non-revoked users and cloud server respectively. 

Only the 𝑥-related components of secret keys and ciphertext will be updated. 

𝑈𝑝𝑆𝑒𝑐𝑟𝑒𝑡𝐾𝑒𝑦𝐺𝑒𝑛(𝑃𝐾𝑢𝑖𝑑 , 𝑆𝐾𝑘 , 𝑆𝐾𝑢𝑖𝑑,𝑘). This algorithm is run by attribute authority 𝐴𝐴𝑘. The 

algorithm intakes the public key 𝑃𝐾𝑢𝑖𝑑  of non-revoked user 𝑈𝑢𝑖𝑑, the secret key of 𝐴𝐴𝑘, outputs 

the signing and decryption update keys 𝑠𝑈𝐾𝑢𝑖𝑑,𝑥 , 𝑑𝑈𝐾𝑢𝑖𝑑,𝑥, and ciphertext update keys 𝑐𝑈𝐾, 𝑠𝑈𝐾. 

𝑈𝑝𝑆𝑒𝑐𝑟𝑒𝑡𝐾𝑒𝑦(𝑆𝐾𝑢𝑖𝑑,𝑘, 𝑠𝑈𝐾𝑢𝑖𝑑,𝑥, 𝑑𝑈𝐾𝑢𝑖𝑑,𝑥). This algorithm is run by the non-revoked user 𝑈𝑢𝑖𝑑. 

Taking as input the secret signing and decryption key 𝑆𝐾𝑢𝑖𝑑,𝑘, and the signing and decryption 

update keys 𝑠𝑈𝐾𝑢𝑖𝑑,𝑥 , 𝑑𝑈𝐾𝑢𝑖𝑑,𝑥, the algorithm outputs the updated secret signing and decryption 

keys. 

𝑈𝑝𝐶𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡(𝐶𝑇, 𝑐𝑈𝐾, 𝑠𝑈𝐾). This algorithm is run by the cloud server. Taking as input the 

ciphertext tagged with the revoked attribute, and the ciphertext update keys 𝑐𝑈𝐾, 𝑠𝑈𝐾 , the 

algorithm outputs the updated ciphertext. 

4.2.2. Threat Assumption 

Assume CA is fully trusted. The authorities can honestly issue the secret keys for the user and 

will not collude with the user to access the sensitive data. However, the authorities can be 

corrupted and disclose the information sent from the data user to the adversary. The fog nodes can 

also be corrupted and leak the information such as proxy secret keys to the adversary. The cloud 

server is semi-trusted. It will execute the protocol in general but will leak the signcrypted data to 

some malicious users and get illegal access privileges. The data users (including the signcryptor 
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and designcryptor) are malicious and can collude with other users and even the cloud server and 

fog nodes to sign or decrypt the unauthorized data. 

4.2.3. Security Requirements 

Following [12,14], the confidentiality, unforgeability and signcryptor privacy of 

OMDAC-ABSC scheme are presented in Definitions 8, 9 and 10 as follows by defining the security 

games between a challenger and an adversary 𝒜. Then in Definition 11 and Definition 12, we 

provide the definitions of collusion resistance and attribute revocation security. 

Definition 8. Indistinguishability of ciphertext under selective encryption predicate and adaptively chosen 

ciphertext attack (IND-sEP-CCA2). 

The scheme is (𝑇, 𝑞𝑠𝑘 , 𝑞𝑝𝑠𝑘 , 𝑞𝑆𝐶 , 𝑞𝐷𝑆, 𝜖) -IND-sEP-CCA2 secure if for any PPT adversary 𝒜 

which runs in time at most 𝑇 and makes at most 𝑞𝑠𝑘 𝑆𝑒𝑐𝑟𝑒𝑡𝐾𝑒𝑦 queries, 𝑞𝑝𝑠𝑘 𝑃𝑟𝑜𝑥𝑦 𝑆𝑒𝑐𝑟𝑒𝑡𝐾𝑒𝑦 

queries, 𝑞𝑆𝐶  𝑆𝑖𝑔𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛  queries, and 𝑞𝐷𝑆  𝐷𝑒𝑆𝑖𝑔𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛  queries, the advantage 

𝐴𝑑𝑣𝒜
𝐼𝑁𝐷−𝑠𝐸𝑃−𝐶𝐶𝐴2 of 𝒜 in the following game with a challenger 𝒞 is at most 𝜖. 

𝐼𝑛𝑖𝑡. 𝒜 specifies the space of attributes and the set of corrupted authorities. 𝒜 submits the 

challenge encryption predicate ℛ𝑒
∗ = (M𝑒

∗, 𝜌𝑒
∗) over encryption attributes that will be used to encrypt 

the challenge ciphertext. Note that the adversary cannot decrypt the challenge ciphertext with any 

secret decryption keys queried from 𝑆𝑒𝑐𝑟𝑒𝑡𝐾𝑒𝑦 queries and the keys directly generated from the 

corrupted authorities. 

𝑆𝑒𝑡𝑢𝑝. The challenger runs the algorithms in system initialization phase to generate the public 

parameters, and the pairs of public key and the secret key of the attribute authorities. Then the 

challenger sends the public keys to the adversary. For the corrupted authorities, the challenger sends 

the secret keys to the adversary. 

Phase 1. In this phase, the challenger 𝒞 answers the queries from 𝒜 as follows: 

𝑆𝑒𝑐𝑟𝑒𝑡𝐾𝑒𝑦 𝑞𝑢𝑒𝑟𝑦 𝒪𝑠𝑘(𝑈̃, 𝐴𝐴𝑘, 𝑢𝑖𝑑). 𝒜 can adaptively query the secret key for a user 𝑈 with 

identity 𝑢𝑖𝑑  and a set of attributes 𝑈 = 𝑈𝑑̃ ∪ 𝑈𝑠̃  to the authority 𝐴𝐴𝑘 . 𝑈𝑑̃  does not satisfy ℛ𝑒
∗  

together with any keys that can be obtained from corrupted authorities. The challenger runs 

𝑆𝑒𝑐𝑟𝑒𝑡𝐾𝑒𝑦𝐺𝑒𝑛 and returns the secret key to the adversary. 

𝑃𝑟𝑜𝑥𝑦 𝑆𝑒𝑐𝑟𝑒𝑡𝐾𝑒𝑦 𝑞𝑢𝑒𝑟𝑦 𝒪𝑝𝑠𝑘(𝑈, 𝐴𝐴𝑘, 𝑢𝑖𝑑). 𝒜 can adaptively query the proxy secret key for a 

user 𝑈 with identity 𝑢𝑖𝑑. The challenger runs 𝑃𝑥𝑆𝑒𝑐𝑟𝑒𝑡𝐾𝑒𝑦𝐺𝑒𝑛 and returns the proxy secret key to 

the adversary. 

𝑆𝑖𝑔𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 𝑞𝑢𝑒𝑟𝑦 𝒪𝑆𝐶(ℳ,ℛ𝑠, ℛ𝑒) . Upon receiving a message ℳ ∈ 𝔾𝑇 , signing and 

encryption predicts ℛ𝑠 , ℛ𝑒 , the challenger 𝒞 selects a signing attribute set 𝑈𝑠̃ such that ℛ𝑠(𝑈
𝑠̃) = 1 

and returns the ciphertext to the adversary. 

𝐷𝑒𝑆𝑖𝑔𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 𝑞𝑢𝑒𝑟𝑦 𝒪𝐷𝑆(𝐶𝑇, 𝑈𝑑̃). 𝒜 submits a ciphertext 𝐶𝑇, and a decryption attribute set 

𝑈𝑑̃. 𝒞 returns the plaintext to 𝒜 if ℛ𝑒(𝑈
𝑑̃) = 1 and 𝐶𝑇 contains a valid signature corresponding 

to the signing predicate ℛ𝑠, where ℛ𝑒 and ℛ𝑠 are implicitly contained in 𝐶𝑇. 

𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒 . 𝒜  submits two messages ℳ0,ℳ1  with the same length and signing predicate 

ℛ𝑠
∗ = (M𝑠

∗, 𝜌𝑠
∗) to the challenger. 𝒞  selects a signing attribute set 𝑈𝑠̃  satisfying ℛ𝑠

∗(𝑈𝑠̃) = 1. The 

challenger randomly chooses a bit 𝒷 ∈ {0,1} and runs the 𝑆𝑖𝑔𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 algorithm to signcrypt the 

message ℳ𝒷 and returns the ciphertext 𝐶𝑇∗ to 𝒜 as the challenge ciphertext. 

Phase 2. Phase 1 is repeated. In this phase, 𝒜 cannot issue 𝒪𝐷𝑆 with the challenge ciphertext 

𝐶𝑇∗ obtained in Challenge phase and attribute set 𝑈𝑑̃ such that ℛ𝑒
∗(𝑈𝑑̃) = 1. 

𝐺𝑢𝑒𝑠𝑠. 𝒜 outputs a guess bit 𝒷′ on 𝒷. 𝒜 wins the game if 𝒷′ = 𝒷. 

The advantage of 𝒜 is defined by 𝐴𝑑𝑣𝒜
𝐼𝑁𝐷−𝑠𝐸𝑃−𝐶𝐶𝐴2 = |𝑃𝑟[𝒷′ = 𝒷] − 1 2⁄ |. 

Definition 9. Existential unforgeability under selective signing predicate and adaptively chosen message 

attack (EUF-sSP-CMA). 
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The proposed scheme is (𝑇, 𝑞𝑠𝑘 , 𝑞𝑝𝑠𝑘 , 𝑞𝑆𝐶 , 𝑞𝐷𝑆, 𝜖)-EUF-sSP-CMA secure if for any PPT adversary 

𝒜 which runs in time at most 𝑇 and makes at most 𝑞𝑠𝑘 𝑆𝑒𝑐𝑟𝑒𝑡𝐾𝑒𝑦 queries, 𝑞𝑝𝑠𝑘 𝑃𝑟𝑜𝑥𝑦 𝑆𝑒𝑐𝑟𝑒𝑡𝐾𝑒𝑦 

queries, 𝑞𝑆𝐶  𝑆𝑖𝑔𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛  queries, and 𝑞𝐷𝑆  𝐷𝑒𝑆𝑖𝑔𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛  queries, the advantage 

𝐴𝑑𝑣𝒜
𝐸𝑈𝐹−𝑠𝑆𝑃−𝐶𝑀𝐴 of 𝒜 in the following game with a challenger 𝒞 is at most 𝜖. 

𝐼𝑛𝑖𝑡. 𝒜 specifies the space of attributes and a set of corrupted authorities, and then submits the 

challenge signing predicate ℛ𝑠
∗ = (M𝑠

∗, 𝜌𝑠
∗) over signing attributes that will be used to forge the 

ciphertext. Note that the adversary cannot sign the plaintext under the signing predicate ℛ𝑠
∗ with 

any secret signing keys queried from 𝑆𝑒𝑐𝑟𝑒𝑡𝐾𝑒𝑦 queries and the keys directly generated from the 

corrupted authorities. 

𝑆𝑒𝑡𝑢𝑝, 𝑃𝑟𝑜𝑥𝑦 𝑆𝑒𝑐𝑟𝑒𝑡𝐾𝑒𝑦 𝑞𝑢𝑒𝑟𝑦, 𝑆𝑖𝑔𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 𝑞𝑢𝑒𝑟𝑦  and 𝐷𝑒𝑆𝑖𝑔𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 𝑞𝑢𝑒𝑟𝑦  are the same 

as Definition 8. 

𝑆𝑒𝑐𝑟𝑒𝑡𝐾𝑒𝑦 𝑞𝑢𝑒𝑟𝑦 𝒪𝑠𝑘(𝑈̃, 𝐴𝐴𝑘, 𝑢𝑖𝑑). 𝒜 can adaptively query the secret key for a user 𝑈 with a 

set of attributes 𝑈 = 𝑈𝑑̃ ∪ 𝑈𝑠̃ to the authority 𝐴𝐴𝑘. 𝑈𝑠̃ does not satisfy ℛ𝑠
∗ together with any keys 

that can be obtained from corrupted authorities. The challenger runs 𝑆𝑒𝑐𝑟𝑒𝑡𝐾𝑒𝑦𝐺𝑒𝑛 and returns the 

secret key to the adversary. 

𝐹𝑜𝑟𝑔𝑒𝑟𝑦. 𝒜 outputs the forgery ciphertext 𝐶𝑇∗ for the selective signing predicate ℛ𝑠
∗ and an 

arbitrary encryption predicate ℛ𝑒
∗ . 

𝒜 wins the game if 𝐶𝑇∗ is a valid ciphertext and 𝒜 has never issued 𝒪𝑆𝐶(ℳ,ℛ𝑠
∗, ℛ𝑒

∗). The 

advantage of 𝒜 is defined as 𝐴𝑑𝑣𝒜
𝐸𝑈𝐹−𝑠𝑆𝑃−𝐶𝑀𝐴 = 𝑃𝑟[𝒜 wins]. 

Note that in our scheme, the fog nodes can be corrupted. In this case, the proxy secret keys sent 

from the users might be obtained by the adversary. This kind of attack is captured by the proxy 

secret key query 𝒪𝑝𝑠𝑘(𝑈, 𝐴𝐴𝑘, 𝑢𝑖𝑑), which makes the access control scheme proven secure in our 

security model have a wider spectrum of applications. 

Definition 10. Signcryptor Privacy. 

It is required that the signature of the proposed scheme reveals nothing about the attributes of 

the data owner except that the attributes satisfy the signing predicate. We define signcryptor privacy 

as a game between a challenger 𝒞 and an adversary 𝒜. 

Assume the public parameters 𝑃𝑃 and public and secret key pairs {𝑃𝐾𝑘 , 𝑆𝐾𝑘}𝐼𝐴 of attribute 

authorities are given to 𝒜 . 𝒜  submits two signing attribute sets 𝑈0
𝑠̃, 𝑈1

𝑠̃  satisfying ℛ𝑠(𝑈0
𝑠̃) =

ℛ𝑠(𝑈1
𝑠̃) = 1 to the challenger. The challenger then chooses a bit 𝒷

𝑅
←{0,1} and signcrypts the 

plaintext ℳ with the signing and encryption predicates ℛ𝑠 , ℛ𝑒, and secret signing key 𝑆𝐾𝑢𝑖𝑑,𝑘
𝑠,𝒷  for 

𝑈𝒷
𝑠̃ . 𝒞 sends the ciphertext 𝐶𝑇𝒷 to 𝒜. 𝒜 then outputs a guess bit 𝒷′ on 𝒷. 𝒜 wins the game if 

𝒷′ = 𝒷. We say OMDAC-ABSC scheme satisfies signcryptor privacy if for any adversary 𝒜, 

𝑃𝑟

[
 
 
 
 
 
 
 
 
 

𝒷′ = 𝒷 ∶

𝑃𝑃 ← 𝐺𝑙𝑜𝑏𝑎𝑙𝑆𝑒𝑡𝑢𝑝1(1𝑘)

{𝑃𝐾𝑘 , 𝑆𝐾𝑘}𝐼𝐴 ← 𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑡𝑦𝑆𝑒𝑡𝑢𝑝(𝑃𝑃, 𝑃𝑃𝐾𝑘)

(𝑈0
𝑠̃ , 𝑈1

𝑠̃,ℳ,ℛ𝑠, ℛ𝑒) ← 𝒜(𝑃𝑃, {𝑃𝐾𝑘 , 𝑆𝐾𝑘}𝐼𝐴)

ℛ𝑠(𝑈0
𝑠̃) = 1 = ℛ𝑠(𝑈1

𝑠̃)

𝒷
𝑅
←{0,1}

𝐶𝑇𝒷 ← 𝒞 (ℳ,𝑃𝑃,ℛ𝑠, ℛ𝑒 , 𝑈𝒷
𝑠̃ , {𝑆𝐾𝑢𝑖𝑑,𝑘

𝑠,𝒷 }
𝑘∈𝐼𝐴

𝑠 )

𝒷′ ← 𝒜(𝑃𝑃, 𝐶𝑇𝒷 , {𝑃𝐾𝑘 , 𝑆𝐾𝑘}𝐼𝐴) ]
 
 
 
 
 
 
 
 
 

=
1

2
  

Definition 11. Collusion Resistance. 

OMDAC-ABSC scheme is secure against collusion attack of two or more communication 

entities (e.g., data users, fog nodes, and cloud server) if there does not exist a set of polynomial time 

adversaries that can sign the plaintext (collusion resistance of signing) or decrypt the ciphertext 

(collusion resistance of decryption) by cooperating with each other when none of adversaries is 

authorized to sign or decrypt the data. 
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Definition 12. Suppose the attribute 𝑥 is revoked. 

Forward Security. If 𝑥 is the signing attribute, then OMDAC-ABSC scheme supports forward 

revocation security if the newly joined user can successfully sign the plaintext with the 

𝑥-corresponding signing attribute set. Otherwise, the forward revocation security guarantees if each 

newly joined user can decrypt 𝑥-corresponding ciphertext if the decryption attributes of the user 

satisfy the encryption predicate contained in the ciphertext. 

Backward Security. If 𝑥  is the signing attribute, then OMDAC-ABSC scheme supports 

backward revocation security if the updated ciphertext cannot be reversed back to the non-revoked 

state while maintaining the verification algorithm holds. Otherwise, the backward revocation 

security guarantees if the attribute revoked user cannot decrypt the 𝑥-corresponding ciphertext as a 

non-revoked user. 

5. Construction of OMDAC-ABSC Scheme 

In this section, we propose the construction of OMDAC-ABSC scheme in detail. The notations 

of the scheme are listed in Appendix A. 

5.1. System Initialization 

5.1.1. System Setup 1 

𝐺𝑙𝑜𝑏𝑎𝑙𝑆𝑒𝑡𝑢𝑝1(1𝑘). Taking as input a security parameter 1𝑘, the algorithm outputs the public 

parameters 𝑃𝑃 as follows. 

(1) Generate a bilinear group 𝒢𝒢(1𝑘) → (𝑒, 𝑝, 𝔾, 𝔾𝑇), where the prime 𝑝 is the order of group 𝔾. 

Let 𝑔, 𝜃 be the random generators of 𝔾. Randomly select 𝛾1, 𝛾2, {𝑘0, 𝑘1, … , 𝑘𝑙}, {𝑉1, 𝑉2 … , 𝑉ℓ𝑚
} 

from 𝔾. Choose three cryptographic collision resistant hash functions 𝐻1: 𝔾 → ℤ𝑝
∗ , 𝐻2: {0,1}∗ →

{0,1}𝑙 and 𝐻3: {0,1}∗ → ℤ𝑝
∗ . 

(2) CA generates a pair of keys {𝑠𝑘𝐶𝐴, 𝑣𝑘𝐶𝐴} for signing and verification in identity authentication. 

(3) Output 𝑃𝑃 = {𝑔, 𝜃, 𝛾1, 𝛾2, {𝑘0, 𝑘1, … , 𝑘𝑙}, {𝑉1, 𝑉2 … , 𝑉ℓ𝑚
}}  as the system public parameter. CA 

accepts both user registration 𝑈𝑠𝑒𝑟𝑅𝑒𝑔(𝑃𝑃) and authority registration 𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑡𝑦𝑅𝑒𝑔(𝑃𝑃). 

𝑈𝑠𝑒𝑟𝑅𝑒𝑔(𝑃𝑃). CA verifies user 𝑈’s identity information then runs this algorithm to register 𝑈. 

CA selects a unique identity number 𝑢𝑖𝑑  and sends 𝑃𝑃𝐾𝑢𝑖𝑑 = {𝑔𝑠𝑢𝑖𝑑 , 𝑔𝑑𝑢𝑖𝑑 , {𝑉𝑖
𝑠𝑢𝑖𝑑}

𝑖∈[ℓ𝑚]
}  as the 

partial public key to user. 𝑠𝑢𝑖𝑑 and 𝑑𝑢𝑖𝑑 are kept secret in the system. 

𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑡𝑦𝑅𝑒𝑔(𝑃𝑃) . CA verifies the identity information of the authority then runs this 

algorithm to register the authority. CA selects a unique identity number 𝑎𝑖𝑑 ∈ [1, 𝑁𝐴], then selects 

𝛼𝑎𝑖𝑑 and publishes the partial public key 𝑃𝑃𝐾𝑎𝑖𝑑 = ∆𝑎𝑖𝑑= 𝑒(𝑔, 𝑔)𝛼𝑎𝑖𝑑 to 𝐴𝐴𝑎𝑖𝑑. 

𝑈𝑠𝑒𝑟𝑆𝑒𝑡𝑢𝑝(𝑃𝑃, 𝑃𝑃𝐾𝑢𝑖𝑑). Given the global identity 𝑢𝑖𝑑, the user runs 𝑈𝑠𝑒𝑟𝑆𝑒𝑡𝑢𝑝(𝑃𝑃, 𝑃𝑃𝐾𝑢𝑖𝑑) to 

initialize itself and compute the public key 𝑃𝐾𝑢𝑖𝑑  and secret key 𝑆𝐾𝑢𝑖𝑑  as follows. 

1. Set 𝑆𝐾𝑢𝑖𝑑 = 𝑧𝑢𝑖𝑑 where 𝑧𝑢𝑖𝑑

𝑅
←ℤ𝑝. 

2. Set 𝑃𝐾𝑢𝑖𝑑 = {𝑔𝑠𝑢𝑖𝑑 , 𝑔𝑑𝑢𝑖𝑑 , 𝑔1 𝑧𝑢𝑖𝑑⁄ , 𝜃𝑧𝑢𝑖𝑑 , 𝑔𝑧𝑢𝑖𝑑 , {𝑉𝑖
𝑠𝑢𝑖𝑑}

𝑖∈[ℓ𝑚]
}. 

3. CA sets 𝑐𝑒𝑟𝑡(𝑢𝑖𝑑) = 𝑆𝑖𝑔𝑛𝑠𝑘𝐶𝐴
(𝑢𝑖𝑑, 𝑃𝐾𝑢𝑖𝑑) as the public key certificate. 

𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑡𝑦𝑆𝑒𝑡𝑢𝑝(𝑃𝑃, 𝑃𝑃𝐾𝑎𝑖𝑑). Each authority 𝐴𝐴𝑎𝑖𝑑 runs this algorithm to initialize itself and 

compute the public key 𝑃𝐾𝑎𝑖𝑑 , 𝑃𝐾𝑢𝑖𝑑,𝑎𝑖𝑑
1  and secret key 𝑆𝐾𝑎𝑖𝑑  as follows: 

(1) Set 𝑆𝐾𝑎𝑖𝑑 = {𝛽𝑎𝑖𝑑 , 𝛾𝑎𝑖𝑑 , {𝜑𝑥}𝑥∈𝐴𝐴𝑎𝑖𝑑̃
}, where 𝛽𝑎𝑖𝑑 , 𝛾𝑎𝑖𝑑 , 𝜑𝑥

𝑅
←ℤ𝑝. 

(2) Set 𝑃𝐾𝑎𝑖𝑑 = {∆𝑎𝑖𝑑 , 𝑋𝑎𝑖𝑑 , 𝑌𝑎𝑖𝑑 , 𝑍𝑎𝑖𝑑 , {𝐴𝑥}𝑥∈𝐴𝐴𝑎𝑖𝑑̃
} , where 𝐴𝑥 = 𝑔𝜑𝑥 , 𝑋𝑎𝑖𝑑 = 𝑔1 𝛽𝑎𝑖𝑑⁄ , 𝑌𝑎𝑖𝑑 =

𝜃1 𝛽𝑎𝑖𝑑⁄ , 𝑍𝑎𝑖𝑑 = 𝜃1 𝛾𝑎𝑖𝑑⁄ . 

(3) Set 𝑃𝐾𝑢𝑖𝑑,𝑎𝑖𝑑
1 = 𝑔1 (𝛾𝑎𝑖𝑑𝑧𝑢𝑖𝑑)⁄  for each user 𝑈𝑢𝑖𝑑 ∈ 𝑆𝑈. 
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5.1.2. System Setup 2 

𝐺𝑙𝑜𝑏𝑎𝑙𝑆𝑒𝑡𝑢𝑝2 (1𝑘, 𝑃𝑃, {𝑃𝐾𝑎𝑖𝑑 , 𝑃𝐾𝑢𝑖𝑑,𝑎𝑖𝑑
1 }

𝑈𝑢𝑖𝑑∈𝑆𝑈,𝐴𝐴𝑎𝑖𝑑∈𝑆𝐴
). Taking as input the public parameters 

𝑃𝑃  and authorities’ public keys {𝑃𝐾𝑎𝑖𝑑 , 𝑃𝐾𝑢𝑖𝑑,𝑎𝑖𝑑
1 }

𝑈𝑢𝑖𝑑∈𝑆𝑈,𝐴𝐴𝑎𝑖𝑑∈𝑆𝐴
, CA generates the public key 

𝑃𝐾𝑢𝑖𝑑,𝑎𝑖𝑑 for each pair of user 𝑈𝑢𝑖𝑑 and authority 𝐴𝐴𝑎𝑖𝑑 as follows: 

For 𝑈𝑢𝑖𝑑 ∈ 𝑆𝑈 , 𝐴𝐴𝑎𝑖𝑑 ∈ 𝑆𝐴 , 𝑃𝐾𝑢𝑖𝑑,𝑎𝑖𝑑 = {𝑃𝐾𝑢𝑖𝑑,𝑎𝑖𝑑
1 , 𝑃𝐾𝑢𝑖𝑑,𝑎𝑖𝑑

2 , 𝑃𝐾𝑢𝑖𝑑,𝑎𝑖𝑑
3 } , where 𝑃𝐾𝑢𝑖𝑑,𝑎𝑖𝑑

2 =

(𝑃𝐾𝑢𝑖𝑑,𝑎𝑖𝑑
1 )

𝛼𝑎𝑖𝑑𝑍𝑎𝑖𝑑
𝑑𝑢𝑖𝑑 = 𝑔𝛼𝑎𝑖𝑑 (𝛾𝑎𝑖𝑑𝑧𝑢𝑖𝑑)⁄ 𝜃𝑑𝑢𝑖𝑑 𝛾𝑎𝑖𝑑⁄  and 𝑃𝐾𝑢𝑖𝑑,𝑎𝑖𝑑

3 = 𝑋𝑎𝑖𝑑
𝛼𝑎𝑖𝑑𝑌𝑎𝑖𝑑

𝑠𝑢𝑖𝑑 = 𝑔𝛼𝑎𝑖𝑑 𝛽𝑎𝑖𝑑⁄ 𝜃𝑠𝑢𝑖𝑑 𝛽𝑎𝑖𝑑⁄ . 

5.2. Secret Key Generation 

𝐴𝐴𝑎𝑖𝑑 runs the secret key generation algorithm 𝑆𝑒𝑐𝑟𝑒𝑡𝐾𝑒𝑦𝐺𝑒𝑛 to generate the secret signing 

and decryption keys for the user 𝑈𝑢𝑖𝑑. 

𝑆𝑒𝑐𝑟𝑒𝑡𝐾𝑒𝑦𝐺𝑒𝑛(𝑃𝑃, 𝑃𝐾𝑎𝑖𝑑 , 𝑆𝐾𝑎𝑖𝑑 , 𝑃𝐾𝑢𝑖𝑑 , 𝑈) . 𝐴𝐴𝑎𝑖𝑑  first verifies the user’s 𝑐𝑒𝑟𝑡(𝑢𝑖𝑑)  with 

verification key 𝑣𝑘𝐶𝐴 . If the user is a legal user, 𝐴𝐴𝑎𝑖𝑑  computes the user’s secret signing and 

decryption keys 𝑆𝐾𝑢𝑖𝑑,𝑎𝑖𝑑 = {𝑆𝐾𝑢𝑖𝑑,𝑎𝑖𝑑
𝑠 , 𝑆𝐾𝑢𝑖𝑑,𝑎𝑖𝑑

𝑑 } as: 

(1) 𝑆𝐾𝑢𝑖𝑑,𝑎𝑖𝑑
𝑠 = {𝐾𝑢𝑖𝑑,𝑎𝑖𝑑

𝑠 = (𝑃𝐾𝑢𝑖𝑑,𝑎𝑖𝑑
3 )

𝛽𝑎𝑖𝑑 = 𝑔𝛼𝑎𝑖𝑑𝜃𝑠𝑢𝑖𝑑 , {𝐹𝑢𝑖𝑑,𝑥
𝑠 = (𝑔𝑠𝑢𝑖𝑑)𝜑𝑥 = 𝐴𝑥

𝑠𝑢𝑖𝑑}
𝑥∈𝑈𝑠̃∩𝐴𝐴𝑎𝑖𝑑̃

}. 

(2) 𝑆𝐾𝑢𝑖𝑑,𝑎𝑖𝑑
𝑑 = {𝐾𝑢𝑖𝑑,𝑎𝑖𝑑

𝑑 = (𝑃𝐾𝑢𝑖𝑑,𝑎𝑖𝑑
2 )

𝛾𝑎𝑖𝑑 = 𝑔𝛼𝑎𝑖𝑑 𝑧𝑢𝑖𝑑⁄ 𝜃𝑑𝑢𝑖𝑑 , {𝐹𝑢𝑖𝑑,𝑥
𝑑 = (𝑔𝑑𝑢𝑖𝑑)𝜑𝑥 = 𝐴𝑥

𝑑𝑢𝑖𝑑}
𝑥∈𝑈𝑑̃∩𝐴𝐴𝑎𝑖𝑑̃

}. 

5.3. Proxy Secret Key Generation 

Each user 𝑈𝑢𝑖𝑑  runs the 𝑃𝑥𝑆𝑒𝑐𝑟𝑒𝑡𝐾𝑒𝑦𝐺𝑒𝑛(𝑆𝐾𝑢𝑖𝑑 , 𝑆𝐾𝑢𝑖𝑑,𝑎𝑖𝑑) to generate the proxy secret key 

𝑃𝑆𝐾𝑢𝑖𝑑,𝑎𝑖𝑑 = {𝑃𝑆𝐾𝑢𝑖𝑑,𝑎𝑖𝑑
𝑠 , 𝑃𝑆𝐾𝑢𝑖𝑑,𝑎𝑖𝑑

𝑑 } as: 

(1) 𝑃𝑆𝐾𝑢𝑖𝑑,𝑎𝑖𝑑
𝑠 = {𝑃𝑆𝑢𝑖𝑑,𝑎𝑖𝑑 = (𝐾𝑢𝑖𝑑,𝑎𝑖𝑑

𝑠 )
𝑧𝑢𝑖𝑑 , 𝑃𝑉𝑢𝑖𝑑 = 𝑔𝑧𝑢𝑖𝑑𝑠𝑢𝑖𝑑 , {𝑃𝐹𝑢𝑖𝑑,𝑥

1 = (𝐹𝑢𝑖𝑑,𝑥
𝑠 )

𝑧𝑢𝑖𝑑 , 𝑃𝐹𝑢𝑖𝑑,𝑥
2 =

(𝐴𝑥)
𝑧𝑢𝑖𝑑}

𝑥∈𝑈𝑠̃∩𝐴𝐴𝑎𝑖𝑑̃
, {𝑉𝑖

𝑧𝑢𝑖𝑑 , 𝑉𝑖
𝑠𝑢𝑖𝑑𝑧𝑢𝑖𝑑}

𝑖∈[ℓ𝑚]
}. 

(2) 𝑃𝑆𝐾𝑢𝑖𝑑,𝑎𝑖𝑑
𝑑 = 𝑆𝐾𝑢𝑖𝑑,𝑎𝑖𝑑

𝑑 . 

The transformed secret keys {𝑃𝑆𝐾𝑢𝑖𝑑,𝑎𝑖𝑑} are sent to the fog node. 

5.4. Data Signcryption 

The data owner first encrypts the data component with a content secret key 𝑘  by using 

symmetric encryption algorithm 𝐸𝑛𝑘 , then it runs 𝑆𝑖𝑔𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛  to signcrypt the secret key. 

𝑆𝑖𝑔𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛  contains two phases: fog signcrypt 𝐹𝑜𝑔_𝑆𝑖𝑔𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛  and user signcrypt 

𝑈𝑠𝑒𝑟_𝑆𝑖𝑔𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛. 

𝑆𝑖𝑔𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 (ℳ,𝑃𝑃, {𝑃𝑆𝐾𝑢𝑖𝑑,𝑘
𝑠 }

𝑘∈𝐼𝐴
𝑠 , 𝑃𝐾𝑢𝑖𝑑 , {𝑃𝐾𝑎𝑖𝑑}𝑎𝑖𝑑∈𝐼𝐴

𝑒 , 𝑆𝐾𝑢𝑖𝑑 , ℛ𝑠, ℛ𝑒) . Assume that ℛ𝑠 ≔

(Μ𝑠, 𝜌𝑠) (resp. ℛ𝑒,𝑗 ≔ (Μ𝑒 , 𝜌𝑒)) is the signing predicate (resp. encryption predicate) over all the 

attributes selected from the set of attribute authorities 𝐼𝐴
𝑠  (resp. 𝐼𝐴

𝑒 ), where Μ𝑠  (resp. Μ𝑒 ) is a 

ℓ𝑠 × 𝑛𝑠 , ℓ𝑠 ≤ ℓ𝑚  (resp. ℓ𝑒 × 𝑛𝑒) matrix with row labeling function 𝜌𝑠: [ℓ𝑠] → ℤ𝑝  (resp. 𝜌𝑒: [ℓ𝑒] →

ℤ𝑝). Note that we remove the limitation that 𝜌𝑠 (resp. 𝜌𝑒) should be an injective function (i.e., an 

attribute can associate with more than one rows of Μ𝑠 (resp. Μ𝑒)). Let Μ𝑠
𝑖  (resp. Μ𝑒

𝑖 ) be the 𝑖th row 

of the matrix Μ𝑠 (resp. Μ𝑒). Assume the signing attribute set is 𝑈𝑠̃ and ℛ𝑠(𝑈
𝑠̃) = 1. The algorithm 

contains two phases as follows: 

(1) 𝐹𝑜𝑔_𝑆𝑖𝑔𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 (𝑃𝑃, {𝑃𝑆𝐾𝑢𝑖𝑑,𝑘
𝑠 }

𝑘∈𝐼𝐴
𝑠 , 𝑃𝐾𝑢𝑖𝑑 , ℛ𝑠, ℛ𝑒) . This algorithm is performed in the fog 

node FD as follows: 

• It first computes a vector 𝑎⃗ = (𝑎1, 𝑎2, … , 𝑎ℓ𝑠
) ∈ ℤ𝑝

ℓ𝑠 such that 𝑎⃗ ∙ Μ𝑠 = 1⃗⃗ since ℛ𝑠(𝑈
𝑠̃) = 1. 

Note that 𝑎𝑖 = 0  for all 𝑖  where 𝜌𝑠(𝑖) ∉ 𝑈𝑠̃ . Then the algorithm chooses 𝑏⃗⃗ =

(𝑏1, 𝑏2, … , 𝑏ℓ𝑠
) ∈ ℤ𝑝

ℓ𝑠  such that ∑ 𝑏𝑖Μ𝑠
𝑖

𝑖∈[ℓ𝑠] = 0⃗⃗. 



Sensors 2018, 18, 1609 16 of 36 

 

• The algorithm randomly chooses 𝑠𝑢𝑖𝑑
′

𝑅
← ℤ𝑝

∗  and re-randomize the proxy secret key 

𝑃𝑆𝐾𝑢𝑖𝑑,𝑎𝑖𝑑
𝑠  as 

𝑃𝑆𝑢𝑖𝑑,𝑘 = 𝑃𝑆𝑢𝑖𝑑,𝑘(𝜃
𝑧𝑢𝑖𝑑)𝑠𝑢𝑖𝑑

′
= 𝑔𝛼𝑘𝑧𝑢𝑖𝑑𝜃𝑧𝑢𝑖𝑑𝑠𝑢𝑖𝑑

′′
, 

𝑃𝑉𝑢𝑖𝑑 = 𝑃𝑉𝑢𝑖𝑑(𝑔𝑧𝑢𝑖𝑑)𝑠𝑢𝑖𝑑
′

= 𝑔𝑧𝑢𝑖𝑑𝑠𝑢𝑖𝑑
′′

, 

{𝑃𝐹𝑢𝑖𝑑,𝑥 = 𝑃𝐹𝑢𝑖𝑑,𝑥
1 (𝑃𝐹𝑢𝑖𝑑,𝑥

2 )
𝑠𝑢𝑖𝑑
′

= 𝐴𝑥

𝑧𝑢𝑖𝑑𝑠𝑢𝑖𝑑
′′

}
𝑥∈𝑈𝑠̃

, 

𝑉𝑖
𝑧𝑢𝑖𝑑𝑠𝑢𝑖𝑑

′′

= 𝑉𝑖
𝑠𝑢𝑖𝑑𝑧𝑢𝑖𝑑(𝑉𝑖

𝑧𝑢𝑖𝑑)
𝑠𝑢𝑖𝑑
′

, where 𝑠𝑢𝑖𝑑
′′ = 𝑠𝑢𝑖𝑑 + 𝑠𝑢𝑖𝑑

′ . 

• The fog node randomly picks 𝑤′
𝑅
← ℤ𝑝

∗ . Then it selects {𝑟1
′, 𝑟2

′, … , 𝑟ℓ𝑒

′ }
𝑅
←ℤ𝑝 , 

{𝜆1
′ , 𝜆2

′ , … , 𝜆ℓ𝑒

′ }
𝑅
←ℤ𝑝 , and computes the following terms: {𝐶2,𝑖

′ = 𝜃𝜆𝑖
′
𝐴

𝜌𝑒(𝑖)

−𝑟𝑖
′

, 𝐷𝑖
′ = 𝑔𝑟𝑖

′
}
𝑖∈[ℓ𝑒]

, 

{𝑆1,𝑖
′ = 𝑃𝑉𝑢𝑖𝑑

𝑎𝑖 𝑔𝑧𝑢𝑖𝑑𝑏𝑖 = 𝑔𝑧𝑢𝑖𝑑(𝑎𝑖𝑠𝑢𝑖𝑑
′′ +𝑏𝑖)}

𝑖∈[ℓ𝑠]
. 𝑆2

′ =

(∏ 𝑃𝑆𝑢𝑖𝑑,𝑘𝐼𝐴
𝑠 ) (∏ (𝑃𝐹𝑢𝑖𝑑,𝜌𝑠(𝑖)

𝑉
𝑖

𝑧𝑢𝑖𝑑𝑠𝑢𝑖𝑑
′′

)
𝑎𝑖

(𝑃𝐹𝑢𝑖𝑑,𝜌𝑠(𝑖)
2 𝑉𝑖

𝑧𝑢𝑖𝑑)
𝑏𝑖

𝑖∈[ℓ𝑠]
). 

FD outputs the partially signcrypted ciphertext 𝐶𝑇′ = {𝑤′, {𝐶2,𝑖
′ , 𝐷𝑖

′, 𝜆𝑖
′ , 𝑟𝑖

′}
𝑖∈[ℓ𝑒]

, {𝑆1,𝑖
′ }

𝑖∈[ℓ𝑠]
, 𝑆2

′} to 

the user. 

(2) 𝑈𝑠𝑒𝑟_𝑆𝑖𝑔𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛(ℳ,𝑃𝑃, {𝑃𝐾𝑎𝑖𝑑}𝑎𝑖𝑑∈𝐼𝐴
𝑒 , 𝑆𝐾𝑢𝑖𝑑 , 𝐶𝑇′) . The user randomly picks 𝑤

𝑅
← ℤ𝑝

∗  and 

{𝑟1, 𝑟2, … , 𝑟ℓ𝑒
}

𝑅
←ℤ𝑝 . Then the user computes 𝜆𝑖 = Μ𝑒

𝑖 𝜀  where 𝜀 = (𝑤, 𝜀2, … , 𝜀𝑛𝑒
) ∈ ℤ𝑝

𝑛𝑒 . The 

algorithm computes the following terms: 

𝐶0 = ℳ ∏ ∆𝑘
𝑤

𝑘∈𝐼𝐴
𝑒 , 𝐶1 = 𝑔𝑤 , {𝐶2,𝑖

′′ = 𝜆𝑖 − 𝜆𝑖
′ , 𝐷𝑖

′′ = 𝑟𝑖 − 𝑟𝑖
′}

𝑖∈[ℓ𝑒]
, 𝜋 = 𝐻1(𝐶1) , 𝐶3 = (𝛾1𝛾2

𝜋)𝑤 , 

{𝑆1,𝑖 = (𝑆1,𝑖
′ )

1 𝑧𝑢𝑖𝑑⁄
}
𝑖∈[ℓ𝑠]

, 𝐻2(∏ 𝑆1,𝑖𝑖∈[ℓ𝑠] , 𝑡𝑡, ℛ𝑠, ℛ𝑒) = (𝑐1, 𝑐2, … , 𝑐𝑙) ∈ {0,1}𝑙 , 𝐻3(𝐶0, 𝐶1, 𝐶3, ℛ𝑠 , ℛ𝑒) = 𝛽 

and 𝑆2 = (𝑆2
′)1 𝑧𝑢𝑖𝑑⁄ (𝑘0 ∏ 𝑘𝑖

𝑐𝑖𝑙
𝑖=1 )

𝑤
𝐶3

𝛽
. 

The ciphertext is 𝐶𝑇 = {𝐶0, 𝐶1, {𝐶2,𝑖
′ , 𝐶2,𝑖

′′ , 𝐷𝑖
′ , 𝐷𝑖

′′}
𝑖∈[ℓ𝑒]

, {𝑆1,𝑖}𝑖∈[ℓ𝑠]
, 𝑆2, 𝑡𝑡}. 

5.5. Data Designcryption 

If the owner’s attributes satisfy the signing predicate implicitly contained in the ciphertext, then 

any party can successfully verify the ciphertext (public verifiability). If the receiver’s decryption 

attributes satisfy the encryption predicates embedded in the ciphertext, then the decryption phase 

can be launched to access the plaintext. 

𝐷𝑒𝑆𝑖𝑔𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 (𝑃𝑃, 𝐶𝑇, 𝑃𝐾𝑢𝑖𝑑 , {𝑃𝑆𝐾𝑢𝑖𝑑,𝑘
𝑑 }

𝑘∈𝐼𝐴
𝑒 , 𝑆𝐾𝑢𝑖𝑑). Assume that 𝑡ℎ𝑟𝑒𝑡𝑡 is a predefined time 

threshold for designcryption and 𝑡𝑡̃ is the current time. If |𝑡𝑡̃ − 𝑡𝑡| > 𝑡ℎ𝑟𝑒𝑡𝑡  or ℛ𝑒(𝑈
𝑑̃) ≠ 1, the 

algorithm returns ⊥. Otherwise, the algorithm performs as follows. Note that 𝐼𝐴
𝑠 (resp. 𝐼𝐴

𝑒) can be 

obtained from the implicitly contained predicate ℛ𝑠 (resp. ℛ𝑒). 

𝑉𝑒𝑟𝑖𝑓𝑦(𝑃𝑃, 𝐶𝑇). This verification algorithm can be performed in FD or other trusted third party 

since it only takes the ciphertext and public parameter 𝑃𝑃 as the input. 

The algorithm samples {𝜏2, 𝜏3, … , 𝜏𝑛𝑠
}

𝑅
← ℤ𝑝

∗  and computes 𝜛𝑖 = (1, 𝜏2, 𝜏3, … , 𝜏𝑛𝑠
) ∙ Μ𝑠

𝑖 , where 𝑖 ∈

[ℓ𝑠] . 𝐻1(𝐶1) = 𝜋  and 𝐻2(∏ 𝑆1,𝑖𝑖∈[ℓ𝑠]
, 𝑡𝑡, ℛ𝑠, ℛ𝑒) = (𝑐1, 𝑐2, … , 𝑐𝑙) , and 𝐻3(𝐶0, 𝐶1, 𝐶3, ℛ𝑠, ℛ𝑒) = 𝛽 . Then 

the algorithm checks the validity of the ciphertext using the following equation: 

∏ ∆𝑘𝐼𝐴
𝑠 =

𝑒(𝑆2,𝑔)

𝑒(𝑘0 ∏ 𝑘𝑖
𝑐𝑖𝑙

𝑖=1 ,𝐶1)𝑒((𝛾1𝛾2
𝜋)𝛽,𝐶1)(∏ 𝑒(𝐴𝜌𝑠(𝑖)𝑉𝑖𝜃

𝜛𝑖𝑁𝐴
𝑠

,𝑆1,𝑖)
ℓ𝑠
𝑖=1

)
, where 𝑁𝐴

𝑠 = |𝐼𝐴
𝑠|. 

If it is invalid, return ⊥, otherwise, proceed 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 (𝑃𝑃, 𝐶𝑇, 𝑃𝐾𝑢𝑖𝑑 , {𝑃𝑆𝐾𝑢𝑖𝑑,𝑘}𝑘∈𝐼𝐴
𝑒 , 𝑆𝐾𝑢𝑖𝑑) 

algorithm as follows: 

• 𝑃𝑎𝑟𝑡𝑖𝑎𝑙𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 (𝑃𝑃, 𝐶𝑇, 𝑃𝐾𝑢𝑖𝑑 , {𝑃𝑆𝐾𝑢𝑖𝑑,𝑘
𝑑 }

𝑘∈𝐼𝐴
𝑒). If the user’s attributes satisfy the encryption 

predicate, the cloud server sends the ciphertext to the FD. FD chooses a set of constants 𝜎⃗ =

(𝜎1, 𝜎2, … , 𝜎ℓ𝑒
) ∈ ℤ𝑝

ℓ𝑒  such that ∑ 𝜎𝑖Μ𝑒
𝑖ℓ𝑒

𝑖=1 = 1⃗⃗, where 𝜎𝑖 = 0 for all 𝑖 where 𝜌𝑒(𝑖) ∉ 𝑈𝑑̃. Then it 
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computes: 𝐶𝑇𝑥 =
∏ 𝑒(𝐾𝑢𝑖𝑑,𝑘

𝑑 ,𝐶1)𝑘∈𝐼𝐴
𝑒

∏ ∏ [𝑒(𝐶2,𝑖
′ 𝜃

𝐶2,𝑖
′′

𝐴
𝜌𝑒(𝑖)

−𝐷𝑖
′′

,𝑔𝑑𝑢𝑖𝑑)𝑒(𝐷𝑖
′𝑔

𝐷𝑖
′′

,𝐹𝑢𝑖𝑑,𝜌𝑒(𝑖)
𝑑 )]

𝜎𝑖𝑁𝐴
𝑒

𝑖∈𝐼𝐴𝑘𝑘∈𝐼𝐴
𝑒

, where 𝐼𝐴𝑘
 is defined as 

𝐼𝐴𝑘
= {𝑖: 𝜌𝑒(𝑖) ∈ 𝐴𝐴𝑘̃}. FD sends 𝐶𝑇𝑝 = {𝐶0, 𝐶𝑇𝑥} to the user. 

• 𝐹𝑢𝑙𝑙𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛(𝑃𝑃, 𝐶𝑇𝑝, 𝑆𝐾𝑢𝑖𝑑). This algorithm is performed on the user side. After receiving 

𝐶𝑇𝑝, the data user recovers the message ℳ as: ℳ =
𝐶0

(𝐶𝑇𝑥)𝑧𝑢𝑖𝑑
. 

Correctness 

Assume the identity of signcryptor (data owner) is 𝑑𝑜. If |𝑡𝑡̃ − 𝑡𝑡| ≤ 𝑡ℎ𝑟𝑒𝑡𝑡 and ℛ𝑒(𝑈
𝑑̃) = 1, 

then the ciphertext can be verified and decrypted as explained subsequently. 

𝑆2 = (𝑆2
′)1 𝑧𝑑𝑜⁄ (𝑘0 ∏ 𝑘𝑖

𝑏𝑖

𝑙

𝑖=1

)

𝑤

𝐶3
𝛽

= (∏ 𝑔𝛼𝑘𝜃𝑠𝑑𝑜
′′

𝐼𝐴
𝑠

)( ∏ (𝐴
𝜌𝑠(𝑖)

𝑠𝑑𝑜
′′

𝑉𝑖
𝑠𝑑𝑜
′′

)
𝑎𝑖

(𝐴𝜌𝑠(𝑖)𝑉𝑖)
𝑏𝑖

𝑖∈[ℓ𝑠]

)(𝑘0 ∏ 𝑘𝑖
𝑐𝑖

𝑙

𝑖=1

)

𝑤

(𝛾1𝛾2
𝜋)𝑤𝛽

= (∏ 𝑔𝛼𝑘

𝐼𝐴
𝑠

)𝜃𝑠𝑑𝑜
′′ 𝑁𝐴

𝑠
( ∏ (𝐴𝜌𝑠(𝑖)𝑉𝑖)

𝑎𝑖𝑠𝑑𝑜
′′ +𝑏𝑖

𝑖∈[ℓ𝑠]

)(𝑘0 ∏𝑘𝑖
𝑐𝑖

𝑙

𝑖=1

)

𝑤

(𝛾1𝛾2
𝜋)𝑤𝛽  

 

Since 𝑎⃗ ∙ Μ𝑠 = 1⃗⃗ and ∑ 𝑏𝑖Μ𝑠
𝑖

𝑖∈[ℓ𝑠] = 0⃗⃗, we have 

∑ 𝜛𝑖(𝑠𝑑𝑜
′′ 𝑎𝑖 + 𝑏𝑖)

ℓ𝑠
𝑖=1 = ∑ (1, 𝜏2, 𝜏3, … , 𝜏𝑛𝑠

) ∙ Μ𝑠
𝑖(𝑠𝑑𝑜

′′ 𝑎𝑖 + 𝑏𝑖)
ℓ𝑠
𝑖=1 = (1, 𝜏2, 𝜏3, … , 𝜏𝑛𝑠

)𝑠𝑑𝑜
′′ ∑ Μ𝑠

𝑖𝑎𝑖
ℓ𝑠
𝑖=1 +

(1, 𝜏2, 𝜏3, … , 𝜏𝑛𝑠
)∑ Μ𝑠

𝑖𝑏𝑖
ℓ𝑠
𝑖=1 = 𝑠𝑑𝑜

′′ . Thus we have 

𝑒(𝑆2, 𝑔)

𝑒(𝑘0 ∏ 𝑘𝑖
𝑐𝑖𝑙

𝑖=1 , 𝐶1)𝑒((𝛾1𝛾2
𝜋)𝛽 , 𝐶1)(∏ 𝑒(𝐴𝜌𝑠(𝑖)𝑉𝑖𝜃

𝜛𝑖𝑁𝐴
𝑠
, 𝑆1,𝑖)

ℓ𝑠
𝑖=1 )

=

𝑒 ((∏ 𝑔𝛼𝑘
𝐼𝐴
𝑠 )𝜃𝑠𝑑𝑜

′′ 𝑁𝐴
𝑠
(∏ (𝐴𝜌𝑠(𝑖)𝑉𝑖)

𝑎𝑖𝑠𝑑𝑜
′′ +𝑏𝑖

𝑖∈[ℓ𝑠] ) (𝑘0 ∏ 𝑘𝑖
𝑐𝑖𝑙

𝑖=1 )
𝑤
(𝛾1𝛾2

𝜋)𝑤𝛽 , 𝑔)

𝑒(𝑘0 ∏ 𝑘𝑖
𝑐𝑖𝑙

𝑖=1 , 𝑔𝑤)𝑒((𝛾1𝛾2
𝜋)𝛽 , 𝑔𝑤)(∏ 𝑒(𝐴𝜌𝑠(𝑖)𝑉𝑖, 𝑔

𝑎𝑖𝑠𝑑𝑜
′′ +𝑏𝑖)

ℓ𝑠
𝑖=1 )(∏ 𝑒(𝜃𝜛𝑖 , 𝑔𝑎𝑖𝑠𝑑𝑜

′′ +𝑏𝑖)
ℓ𝑠
𝑖=1 )

𝑁𝐴
𝑠

=
𝑒 ((∏ 𝑔𝛼𝑘

𝐼𝐴
𝑠 )𝜃𝑠𝑑𝑜

′′ 𝑁𝐴
𝑠
, 𝑔)

(𝑒(𝜃, 𝑔)𝑠𝑑𝑜
′′

)
𝑁𝐴

𝑠 = ∏∆𝑘

𝐼𝐴
𝑠

 

 

This demonstrates the correctness of 𝑉𝑒𝑟𝑖𝑓𝑦 algorithm. Assume the identity of designcryptor 

(data user) is 𝑢𝑖𝑑. If ∑ 𝜎𝑖𝜆𝑖
ℓ𝑒
𝑖=1 = 𝑤, then 

∏ ∏ [𝑒 (𝐶2,𝑖
′ 𝜃𝐶2,𝑖

′′
𝐴

𝜌𝑒(𝑖)

−𝐷𝑖
′′

, 𝑔𝑑𝑢𝑖𝑑) 𝑒 (𝐷𝑖
′𝑔𝐷𝑖

′′
, 𝐹𝑢𝑖𝑑,𝜌𝑒(𝑖)

𝑑 )]
𝜎𝑖𝑁𝐴

𝑒

𝑖∈𝐼𝐴𝑘𝑘∈𝐼𝐴
𝑒

= ∏ ∏ [𝑒 (𝜃𝜆𝑖𝐴𝜌𝑒(𝑖)
−𝑟𝑖 , 𝑔𝑑𝑢𝑖𝑑) 𝑒(𝑔𝑟𝑖 , 𝐹𝑢𝑖𝑑,𝜌𝑒(𝑖)

𝑑 )]
𝜎𝑖𝑁𝐴

𝑒

𝑖∈𝐼𝐴𝑘𝑘∈𝐼𝐴
𝑒

= ∏ ∏ [𝑒(𝜃𝜆𝑖 , 𝑔𝑑𝑢𝑖𝑑)]
𝜎𝑖𝑁𝐴

𝑒

𝑖∈𝐼𝐴𝑘𝑘∈𝐼𝐴
𝑒

= 𝑒(𝜃, 𝑔)𝑤𝑁𝐴
𝑒𝑑𝑢𝑖𝑑  

 

Hence 𝐶𝑇𝑥 =
∏ 𝑒(𝐾𝑢𝑖𝑑,𝑘

𝑑 ,𝐶1)𝑘∈𝐼𝐴

∏ ∏ [𝑒(𝐶2,𝑖
′ 𝜃

𝐶2,𝑖
′′

𝐴
𝜌𝑒(𝑖)

−𝐷𝑖
′′

,𝑔𝑑𝑢𝑖𝑑)𝑒(𝐷𝑖
′𝑔

𝐷𝑖
′′

,𝐹𝑢𝑖𝑑,𝜌𝑒(𝑖)
𝑑 )]

𝜎𝑖𝑁𝐴
𝑒

𝑖∈𝐼𝐴𝑘𝑘∈𝐼𝐴
𝑒

=
∏ 𝑒(𝑔𝛼𝑘 𝑧𝑢𝑖𝑑⁄ 𝜃𝑑𝑢𝑖𝑑 ,𝑔𝑤)𝑘∈𝐼𝐴

𝑒

𝑒(𝜃,𝑔)𝑤𝑁𝐴
𝑒 𝑑𝑢𝑖𝑑

=

∏ 𝑒(𝑔𝛼𝑘 , 𝑔)𝑤 𝑧𝑢𝑖𝑑⁄
𝑘∈𝐼𝐴

𝑒 = ∏ ∆𝑘
𝑤 𝑧𝑢𝑖𝑑⁄

𝑘∈𝐼𝐴
𝑒  and 

𝐶0

(𝐶𝑇𝑥)𝑧𝑢𝑖𝑑
=

ℳ ∏ ∆𝑘
𝑤

𝑘∈𝐼𝐴
𝑒

∏ ∆𝑘
𝑤

𝑘∈𝐼𝐴
𝑒

= ℳ . This exhibits the correctness 

of 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 algorithm. 
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5.6. Attribute Revocation 

Suppose the attribute 𝑥 of user 𝑈 is revoked from 𝐴𝐴𝑘. 

𝑈𝑝𝑆𝑒𝑐𝑟𝑒𝑡𝐾𝑒𝑦𝐺𝑒𝑛(𝑃𝐾𝑢𝑖𝑑 , 𝑆𝐾𝑘 , 𝑆𝐾𝑢𝑖𝑑,𝑘). 𝐴𝐴𝑘 randomly chooses a new attribute version key 𝜑𝑥
′

𝑅
← ℤ𝑝  and computes the updated attribute public key 𝐴𝑥

′ = 𝑔𝜑𝑥
′

. 𝐴𝐴𝑗  sets 𝑑𝑈𝐾𝑢𝑖𝑑,𝑥 =

𝑔𝑑𝑢𝑖𝑑(𝜑𝑥
′ −𝜑𝑥), 𝑠𝑈𝐾𝑢𝑖𝑑,𝑥 = 𝑔𝑠𝑢𝑖𝑑(𝜑𝑥

′ −𝜑𝑥) for the non-revoked users to update their secret decryption and 

signing keys. 

If there exists 𝑖  such that 𝜌𝑒(𝑖) = 𝑥 , namely the attribute 𝑥  of 𝐴𝐴𝑘  is selected as the 

encryption attribute, then 𝐴𝐴𝑘  queries 𝐷𝑖
′  where 𝜌𝑒(𝑖) = 𝑥 . Then it computes 𝑐𝑈𝐾 = {𝑐𝑈𝐾𝑖 =

(𝐷𝑖
′)𝜑𝑥−𝜑𝑥

′
}
𝜌𝑒(𝑖)=𝑥

, and sets 𝑠𝑔𝑈𝐾 =⊥. 

Otherwise, if 𝑥  is selected as the signing attribute, 𝐴𝐴𝑘  sets 𝑐𝑈𝐾 =⊥  and 𝑠𝑔𝑈𝐾 =

∏ 𝑆1,𝑖
𝜑𝑥

′ −𝜑𝑥ℒ
𝑖=1 , where ℒ is the set consisting of all the rows that 𝜌𝑠(𝑖) = 𝑥. 

𝐴𝐴𝑘 sends ciphertext update keys 𝑐𝑈𝐾, 𝑠𝑈𝐾 to the cloud server to update the corresponding 

ciphertext. 

𝑈𝑝𝑆𝑒𝑐𝑟𝑒𝑡𝐾𝑒𝑦(𝑆𝐾𝑢𝑖𝑑,𝑘, 𝑠𝑈𝐾𝑢𝑖𝑑,𝑥, 𝑑𝑈𝐾𝑢𝑖𝑑,𝑥) . Upon receiving the update keys 𝑠𝑈𝐾𝑢𝑖𝑑,𝑥  and 

𝑑𝑈𝐾𝑢𝑖𝑑,𝑥, the non-revoked user 𝑈𝑢𝑖𝑑 ≠ 𝑈 then update his/her secret signing key or decryption key as 

follows: 

If 𝑥 ∈ 𝑈𝑠̃, 𝐹𝑢𝑖𝑑,𝑥
𝑠 ′

= 𝐹𝑢𝑖𝑑,𝑥
𝑠 𝑠𝑈𝐾𝑢𝑖𝑑,𝑥 = (𝐴𝑥

′ )𝑠𝑢𝑖𝑑. 

If 𝑥 ∈ 𝑈𝑑̃, 𝐹𝑢𝑖𝑑,𝑥
𝑑 ′

= 𝐹𝑢𝑖𝑑,𝑥
𝑑 𝑑𝑈𝐾𝑢𝑖𝑑,𝑥 = (𝐴𝑥

′ )𝑑𝑢𝑖𝑑 . 

𝑈𝑝𝐶𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡(𝐶𝑇, 𝑐𝑈𝐾, 𝑠𝑈𝐾) . Upon receiving 𝑐𝑈𝐾, 𝑠𝑈𝐾 , the cloud server updates the 

ciphertext to contain the latest attribute version key as follows: 

If 𝑐𝑈𝐾 = {𝑐𝑈𝐾𝑖 = (𝐷𝑖
′)𝜑𝑥−𝜑𝑥

′
}
𝜌𝑒(𝑖)=𝑥

 and 𝑠𝑔𝑈𝐾 =⊥ , the server randomly chooses {𝑟𝑖
′′ ∈

ℤ𝑝}𝜌𝑒(𝑖)=𝑥
 and computes 𝐶2,𝑖

′ = 𝐶2,𝑖
′ 𝑐𝑈𝐾𝑖𝐴𝜌𝑒(𝑖)

′ −𝑟𝑖
′′

= 𝜃𝜆𝑖
′
𝐴𝜌𝑒(𝑖)

′ −(𝑟𝑖
′+𝑟𝑖

′′)
. 

𝐷𝑖
′ = 𝐷𝑖

′𝑔𝑟𝑖
′′

= 𝑔𝑟𝑖
′+𝑟𝑖

′′
, where 𝜌𝑒(𝑖) = 𝑥. 

Otherwise, the cloud server updates the signature component 𝑆2  as: 𝑆2 = 𝑆2𝑠𝑔𝑈𝐾 =

(∏ 𝑔𝛼𝑘𝜃𝑠𝑑𝑜
′′

𝐼𝐴
𝑠 ) (∏ (𝐴𝜌𝑠(𝑖)𝑉𝑖)

𝑎𝑖𝑠𝑑𝑜
′′ +𝑏𝑖

𝑖∈[ℓ𝑠] ) (𝑘0 ∏ 𝑘𝑖
𝑐𝑖𝑙

𝑖=1 )
𝑤
𝐶3

𝛽
𝑠𝑔𝑈𝐾 =

(∏ 𝑔𝛼𝑘𝜃𝑠𝑑𝑜
′′

𝐼𝐴
𝑠 ) (∏ (𝐴𝜌𝑠(𝑖))

𝑎𝑖𝑠𝑑𝑜
′′ +𝑏𝑖

𝑖∈[ℓ𝑠]\ℒ ) (∏ (𝐴𝜌𝑠(𝑖)
′ )

𝑎𝑖𝑠𝑑𝑜
′′ +𝑏𝑖

𝑖∈ℒ ) (∏ 𝑉𝑖
𝑎𝑖𝑠𝑑𝑜

′′ +𝑏𝑖
𝑖∈[ℓ𝑠] ) (𝑘0 ∏ 𝑘𝑖

𝑐𝑖𝑙
𝑖=1 )

𝑤
𝐶3

𝛽
. 

Correctness of Attribute Revocation. 

By running 𝑈𝑝𝑆𝑒𝑐𝑟𝑒𝑡𝐾𝑒𝑦(𝑆𝐾𝑢𝑖𝑑,𝑘 , 𝑠𝑈𝐾𝑢𝑖𝑑,𝑥 , 𝑑𝑈𝐾𝑢𝑖𝑑,𝑥), the secret signing and decryption keys of 

non-revoked user 𝑈𝑢𝑖𝑑  are associated with the new attribute version key 𝜑𝑥
′ , which is the same as 

the updated ciphertext components {𝐶2,𝑖
′ = 𝜃𝜆𝑖

′
𝐴𝜌𝑒(𝑖)

′ −(𝑟𝑖
′+𝑟𝑖

′′)
}
𝜌𝑒(𝑖)=𝑥

 or 𝑆2 =

(∏ 𝑔𝛼𝑘𝜃𝑠𝑑𝑜
′′

𝐼𝐴
𝑠 ) (∏ (𝐴𝜌𝑠(𝑖)

)
𝑎𝑖𝑠𝑑𝑜

′′ +𝑏𝑖
𝑖∈[ℓ𝑠]\ℒ

) (∏ (𝐴𝜌𝑠(𝑖)
′ )

𝑎𝑖𝑠𝑑𝑜
′′ +𝑏𝑖

𝑖∈ℒ ) (∏ 𝑉𝑖
𝑎𝑖𝑠𝑑𝑜

′′ +𝑏𝑖
𝑖∈[ℓ𝑠]

) (𝑘0 ∏ 𝑘𝑖
𝑐𝑖𝑙

𝑖=1 )
𝑤
𝐶3

𝛽
. 

For verification, since the updated signature component 𝑆2 is associated with 𝐴𝜌𝑠(𝑖)
′  for 𝑖 such 

that 𝜌𝑠(𝑖) = 𝑥 , we have 
𝑒(𝑆2,𝑔)

𝑒(𝑘0 ∏ 𝑘𝑖
𝑐𝑖𝑙

𝑖=1 ,𝐶1)𝑒((𝛾1𝛾2
𝜋)𝛽,𝐶1)(∏ 𝑒(𝐴𝜌𝑠(𝑖),𝑆1,𝑖)𝑖∈[ℓ𝑠]\ℒ )(∏ 𝑒(𝐴𝜌𝑠(𝑖)

′ ,𝑆1,𝑖)𝑖∈ℒ )(∏ 𝑒(𝑉𝑖𝜃
𝜛𝑖𝑁𝐴

𝑠
,𝑆1,𝑖)𝑖∈[ℓ𝑠] )

= ∏ ∆𝑘𝐼𝐴
𝑠 , which 

exhibits the correctness of 𝑉𝑒𝑟𝑖𝑓𝑦 algorithm. 

Additionally, the operations 𝐶2,𝑖
′ = 𝐶2,𝑖

′ 𝑐𝑈𝐾𝑖𝐴𝜌𝑒(𝑖)
′ −𝑟𝑖

′′

 and 𝐷𝑖
′ = 𝐷𝑖

′𝑔𝑟𝑖
′′

= 𝑔𝑟𝑖
′+𝑟𝑖

′′
 are equivalent 

to assigning a new random number 𝑟𝑖
′ + 𝑟𝑖

′′ to the corresponding components of ciphertext. Then in 

𝑃𝑎𝑟𝑡𝑖𝑎𝑙𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 (𝑃𝑃, 𝐶𝑇, 𝑃𝐾𝑢𝑖𝑑 , {𝑃𝑆𝐾𝑢𝑖𝑑,𝑘
𝑑 }

𝑘∈𝐼𝐴
𝑒)  algorithm, we have 

𝑒 (𝐶2,𝑖
′ 𝜃𝐶2,𝑖

′′
𝐴𝜌𝑒(𝑖)

′ −𝐷𝑖
′′

, 𝑔𝑑𝑢𝑖𝑑) 𝑒 (𝐷𝑖
′𝑔𝐷𝑖

′′
, 𝐹𝑢𝑖𝑑,𝜌𝑒(𝑖)

𝑑 ) = 𝑒 (𝜃𝜆𝑖𝐴𝜌𝑒(𝑖)
′ −𝑟𝑖−𝑟𝑖

′′

, 𝑔𝑑𝑢𝑖𝑑) 𝑒 (𝑔𝑟𝑖+𝑟𝑖
′′
, (𝐴𝜌𝑒(𝑖)

′ )
𝑑𝑢𝑖𝑑) =

𝑒(𝜃𝜆𝑖 , 𝑔𝑑𝑢𝑖𝑑) for 𝑖 such that 𝜌𝑒(𝑖) = 𝑥, which exhibits the correctness of 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 algorithm. 
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6. Security Analysis 

In this section, we state the security of our OMDAC-ABSC scheme in the following theorems. In 

Theorems 1 and 2, we prove the message confidentiality and ciphertext unforgeability of our scheme 

respectively. In Theorem 3 we demonstrate the signcryptor privacy. Then in Theorems 4 and 5, we 

analyze the collusion resistance and revocation security. 

Throughout this section, assume 𝑇𝑒 is the cost time for one exponentiation in group 𝔾 or 𝔾𝑇, 

and 𝑇𝑝 is the cost time for one pairing operation. ℓ𝑒,𝑚, 𝑛𝑒,𝑚, ℓ𝑠,𝑚, 𝑛𝑠,𝑚 are the maximum values of 

{ℓ𝑒 , 𝑛𝑒 , ℓ𝑠, 𝑛𝑠}. Suppose that the Hash functions 𝐻1, 𝐻2, 𝐻3 are collision resistant. 

6.1. Message Confidentiality 

Based on the security model defined in Definition 8 and Theorem 1, we can prove that our 

proposed scheme guarantees the message confidentiality under the hardness of the q-PBDHE 

assumption. 

Theorem 1. If an adversary 𝒜 can break (𝑇, 𝑞𝑠𝑘 , 𝑞𝑝𝑠𝑘, 𝑞𝑆𝐶 , 𝑞𝐷𝑆, 𝜖)-IND-sEP-CCA2 security of our scheme, 

then there is an algorithm ℬ that can solve the q-PBDHE assumption with an advantage 𝜖′ =
1

2
𝜖 −

𝑞𝐷𝑆

𝑝
 in a 

time 𝑇′ = 𝑇 + 𝑂(ℓ𝑒,𝑚𝑛𝑒,𝑚𝑢𝑚 + (𝑛𝑒,𝑚 + |𝑈|ℓ𝑒,𝑚𝑛𝑒,𝑚
2 )𝑞𝑠𝑘 + (|𝑈| + ℓ𝑠,𝑚)𝑞𝑝𝑠𝑘 + (|𝑈| + 𝑙 + ℓ𝑠,𝑚 +

ℓ𝑒,𝑚)𝑞𝑆𝐶 + 𝑞𝐷𝑆)𝑇
𝑒 + 𝑂(𝑞𝐷𝑆)𝑇

𝑝. 

Proof. Assume 𝒜 can (𝑇, 𝑞𝑠𝑘 , 𝑞𝑝𝑠𝑘 , 𝑞𝑆𝐶 , 𝑞𝐷𝑆, 𝜖) break our scheme, we will construct the algorithm ℬ 

as follows: ℬ is given with the q-PBDHE challenge instance 𝒴⃗. The challenger 𝒞 runs 𝒢𝒢(1𝑘) →

(𝑒, 𝑝, 𝔾, 𝔾𝑇)  to generate the bilinear group and chooses 𝒷 ∈ {0,1} . If 𝒷 = 0 , 𝒞  sends (𝒴⃗, 𝛺 =

𝑒(𝑔, 𝑔)𝑎𝑞+1𝑤) to ℬ; otherwise it sends (𝒴⃗, 𝛺
𝑅
←𝔾𝑇) to ℬ. 

𝐼𝑛𝑖𝑡. The same as defined in Definition 8. Assume ℛ𝑒
∗ = (M𝑒

∗ , 𝜌𝑒
∗) is the challenge encryption 

access structure over all the attributes selected from the set of authorities 𝐼𝐴
∗𝑒. Assume M𝑒

∗  is a 

ℓ𝑒
∗ × 𝑛𝑒

∗  matrix and 𝑛𝑒
∗ ≤ 𝑞. 

𝑆𝑒𝑡𝑢𝑝. The adversary chooses a set 𝑆𝐴
′ ⊂ 𝑆𝐴 consisting of the corrupted authorities, and sends 

𝑆𝐴
′  to the simulator ℬ. For each uncorrupted authority 𝐴𝐴𝑘 ∈ 𝑆𝐴 − 𝑆𝐴

′ , ℬ randomly chooses 𝛼𝑘
′

𝑅
← ℤ𝑝 

and implicitly sets 𝛼𝑘 = 𝛼𝑘
′ + 𝑎𝑞+1. ℬ publishes ∆𝑘= 𝑒(𝑔, 𝑔)𝛼𝑘 = 𝑒(𝑔𝑎 , 𝑔𝑎𝑞

)𝑒(𝑔, 𝑔)𝛼𝑘
′
. 

Let 𝜓
𝑅
← ℤ𝑝, 𝜃 = 𝑔𝑎, {𝓀0, 𝓀1, … , 𝓀𝑙}, {𝑣1, 𝑣2 … , 𝑣ℓ𝑠,𝑚

}
𝑅
←ℤ𝑝, {𝑘𝑖 = 𝑔𝓀𝑖}

𝑖∈[𝑙]
, {𝑉𝑖 = 𝑔𝑣𝑖}𝑖∈[ℓ𝑠,𝑚] . 𝛾1 =

𝑔𝜓(𝑔𝑎𝑞
)
−1

, 𝛾2 = (𝑔𝑎𝑞
)

1

𝜋∗
, where 𝜋∗ = 𝐻1(𝑔

𝑤). 

ℬ  sends 𝑃𝑃 = {𝑒, 𝑝, 𝔾, 𝔾𝑇 , 𝑔, 𝜃, 𝛾1, 𝛾2, {𝑘0, 𝑘1, … , 𝑘𝑙}, {𝑉1, 𝑉2 … , 𝑉ℓ𝑠,𝑚
}, 𝐻1, 𝐻2, 𝐻3}  to 𝒜 . ℬ 

initializes the empty list 𝐿𝑠𝑘. 

For the authority 𝐴𝐴𝑘 ∈ 𝑆𝐴 − 𝑆𝐴
′ , ℬ  chooses 𝛽𝑘 , 𝛾𝑘

𝑅
← ℤ𝑝  and sets 𝑋𝑘 = 𝑔1 𝛽𝑘⁄ , 𝑌𝑘 = 𝜃1 𝛽𝑘⁄ , 𝑍𝑘 =

𝜃1 𝛾𝑘⁄ . Let 𝒳 be the set consisting of the indexes 𝑖 ∈ [ℓ𝑒
∗ ] with 𝜌𝑒

∗(𝑖) = 𝑥 ∈ 𝐴𝐴𝑘̃. For the attribute 𝑥 

where 𝒳 ≠ ∅, ℬ  chooses 𝜑𝑥

𝑅
←ℤ𝑝  and computes 𝐴𝑥 = 𝑔𝜑𝑥 ∏ ∏ 𝑔

𝑎𝑘M𝑒
∗(𝑖,𝑘)

𝑏𝑖𝑘∈[𝑛𝑒
∗]𝑖∈𝒳 , where M𝑒

∗(𝑖,𝑘)
 is 

the (𝑖, 𝑘)th element of M𝑒
∗. If 𝒳 = ∅, ℬ chooses 𝜑𝑥

𝑅
←ℤ𝑝 and computes 𝐴𝑥 = 𝑔𝜑𝑥 . This assignment 

describes that 𝐴𝑥 = 𝑔𝜑𝑥  for each signing attribute as the signing attributes are different from 

encryption attributes. ℬ  sends 𝑃𝐾𝑘 = {𝑋𝑘, 𝑌𝑘 , 𝑍𝑘 , {𝐴𝑥}𝑥∈𝐴𝐴𝑘̃
} to 𝒜 . For the authority 𝐴𝐴𝑘 ∈ 𝑆𝐴

′ , ℬ 

generates the public keys and secret keys of 𝐴𝐴𝑘 as in the real scheme and sends both the public 

keys and secret keys to 𝒜. 

Phase 1. 

𝑆𝑒𝑐𝑟𝑒𝑡𝐾𝑒𝑦 𝑞𝑢𝑒𝑟𝑦 𝒪𝑠𝑘(𝑈̃, 𝐴𝐴𝑘, 𝑢𝑖𝑑). 𝒜 adaptively queries the secret keys for the attribute set 

𝑈 = 𝑈𝑑̃ ∪ 𝑈𝑠̃  with identity uid to the authority 𝐴𝐴𝑘 . 𝑈𝑑̃  does not satisfy ℛ𝑒
∗  together with any 

keys that can be obtained from corrupted authorities. 
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ℬ checks the list 𝐿𝑠𝑘  that whether the entry (𝑢𝑖𝑑, 𝑈, 𝑃𝐾𝑢𝑖𝑑 , 𝑆𝐾𝑢𝑖𝑑 , 𝑃𝐾𝑢𝑖𝑑,𝑘, 𝑆𝐾𝑢𝑖𝑑,𝑘) exists. If it 

does, ℬ sends 𝑆𝐾𝑢𝑖𝑑  and 𝑆𝐾𝑢𝑖𝑑,𝑘 to the adversary and publishes the public key 𝑃𝐾𝑢𝑖𝑑 and 𝑃𝐾𝑢𝑖𝑑,𝑘. 

(1) Otherwise, ℬ  randomly picks 𝑑𝑢𝑖𝑑
′ , 𝑠𝑢𝑖𝑑

′ , 𝑧𝑢𝑖𝑑  from ℤ𝑝
∗  and chooses a vector 𝑓 =

(𝑓1, 𝑓2, … , 𝑓𝑛𝑒
∗) ∈ ℤ𝑝

𝑛𝑒
∗

 such that 𝑓 = −1 and 𝑓M𝑒
∗𝑖 = 0 for all 𝜌𝑒

∗(𝑖) ∈ 𝑈𝑑̃  since ℛ𝑒
∗(𝑈𝑑̃) = 0. ℬ 

sets 𝑔𝑑𝑢𝑖𝑑 = 𝑔𝑑𝑢𝑖𝑑
′

∏ 𝑔(𝑓𝑖𝑎
𝑞−𝑖+1) 𝑧𝑢𝑖𝑑⁄𝑛𝑒

∗

𝑖=1 , 𝑔𝑠𝑢𝑖𝑑 = 𝑔𝑠𝑢𝑖𝑑
′

𝑔−𝑎𝑞
, and computes 

𝑔1 𝑧𝑢𝑖𝑑⁄ , 𝜃𝑧𝑢𝑖𝑑 , 𝑔𝑧𝑢𝑖𝑑 , {𝑔𝑠𝑢𝑖𝑑𝑣𝑖}𝑖∈[ℓ𝑠,𝑚] as the public key 𝑃𝐾𝑢𝑖𝑑. Then ℬ computes 

𝑃𝐾𝑢𝑖𝑑,𝑘 = {𝑃𝐾𝑢𝑖𝑑,𝑘
1 = 𝑔1 (𝛾𝑘𝑧𝑢𝑖𝑑)⁄ , 𝑃𝐾𝑢𝑖𝑑,𝑘

2 = 𝑔𝛼𝑘 (𝛾𝑘𝑧𝑢𝑖𝑑)⁄ 𝜃𝑑𝑢𝑖𝑑 𝛾𝑘⁄ =

(𝑔
𝛼𝑘

′

𝑧𝑢𝑖𝑑𝑔𝑎𝑑𝑢𝑖𝑑
′

𝑔∑ 𝑓𝑖𝑎
𝑞−𝑖+2𝑛𝑒

∗

2 𝑧𝑢𝑖𝑑⁄ )

1

𝛾𝑘

, 𝑃𝐾𝑢𝑖𝑑,𝑘
3 = 𝑔𝛼𝑘 𝛽𝑘⁄ 𝜃𝑠𝑢𝑖𝑑 𝛽𝑘⁄ = (𝑔𝛼𝑘

′
𝑔𝑎𝑠𝑢𝑖𝑑

′
)

1

𝛽𝑘} , and sets 𝑆𝐾𝑢𝑖𝑑,𝑘  as 

𝐾𝑢𝑖𝑑,𝑘
𝑑 = (𝑃𝐾𝑢𝑖𝑑,𝑘

2 )
𝛾𝑘

= 𝑔
𝛼𝑘

′

𝑧𝑢𝑖𝑑𝑔𝑎𝑑𝑢𝑖𝑑
′

𝑔∑ 𝑓𝑖𝑎
𝑞−𝑖+2𝑛𝑒

∗

2 𝑧𝑢𝑖𝑑⁄ , 𝐾𝑢𝑖𝑑,𝑘
𝑠 = (𝑃𝐾𝑢𝑖𝑑,𝑘

3 )
𝛽𝑘

= 𝑔𝛼𝑘
′
𝑔𝑎𝑠𝑢𝑖𝑑

′
, {𝐹𝑢𝑖𝑑,𝑥

𝑠 =

(𝑔𝑠𝑢𝑖𝑑
′

𝑔−𝑎𝑞
)

𝜑𝑥
}
𝑥∈𝑈𝑠̃∩𝐴𝐴𝑘̃

. For the attribute 𝑥 ∈ 𝑈𝑑̃ ∩ 𝐴𝐴𝑘̃  such that 𝒳 = ∅ , ℬ  computes 𝐹𝑢𝑖𝑑,𝑥
𝑑 =

(𝑔𝑑𝑢𝑖𝑑)𝜑𝑥 . Otherwise, 𝐹𝑢𝑖𝑑,𝑥
𝑑 = 𝑔𝑑𝑢𝑖𝑑𝜑𝑥 ∏ ∏ (𝑔

𝑑𝑢𝑖𝑑
′ 𝑎𝑘

𝑏𝑖 ∏ 𝑔

𝑓𝑗𝑎𝑞+𝑘−𝑗+1

𝑧𝑢𝑖𝑑𝑏𝑖
𝑛𝑒

∗

𝑗=1,𝑘≠𝑗 )

M𝑒
∗(𝑖,𝑘)

𝑘∈[𝑛𝑒
∗]𝑖∈𝒳 . ℬ  sends 

𝑆𝐾𝑢𝑖𝑑 = 𝑧𝑢𝑖𝑑  and 𝑆𝐾𝑢𝑖𝑑,𝑘  to the adversary and publishes the public key 𝑃𝐾𝑢𝑖𝑑  and 𝑃𝐾𝑢𝑖𝑑,𝑘 . ℬ 

inserts (𝑢𝑖𝑑, 𝑈, 𝑃𝐾𝑢𝑖𝑑 , 𝑆𝐾𝑢𝑖𝑑 , 𝑃𝐾𝑢𝑖𝑑,𝑘 , 𝑆𝐾𝑢𝑖𝑑,𝑘) into 𝐿𝑠𝑘. 

𝑃𝑟𝑜𝑥𝑦 𝑆𝑒𝑐𝑟𝑒𝑡𝐾𝑒𝑦 𝑞𝑢𝑒𝑟𝑦 𝒪𝑝𝑠𝑘(𝑈, 𝐴𝐴𝑘, 𝑢𝑖𝑑) . ℬ  checks the list 𝐿𝑠𝑘  that whether the entry 

(𝑢𝑖𝑑, 𝑈̃, 𝑃𝐾𝑢𝑖𝑑 , 𝑆𝐾𝑢𝑖𝑑 , 𝑃𝐾𝑢𝑖𝑑,𝑘, 𝑆𝐾𝑢𝑖𝑑,𝑘) exists. If it does not exist, ℬ issues 𝒪𝑠𝑘(𝑈, 𝐴𝐴𝑘, 𝑢𝑖𝑑) query to 

compute 𝑆𝐾𝑢𝑖𝑑  and 𝑆𝐾𝑢𝑖𝑑,𝑘, and then runs 𝑃𝑥𝑆𝑒𝑐𝑟𝑒𝑡𝐾𝑒𝑦𝐺𝑒𝑛(𝑆𝐾𝑢𝑖𝑑 , 𝑆𝐾𝑢𝑖𝑑,𝑘) and returns 𝑃𝑆𝐾𝑢𝑖𝑑,𝑘 to 

𝒜. Otherwise, ℬ directly performs 𝑃𝑥𝑆𝑒𝑐𝑟𝑒𝑡𝐾𝑒𝑦𝐺𝑒𝑛(𝑆𝐾𝑢𝑖𝑑 , 𝑆𝐾𝑢𝑖𝑑,𝑘) and returns 𝑃𝑆𝐾𝑢𝑖𝑑,𝑘 to 𝒜. 

𝑆𝑖𝑔𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 𝑞𝑢𝑒𝑟𝑦 𝒪𝑆𝐶(ℳ,ℛ𝑠, ℛ𝑒). 𝒜  submits a message ℳ ∈ 𝔾𝑇 , signing and encryption 

predicts ℛ𝑠 = (M𝑠, 𝜌𝑠), ℛ𝑒 = (M𝑒, 𝜌𝑒). ℬ selects a signing attribute set 𝑈𝑠̃ such that ℛ𝑠(𝑈
𝑠̃) = 1. For 

each 𝑘 ∈ 𝐼𝐴
𝑠 , ℬ  computes the secret signing key 𝑆𝐾𝑢𝑖𝑑,𝑘

𝑠  and 𝑃𝐾𝑢𝑖𝑑 , 𝑆𝐾𝑢𝑖𝑑  from 𝒪𝑠𝑘(𝑈, 𝐴𝐴𝑘, 𝑢𝑖𝑑), 

and 𝑃𝑆𝐾𝑢𝑖𝑑,𝑘
𝑠 ← 𝑃𝑥𝑆𝑒𝑐𝑟𝑒𝑡𝐾𝑒𝑦𝐺𝑒𝑛(𝑆𝐾𝑢𝑖𝑑 , 𝑆𝐾𝑢𝑖𝑑,𝑘

𝑠 ), where 𝑢𝑖𝑑 is an arbitrary identity. Then ℬ returns 

the ciphertext 𝐶𝑇 ← 𝑆𝑖𝑔𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 (ℳ,𝑃𝑃, {𝑃𝑆𝐾𝑢𝑖𝑑,𝑘
𝑠 }

𝑘∈𝐼𝐴
𝑠 , 𝑃𝐾𝑢𝑖𝑑 , {𝑃𝐾𝑘}𝑘∈𝐼𝐴

𝑒 , 𝑆𝐾𝑢𝑖𝑑 , ℛ𝑠, ℛ𝑒) to 𝒜. 

𝐷𝑒𝑆𝑖𝑔𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 𝑞𝑢𝑒𝑟𝑦 𝒪𝐷𝑆(𝐶𝑇, 𝑈𝑑̃). If |𝑡𝑡 − 𝑡𝑡̅| > 𝑡ℎ𝑟𝑒𝑡𝑡  or ℛ𝑒(𝑈
𝑑̃) = 0, then ℬ returns ⊥. If 

𝐶1 = 𝑔𝑠 , ℬ  aborts. If 𝑉𝑒𝑟𝑖𝑓𝑦  algorithm is invalid, ℬ  returns ⊥ .Otherwise, ℬ  carries out the 

following steps. 

Assume the encryption predicate contained in 𝐶𝑇 is ℛ𝑒 and 𝐼𝐴
𝑒 is the set which consists of the 

indexes of the authorities whose attributes are associated with rows of M𝑒. 

If 𝑈𝑑̃ does not satisfy the challenge encryption predicate ℛ𝑒
∗ , then ℬ can obtain 𝑆𝐾𝑢𝑖𝑑  and 

secret decryption key 𝑆𝐾𝑢𝑖𝑑,𝑘
𝑑  from 𝒪𝑠𝑘(𝑈, 𝐴𝐴𝑘, 𝑢𝑖𝑑) , and 𝑃𝑆𝐾𝑢𝑖𝑑,𝑘

𝑑 ←

𝑃𝑥𝑆𝑒𝑐𝑟𝑒𝑡𝐾𝑒𝑦𝐺𝑒𝑛(𝑆𝐾𝑢𝑖𝑑 , 𝑆𝐾𝑢𝑖𝑑,𝑘
𝑑 ) . ℬ  returns the output of 

𝐷𝑒𝑆𝑖𝑔𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 (𝑃𝑃, 𝐶𝑇, 𝑃𝐾𝑢𝑖𝑑 , {𝑃𝑆𝐾𝑢𝑖𝑑,𝑘
𝑑 }

𝑘∈𝐼𝐴
, 𝑆𝐾𝑢𝑖𝑑) to 𝒜. 

Otherwise, if ℛ𝑒
∗(𝑈𝑑̃  ) = 1, assume 𝜋 = 𝐻1(𝐶1 = 𝑔𝑤1), where 𝑤1 is the secret value chosen to 

generate 𝐶𝑇  in signcryption phase. Then for 𝑘 ∈ 𝐼𝐴
𝑒 , ℬ  compute 𝑒 (𝑔𝛼𝑘

′
, 𝐶1) 𝑒 (

𝐶3

𝐶1
𝜓 , 𝑔𝑎)

(
𝜋

𝜋∗−1)
−1

=

𝑒 (𝑔𝛼𝑘
′
, 𝑔𝑤1) 𝑒 (

(𝛾1𝛾2
𝜋)𝑤1

𝑔𝑠𝑥𝜓 , 𝑔𝑎)
(

𝜋

𝜋∗−1)
−1

= 𝑒 (𝑔𝛼𝑘
′
, 𝑔𝑤1) 𝑒 (

(𝑔𝜓(𝑔𝑎𝑞
)
−1

(𝑔𝑎𝑞
)

𝜋
𝜋∗

)

𝑤1

𝑔𝑤1𝜓 , 𝑔𝑎)

(
𝜋𝑗

𝜋∗−1)
−1

=

𝑒 (𝑔𝛼𝑘
′
, 𝑔𝑤1) 𝑒(𝑔𝑎𝑞

, 𝑔𝑎𝑤1) = ∆𝑘
𝑤1 . Thus ℬ can return ℳ =

𝐶0

∏ ∆𝑘
𝑤1

𝑘∈𝐼𝐴
𝑒

 to 𝒜. 

𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒 . 𝒜  submits two messages ℳ0,ℳ1  with the same length and signing predicate 

ℛ𝑠
∗ = (M𝑠

∗, 𝜌𝑠
∗) to ℬ. Assume 𝐼𝐴

∗𝑠 is the set which consists of the indexes of the authorities whose 
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attributes are associated with rows of M𝑠
∗  and M𝑠

∗  is a ℓ𝑠
∗ × 𝑛𝑠

∗  matrix. ℬ  chooses 𝒷̂ ∈ {0,1} . ℬ 

selects a signing attribute set 𝑈𝑠̃ satisfying ℛ𝑠
∗(𝑈𝑠̃) = 1 and an arbitrary identity 𝑢𝑖𝑑𝒜 . 

Let 𝑎⃗ = (𝑎1, 𝑎2, … , 𝑎ℓ𝑠
∗) ∈ ℤ𝑝

ℓ𝑠
∗

 such that 𝑎⃗ ∙ M𝑠
∗ = 1⃗⃗ , 𝑏⃗⃗ = (𝑏1, 𝑏2, … , 𝑏ℓ𝑠

∗) ∈ ℤ𝑝
ℓ𝑠
∗

 such that 

∑ 𝑏𝑖Μ𝑠
∗𝑖

𝑖∈[ℓ𝑠
∗] = 0⃗⃗. Implicitly set 𝑠𝑢𝑖𝑑𝒜

= 𝑠𝑢𝑖𝑑𝒜

′′ − 𝑎𝑞. Then compute the challenge ciphertext as follows: 

Let 𝜀 = (𝑤,𝑤𝑎 + 𝜀2, … , 𝑠𝑎𝑛𝑒
∗−1 + 𝜀𝑛𝑒

∗) ∈ ℤ𝑝
𝑛𝑒

∗

 and implicitly sets 𝑟𝑖 = 𝑟𝑖
′ + 𝑤𝑏𝑖  for all 𝑖 ∈ [ℓ𝑒

∗ ] . 

Select {𝑟1
′′, 𝑟2

′′, … , 𝑟ℓ𝑒
∗
′′ }

𝑅
←ℤ𝑝, {𝜆1

′ , 𝜆2
′ , … , 𝜆ℓ𝑒

∗
′ }

𝑅
←ℤ𝑝. 

𝐶0 = ℳ𝒷 ∏ 𝛺𝑒(𝑔𝑤 , 𝑔)𝛼𝑘
′

𝑘∈𝐼𝐴
∗𝑒 , 𝐶1 = 𝑔𝑤 . 

𝐶2,𝑖
′ = 𝑔𝑎(𝜆𝑖−𝜆𝑖

′)𝐴𝜌𝑒
∗(𝑖)

−(𝑟𝑖−𝑟𝑖
′′) =

𝐴𝜌𝑒
∗(𝑖)

−(𝑟𝑖
′−𝑟𝑖

′′)𝑔
−𝑤𝑏𝑖𝜑𝜌𝑒

∗(𝑖)𝑔−𝑎𝜆𝑖
′
∏ 𝑔𝑎𝜀𝑘M𝑒

∗(𝑖,𝑘)𝑛𝑒
∗

𝑘=2 ∏ ∏ 𝑔
−𝑤𝑎𝑘𝑏𝑖M𝑒

∗(𝑙,𝑘)

𝑏𝑙𝑘∈[𝑛𝑒
∗]𝑙∈𝒳\𝑖 , 𝐶2,𝑖

′′ = 𝜆𝑖
′ . 

𝐷𝑖
′ = 𝑔𝑟𝑖−𝑟𝑖

′′
= 𝑔𝑟𝑖

′−𝑟𝑖
′′
𝑔𝑤𝑏𝑖 , 𝐷𝑖

′′ = 𝑟𝑖
′′. 𝐶3 = 𝑔𝜓𝑤. 

𝑆1,𝑖 = 𝑔𝑎𝑖𝑠𝑢𝑖𝑑𝒜
+𝑏𝑖 = 𝑔

𝑎𝑖(𝑠𝑢𝑖𝑑𝒜
′′ −𝑎𝑞)+𝑏𝑖, 

𝑆2 = (∏ 𝑔𝛼𝑘
′
𝑔

𝑎𝑠𝑢𝑖𝑑𝒜
′′

𝐼𝐴
∗𝑠 ) (∏ (𝑔

𝜑𝜌𝑠
∗(𝑖)+𝑣𝑖)

𝑎𝑖(𝑠𝑢𝑖𝑑𝒜
′′ −𝑎𝑞)+𝑏𝑖

𝑖∈[ℓ𝑠] ) (𝑔𝑤)𝓀0+∑ 𝓀𝑖𝑐𝑖
𝑙
𝑖=1 +𝜓𝛽∗

, where 

𝐻2(∏ 𝑆1,𝑖𝑖∈[ℓ𝑠]
, 𝑡𝑡, ℛ𝑠, ℛ𝑒) = (𝑐1, 𝑐2, … , 𝑐𝑙) and 𝐻3(𝐶0, 𝐶1, 𝐶3, ℛ𝑠, ℛ𝑒) = 𝛽∗. 

Finally, ℬ  sends the challenge ciphertext 𝐶𝑇∗ = {𝐶0, 𝐶1, {𝐶2,𝑖
′ , 𝐶2,𝑖

′′ , 𝐷𝑖
′, 𝐷𝑖

′′}
𝑖∈[ℓ𝑒

∗ ]
, {𝑆1,𝑖}𝑖∈[ℓ𝑠

∗]
, 𝑆2, 𝑡𝑡} 

to 𝒜. 

Phase 2. Phase 1 is repeated. In this phase, 𝒜 cannot issue 𝐷𝑒𝑆𝑖𝑔𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 𝑞𝑢𝑒𝑟𝑦 with the 

challenge ciphertext 𝐶𝑇∗ and attribute set 𝑈𝑑̃ such that ℛ𝑒
∗(𝑈𝑑̃  ) = 1. 

𝐺𝑢𝑒𝑠𝑠. 𝒜 outputs his guess 𝒷 on 𝒷̂. If 𝒷 = 𝒷̂, ℬ outputs 0 and guess that 𝛺 = 𝑒(𝑔, 𝑔)𝑎𝑞+1𝑤; 

otherwise, ℬ outputs 1 to indicate that 𝛺 is a random element in 𝔾T. 

If 𝒜 issues 𝐷𝑒𝑆𝑖𝑔𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 𝑞𝑢𝑒𝑟𝑦 with the ciphertext satisfying 𝐶1 = 𝑔𝑤, then the simulation 

aborts. The probability is at most 
𝑞𝐷𝑆

𝑝
. If 𝒷 = 0, 𝛺 = 𝑒(𝑔, 𝑔)𝑎𝑞+1𝑤 and ℬ does not abort, then 𝐶𝑇∗ is 

a valid ciphertext of ℳ0. In this case, we have 𝑃𝑟[𝒷 = 𝒷̂|𝒷 = 0] >
1

2
+ 𝜖 −

𝑞𝐷𝑆

𝑝
. If 𝛺 is a random 

element in 𝔾𝑇, then 𝐶0 is a random element and 𝒜 cannot obtain ℳ𝒷, namely the advantage in 

this case is 𝑃𝑟[𝒷 ≠ 𝒷̂|𝒷 = 1] =
1

2
. Therefore, the advantage of ℬ which can break the q-PBDHE 

assumption is at least 
1

2
𝜖 −

𝑞𝐷𝑆

𝑝
. The runtime of ℬ  is at most 𝑇′ = 𝑇 + 𝑂(ℓ𝑒,𝑚𝑛𝑒,𝑚𝑢𝑚 + (𝑛𝑒,𝑚 +

|𝑈|ℓ𝑒,𝑚𝑛𝑒,𝑚
2 )𝑞𝑠𝑘 + (|𝑈| + ℓ𝑠,𝑚)𝑞𝑝𝑠𝑘 + (|𝑈| + 𝑙 + ℓ𝑠,𝑚 + ℓ𝑒,𝑚)𝑞𝑆𝐶 + 𝑞𝐷𝑆)𝑇

𝑒 + 𝑂(𝑞𝐷𝑆)𝑇
𝑝. □ 

6.2. Ciphertext Unforgeability 

Based on the security model defined in Definition 9 and Theorem 2, we can prove that our 

proposed scheme guarantees the ciphertext unforgeability under the hardness of the q-PBDHE 

assumption. 

Theorem 2. If an adversary 𝒜 can break (𝑇, 𝑞𝑠𝑘 , 𝑞𝑝𝑠𝑘, 𝑞𝑆𝐶 , 𝑞𝐷𝑆, 𝜖)-EUF-sSP-CMA security of our scheme, 

then there is an algorithm ℬ that can solve the q-PBDHE assumption with an advantage 𝜖′ =
𝜖

8(𝑙+1)𝑞𝑆𝐶
 in a 

time 𝑇′ = 𝑇 + 𝑂(ℓ𝑠,𝑚𝑛𝑠,𝑚𝑢𝑚 + (𝑛𝑠,𝑚 + |𝑈|ℓ𝑠,𝑚𝑛𝑠,𝑚
2 )𝑞𝑠𝑘 + (|𝑈| + ℓ𝑠,𝑚)𝑞𝑝𝑠𝑘 + (𝑙 + ℓ𝑒,𝑚 + ℓ𝑠,𝑚 +

ℓ𝑒,𝑚𝑛𝑒,𝑚)𝑞𝑆𝐶 + ℓ𝑒,𝑚𝑞𝐷𝑆)𝑇
𝑒 + 𝑂(ℓ𝑒,𝑚𝑞𝐷𝑆)𝑇

𝑝. 

Proof. Assume 𝒜  can (𝑇, 𝑞𝑠𝑘 , 𝑞𝑝𝑠𝑘 , 𝑞𝑆𝐶 , 𝑞𝐷𝑆, 𝜖)  break our basic scheme, we will construct the 

algorithm ℬ as follows: ℬ is given with the q-PBDHE challenge instance 𝒴⃗. The challenger 𝒞 runs 

𝒢𝒢(1𝑘) → (𝑒, 𝑝, 𝔾, 𝔾𝑇)  to generate the bilinear group and chooses 𝒷 ∈ {0,1} . If 𝒷 = 0 , 𝒞  sends 

(𝒴⃗, 𝛺 = 𝑒(𝑔, 𝑔)𝑎𝑞+1𝑤) to ℬ; otherwise it sends (𝒴⃗, 𝛺
𝑅
←𝔾𝑇) to ℬ. 

𝐼𝑛𝑖𝑡. The same as defined in Definition 9. Assume ℛ𝑠
∗ = (M𝑠

∗, 𝜌𝑠
∗) is the challenge signing access 

structure over all the attributes selected from the involved set of authorities 𝐼𝐴
∗𝑠. M𝑠

∗ is a ℓ𝑠
∗ × 𝑛𝑠

∗ 

matrix and 𝑛𝑠
∗ ≤ 𝑞. 
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𝑆𝑒𝑡𝑢𝑝. The adversary chooses a set of 𝑆𝐴
′ ⊂ 𝑆𝐴 consisting of the corrupted authorities, and 

sends 𝑆𝐴
′  to the simulator ℬ. 

For each uncorrupted authority 𝐴𝐴𝑘 ∈ 𝑆𝐴 − 𝑆𝐴
′ , ℬ randomly chooses 𝛼𝑘

′
𝑅
← ℤ𝑝  and implicitly 

sets 𝛼𝑘 = 𝛼𝑘
′ + 𝑎𝑞+1. ℬ publishes ∆𝑘= 𝑒(𝑔, 𝑔)𝛼𝑘 = 𝑒(𝑔𝑎 , 𝑔𝑎𝑞

)𝑒(𝑔, 𝑔)𝛼𝑘
′
. 

Let 𝜎1, 𝜎2

𝑅
← ℤ𝑝, 𝜃 = 𝑔𝑎 . ℬ  chooses 𝑚

𝑅
← {0,1, … , 𝑙}, 𝜚0, 𝜚1, … , 𝜚𝑙

𝑅
← {0,1, … ,𝜛 −

1}, 𝜎1, 𝜎2, 𝓀0, 𝓀1, … , 𝓀𝑙

𝑅
← ℤ𝑝

∗ . Set 𝑘0 = (𝑔𝑎𝑞
)
𝜚0−𝜛𝑚

𝑔𝓀0  and {𝑘𝑖 = (𝑔𝑎𝑞
)
𝜚𝑖

𝑔𝓀𝑖}
𝑖∈[𝑙]

. 𝛾1 = 𝑔𝜎1 , 𝛾2 = 𝑔𝜎2 . 

For 𝑖 ∈ [ℓ𝑠
∗], 𝑉𝑖 = ∏ ∏ 𝑔𝑎𝑘M𝑠

∗(𝑙,𝑘)
𝑁𝐴

∗𝑠

𝑘∈[𝑛𝑠
∗]𝑙∈𝒳\𝑖  where 𝑁𝐴

∗𝑠 = |𝐼𝐴
∗𝑠|. For 𝑖 ∈ [ℓ𝑠

∗ + 1, ℓ𝑠,𝑚], 𝑉𝑖 = 𝑔𝑣𝑖  where 

𝑣𝑖

𝑅
← ℤ𝑝. 

Assume 𝜛 = 4𝑞𝑆𝐶  and 𝜛(𝑙 + 1) < 𝑝 . ℬ  defines two functions 𝐿1(𝑐) = 𝑝 − 𝜛𝑚 + 𝜚0 +

∑ 𝑐𝑖𝜚𝑖
𝑙
𝑖=1  and 𝐿2(𝑐) = 𝓀0 + ∑ 𝑐𝑖𝓀𝑖

𝑙
𝑖=1  for each 𝑐 = (𝑐1, 𝑐2, … , 𝑐𝑙) ∈ {0,1}𝑙 . Thus 𝑘0 ∏ 𝑘𝑖

𝑐𝑖𝑙
𝑖=1 =

(𝑔𝑎𝑞
)
𝐿1(𝑐)

𝑔𝐿2(𝑐). Let 𝐿(𝑐) = {
0, 𝜚0 + ∑ 𝑐𝑖𝜚𝑖

𝑙
𝑖=1 = 0 mod 𝜛 

1, otherwise
. Then 𝐿(𝑐) = 1 implies 𝐿1(𝑐) ≠ 0 𝑚𝑜𝑑 𝑝. 

ℬ  sends 𝑃𝑃 = {𝑒, 𝑝, 𝔾, 𝔾𝑇 , 𝑔, 𝜃, 𝛾1, 𝛾2, {𝑘0, 𝑘1, … , 𝑘𝑙}, {𝑉1, 𝑉2 … , 𝑉ℓ𝑠,𝑚
}, 𝐻1, 𝐻2, 𝐻3}  to 𝒜 . ℬ 

initializes the empty list 𝐿𝑠𝑘. 

For the authority 𝐴𝐴𝑘 ∈ 𝑆𝐴 − 𝑆𝐴
′ , ℬ  chooses 𝛽𝑘 , 𝛾𝑘

𝑅
← ℤ𝑝  and sets 𝑋𝑘 = 𝑔1 𝛽𝑘⁄ , 𝑌𝑘 = 𝜃1 𝛽𝑘⁄ , 𝑍𝑘 =

𝜃1 𝛾𝑘⁄ . Let 𝒳 be the set consisting of the indexes 𝑖 ∈ [ℓ𝑠
∗] with 𝜌𝑠

∗(𝑖) = 𝑥 ∈ 𝐴𝐴𝑘̃. For the attribute 𝑥 

where 𝒳 ≠ ∅, ℬ  chooses 𝜑𝑥

𝑅
←ℤ𝑝  and computes 𝐴𝑥 = 𝑔𝜑𝑥 ∏ ∏ 𝑔−𝑎𝑘M𝑠

∗(𝑖,𝑘)
𝑁𝐴

∗𝑠

𝑘∈[𝑛𝑠
∗]𝑖∈𝒳 . If 𝒳 = ∅, ℬ 

chooses 𝜑𝑥

𝑅
←ℤ𝑝  and computes 𝐴𝑥 = 𝑔𝜑𝑥 . This assignment describes that 𝐴𝑥 = 𝑔𝜑𝑥  for each 

encryption attribute as the signing attributes are different from encryption attributes. ℬ  sends 

𝑃𝐾𝑘 = {𝑋𝑘 , 𝑌𝑘 , 𝑍𝑘, {𝐴𝑥}𝑥∈𝐴𝐴𝑘̃
} to 𝒜 . For the authority 𝐴𝐴𝑘 ∈ 𝑆𝐴

′ , ℬ  generates the public keys and 

secret keys of 𝐴𝐴𝑘 as in the real scheme and sends both the public keys and secret keys to 𝒜. 

𝑆𝑒𝑐𝑟𝑒𝑡𝐾𝑒𝑦 𝑞𝑢𝑒𝑟𝑦 𝒪𝑠𝑘(𝑈̃, 𝐴𝐴𝑘, 𝑢𝑖𝑑). 𝒜 adaptively queries the secret keys for the attribute set 

𝑈 = 𝑈𝑑̃ ∪ 𝑈𝑠̃  with identity 𝑢𝑖𝑑 to the authority 𝐴𝐴𝑘 . 𝑈𝑠̃  does not satisfy ℛ𝑠
∗  together with any 

keys that can be obtained from corrupted authorities. 

(1) ℬ checks the list 𝐿𝑠𝑘  that whether the entry (𝑢𝑖𝑑, 𝑈, 𝑃𝐾𝑢𝑖𝑑 , 𝑆𝐾𝑢𝑖𝑑 , 𝑃𝐾𝑢𝑖𝑑,𝑘, 𝑆𝐾𝑢𝑖𝑑,𝑘) exists. If it 

does, ℬ sends 𝑆𝐾𝑢𝑖𝑑  and 𝑆𝐾𝑢𝑖𝑑,𝑘  to the adversary and publishes the public key 𝑃𝐾𝑢𝑖𝑑  and 

𝑃𝐾𝑢𝑖𝑑,𝑘. 

(2) Otherwise, ℬ  randomly picks 𝑑𝑢𝑖𝑑
′ , 𝑠𝑢𝑖𝑑

′ , 𝑧𝑢𝑖𝑑  from ℤ𝑝
∗  and chooses a vector 𝑓 =

(𝑓1, 𝑓2, … , 𝑓𝑛𝑠
∗) ∈ ℤ𝑝

𝑛𝑠
∗

 such that 𝑓 = −1 and 𝑓M𝑠
∗𝑖 = 0  for all 𝜌𝑠

∗(𝑖) ∈ 𝑈𝑠̃ . since ℛ𝑠
∗(𝑈𝑠̃) = 0. ℬ 

computes 𝑔𝑑𝑢𝑖𝑑 = 𝑔𝑑𝑢𝑖𝑑
′

𝑔−𝑎𝑞 𝑧𝑢𝑖𝑑⁄ , 𝑔𝑠𝑢𝑖𝑑 = 𝑔𝑠𝑢𝑖𝑑
′

∏ 𝑔𝑓𝑖𝑎
𝑞−𝑖+1𝑛𝑠

∗

𝑖=1 , and {𝑉𝑖
𝑠𝑢𝑖𝑑 = 𝑔𝑠𝑢𝑖𝑑𝑣𝑖}

𝑖∈[ℓ𝑠
∗+1,ℓ𝑠,𝑚]

. 

For 𝑖 ∈ [ℓ𝑠
∗] , 𝑉𝑖

𝑠𝑢𝑖𝑑 = 𝑉𝑖
𝑠𝑢𝑖𝑑
′

∏ ∏ (∏ 𝑔𝑓𝑗𝑎
𝑞+𝑘−𝑗+1𝑛𝑠

∗

𝑗=1,𝑘≠𝑗 )
M𝑠

∗(𝑙,𝑘)
𝑁𝐴

∗𝑠

𝑘∈[𝑛𝑠
∗]𝑙∈𝒳\𝑖 . Set 𝑃𝐾𝑢𝑖𝑑 =

{𝑔𝑠𝑢𝑖𝑑 , 𝑔𝑑𝑢𝑖𝑑 , 𝑔1 𝑧𝑢𝑖𝑑⁄ , 𝜃𝑧𝑢𝑖𝑑, 𝑔𝑧𝑢𝑖𝑑 , {𝑉𝑖
𝑠𝑢𝑖𝑑}

𝑖∈[ℓ𝑠,𝑚]
}  and 𝑃𝐾𝑢𝑖𝑑,𝑘 = {𝑃𝐾𝑢𝑖𝑑,𝑘

1 = 𝑔1 (𝛾𝑘𝑧𝑢𝑖𝑑)⁄ , 𝑃𝐾𝑢𝑖𝑑,𝑘
2 =

𝑔𝛼𝑘 (𝛾𝑘𝑧𝑢𝑖𝑑)⁄ 𝜃𝑑𝑢𝑖𝑑 𝛾𝑘⁄ = (𝑔
𝛼𝑘

′

𝑧𝑢𝑖𝑑𝑔𝑎𝑑𝑢𝑖𝑑
′

)

1

𝛾𝑘

, 𝑃𝐾𝑢𝑖𝑑,𝑘
3 = 𝑔𝛼𝑘 𝛽𝑘⁄ 𝜃𝑠𝑢𝑖𝑑 𝛽𝑘⁄ = (𝑔𝛼𝑘

′
𝑔𝑎𝑠𝑢𝑖𝑑

′
𝑔∑ 𝑓𝑖𝑎

𝑞−𝑖+2𝑛𝑠
∗

2 )

1

𝛽𝑘
} . 

Then ℬ  sets 𝐾𝑢𝑖𝑑,𝑘
𝑑 = (𝑃𝐾𝑢𝑖𝑑,𝑘

2 )
𝛾𝑘

= 𝑔
𝛼𝑘

′

𝑧𝑢𝑖𝑑𝑔𝑎𝑑𝑢𝑖𝑑
′

, 𝐾𝑢𝑖𝑑,𝑘
𝑠 = (𝑃𝐾𝑢𝑖𝑑,𝑘

3 )
𝛽𝑘

=

𝑔𝛼𝑘
′
𝑔𝑎𝑠𝑢𝑖𝑑

′
𝑔∑ 𝑓𝑖𝑎

𝑞−𝑖+2𝑛𝑠
∗

2 , {𝐹𝑢𝑖𝑑,𝑥
𝑑 = (𝑔𝑑𝑢𝑖𝑑

′
𝑔−𝑎𝑞 𝑧𝑢𝑖𝑑⁄ )

𝜑𝑥
}
𝑥∈𝑈𝑑̃∩𝐴𝐴𝑘̃

. For the attribute 𝑥 ∈ 𝑈𝑠̃ ∩ 𝐴𝐴𝑘̃ such 

that 𝒳 = ∅ , ℬ  computes 𝐹𝑢𝑖𝑑,𝑥
𝑠 = (𝑔𝑠𝑢𝑖𝑑)𝜑𝑥 . Otherwise, 𝐹𝑢𝑖𝑑,𝑥

𝑠 =

𝑔𝑠𝑢𝑖𝑑𝜑𝑥 ∏ ∏ (𝑔−𝑠𝑢𝑖𝑑
′ 𝑎𝑘

∏ 𝑔−𝑓𝑗𝑎
𝑞+𝑘−𝑗+1𝑛𝑠

∗

𝑗=1,𝑘≠𝑗 )
M𝑠

∗(𝑖,𝑘)
𝑁𝐴

𝑠

𝑘∈[𝑛𝑠
∗]𝑖∈𝒳 . ℬ  sends 𝑆𝐾𝑢𝑖𝑑 = 𝑧𝑢𝑖𝑑  and 𝑆𝐾𝑢𝑖𝑑,𝑘 

to the adversary and publishes the public key 𝑃𝐾𝑢𝑖𝑑  and 𝑃𝐾𝑢𝑖𝑑,𝑘 . ℬ  inserts 

(𝑢𝑖𝑑, 𝑈, 𝑃𝐾𝑢𝑖𝑑 , 𝑆𝐾𝑢𝑖𝑑 , 𝑃𝐾𝑢𝑖𝑑,𝑘, 𝑆𝐾𝑢𝑖𝑑,𝑘) into 𝐿𝑠𝑘. 

𝑃𝑟𝑜𝑥𝑦 𝑆𝑒𝑐𝑟𝑒𝑡𝐾𝑒𝑦 𝑞𝑢𝑒𝑟𝑦 𝒪𝑝𝑠𝑘(𝑈, 𝐴𝐴𝑘, 𝑢𝑖𝑑). The same as Theorem 1. 
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𝑆𝑖𝑔𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 𝑞𝑢𝑒𝑟𝑦 𝒪𝑆𝐶(ℳ,ℛ𝑠, ℛ𝑒). 𝒜  submits a message ℳ ∈ 𝔾𝑇 , signing and encryption 

predicts ℛ𝑠 = (M𝑠, 𝜌𝑠), ℛ𝑒 = (M𝑒, 𝜌𝑒). ℬ selects a signing attribute set 𝑈𝑠̃ such that ℛ𝑠(𝑈
𝑠̃) = 1. ℬ 

performs as follows: 

(1) It first computes a vector 𝑎⃗ = (𝑎1, 𝑎2, … , 𝑎ℓ𝑠
) ∈ ℤ𝑝

ℓ𝑠 such that 𝑎⃗ ∙ Μ𝑠 = 1⃗⃗. Then ℬ chooses 𝑏⃗⃗ =

(𝑏1, 𝑏2, … , 𝑏ℓ𝑠
) ∈ ℤ𝑝

ℓ𝑠  such that ∑ 𝑏𝑖Μ𝑠
𝑖

𝑖∈[ℓ𝑠] = 0⃗⃗. 

(2) ℬ randomly chooses 𝑠𝑢𝑖𝑑
′

𝑅
← ℤ𝑝

∗  and computes {𝑆1,𝑖 = 𝑔𝑎𝑖𝑠𝑢𝑖𝑑
′ +𝑏𝑖}

𝑖∈[ℓ𝑠]
. 

(3) Assume 𝐻2(∏ 𝑆1,𝑖𝑖∈[ℓ𝑠] , 𝑡𝑡, ℛ𝑠 , ℛ𝑒) = (𝑐1, 𝑐2, … , 𝑐𝑙) = 𝑐 ∈ {0,1}𝑙. If 𝐿(𝑐) = 0, ℬ aborts. Otherwise, 

ℬ  implicitly sets 𝑤𝒜 = 𝑤1 −
𝑎𝑁𝐴

𝑠

𝐿1(𝑐)
 where 𝑤1

𝑅
←ℤ𝑝

∗ . Then 𝐶0 = ℳ ∏ ∆𝑘
𝑤𝒜

𝑘∈𝐼𝐴
𝑒 , 𝐶1 = 𝑔𝑤𝒜 =

𝑔𝑤1(𝑔𝑎)
−

𝑁𝐴
𝑠

𝐿1(𝑐⃗⃗) , 𝐶3 = (𝑔𝜎1𝑔𝜋𝜎2)𝑤𝒜 , where ∆𝑘
𝑤𝒜= ∆𝑘

𝑤1 (𝑒(𝑔𝑎2
, 𝑔𝑎𝑞

)𝑒(𝑔𝛼𝑘
′
, 𝑔𝑎))

−𝑁𝐴
𝑠 𝐿1(𝑐)⁄

 and 𝜋 =

𝐻1(𝐶1). 

(4) ℬ  chooses {𝑟1, 𝑟2, … , 𝑟ℓ𝑒
}

𝑅
←ℤ𝑝 , 𝜀 = (𝑤1 −

𝑎𝑁𝐴
𝑠

𝐿1(𝑐)
, 𝜀2, … , 𝜀𝑛𝑒

) ∈ ℤ𝑝
𝑛𝑒 , 𝜆𝑖 = M𝑒

𝑖 𝜀 . Then ℬ  selects 

{𝑟1
′, 𝑟2

′, … , 𝑟ℓ𝑒

′ }
𝑅
←ℤ𝑝 , {𝜆1

′ , 𝜆2
′ , … , 𝜆ℓ𝑒

′ }
𝑅
←ℤ𝑝 . For 𝑖 ∈ [ℓ𝑒], ℬ computes 𝐶2,𝑖

′ = 𝑔𝑎(𝜆𝑖−𝜆𝑖
′)𝐴𝜌𝑒(𝑖)

−(𝑟𝑖−𝑟𝑖
′) =

𝑔
𝑎((𝑤1−

𝑎𝑁𝐴
𝑠

𝐿1(𝑐⃗⃗)
)M𝑒

(𝑖,1)
+∑ 𝜀𝑗M𝑒

(𝑖,𝑗)𝑛𝑒
∗

𝑗=2 −𝜆𝑖
′)

𝑔−𝜑𝜌𝑒(𝑖)(𝑟𝑖−𝑟𝑖
′), 𝐶2,𝑖

′′ = 𝜆𝑖
′ , 𝐷𝑖

′ = 𝑔𝑟𝑖−𝑟𝑖
′
, 𝐷𝑖

′′ = 𝑟𝑖
′. 

(5) ℬ  computes 𝐻3(𝐶0, 𝐶1, 𝐶3, ℛ𝑠, ℛ𝑒) = 𝛽 , 𝑆2 =

(∏ 𝑔𝛼𝑘
𝐼𝐴
𝑠 )𝜃𝑠𝑢𝑖𝑑

′ 𝑁𝐴
𝑠
(∏ (𝐴𝜌𝑠(𝑖)𝑉𝑖)

𝑎𝑖𝑠𝑢𝑖𝑑
′ +𝑏𝑖

𝑖∈[ℓ𝑠] ) (𝑘0 ∏ 𝑘𝑖
𝑐𝑖𝑙

𝑖=1 )
𝑤𝒜(𝛾1𝛾2

𝜋)𝑤𝒜𝛽 =

(∏ 𝑔𝛼𝑘
′ +𝑎𝑞+1

𝐼𝐴
𝑠 ) 𝜃𝑠𝑢𝑖𝑑

′ 𝑁𝐴
𝑠
𝐶3

𝛽
((𝑔𝑎𝑞

)
𝐿1(𝑐)

𝑔𝐿2(𝑐))
𝑤1−

𝑎𝑁𝐴
𝑠

𝐿1(𝑐⃗⃗)
(∏ (𝐴𝜌𝑠(𝑖)𝑉𝑖)

𝑎𝑖𝑠𝑢𝑖𝑑
′ +𝑏𝑖ℓ𝑠

𝑖=1 ) =

(∏ 𝑔𝛼𝑘
′

𝐼𝐴
𝑠 ) 𝑔𝑎𝑞+1𝑁𝐴

𝑠
𝜃𝑠𝑢𝑖𝑑

′ 𝑁𝐴
𝑠
𝐶3

𝛽
((𝑔𝑎𝑞

)
𝐿1(𝑐)

𝑔𝐿2(𝑐))
𝑤1

(𝑔𝑎𝑁𝐴
𝑠
)

−𝐿2(𝑐⃗⃗)

𝐿1(𝑐⃗⃗) 𝑔−𝑎𝑞+1𝑁𝐴
𝑠
(∏ (𝐴𝜌𝑠(𝑖)𝑉𝑖)

𝑎𝑖𝑠𝑢𝑖𝑑
′ +𝑏𝑖ℓ𝑠

𝑖=1 ) =

(∏ 𝑔𝛼𝑘
′

𝐼𝐴
𝑠 ) 𝜃𝑠𝑢𝑖𝑑

′ 𝑁𝐴
𝑠
𝐶3

𝛽
((𝑔𝑎𝑞

)
𝐿1(𝑐)

𝑔𝐿2(𝑐))
𝑤1

(𝑔𝑎𝑁𝐴
𝑠
)

−𝐿2(𝑐⃗⃗)

𝐿1(𝑐⃗⃗) (∏ (𝐴𝜌𝑠(𝑖)𝑉𝑖)
𝑎𝑖𝑠𝑢𝑖𝑑

′ +𝑏𝑖ℓ𝑠
𝑖=1 ) . Finally, ℬ  sends 

𝐶𝑇 = {𝐶0, 𝐶1, {𝐶2,𝑖
′ , 𝐶2,𝑖

′′ , 𝐷𝑖
′, 𝐷𝑖

′′}
𝑖∈[ℓ𝑒]

, {𝑆1,𝑖}𝑖∈[ℓ𝑠]
, 𝑆2, 𝑡𝑡} to 𝒜. 

𝐷𝑒𝑆𝑖𝑔𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 𝑞𝑢𝑒𝑟𝑦 𝒪𝐷𝑆(𝐶𝑇, 𝑈𝑑̃) . If |𝑡𝑡 − 𝑡𝑡̅| > 𝑡ℎ𝑟𝑒𝑡𝑡  or ℛ𝑒(𝑈
𝑑̃) = 0 , then ℬ  returns ⊥ . 

Otherwise, ℬ issues the 𝒪sk  query to get the secret decryption key and returns the output of 

𝐷𝑒𝑆𝑖𝑔𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 to 𝒜. 

𝐹𝑜𝑟𝑔𝑒𝑟𝑦. 𝒜 submits a valid ciphertext 𝐶𝑇∗ for the challenge signing predicate ℛ𝑠
∗ and an 

encryption predicate ℛ𝑒 . If ℳ ← 𝐷𝑒𝑆𝑖𝑔𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛(𝑃𝑃, 𝐶𝑇∗, 𝑃𝐾, 𝑆𝐾)  and 𝒜  has never issued 

𝒪SC(ℳ,ℛs
∗, ℛe). ℬ performs as follows: 

(1) ℬ  computes 𝐻2(∏ 𝑆1,𝑖𝑖∈[ℓ𝑠
∗] , 𝑡𝑡, ℛ𝑠

∗, ℛ𝑒) = (𝑐1, 𝑐2, … , 𝑐𝑙) = 𝑐 ∈ {0,1}𝑙 . If 𝜛𝑚 ≠ 𝜚0 + ∑ 𝑐𝑖𝜚𝑖
𝑙
𝑖=1 , ℬ 

aborts. Otherwise, 𝐿1(𝑐) = 0 𝑚𝑜𝑑 𝑝. 

(2) If 𝐶𝑇∗ is a valid ciphertext, then 𝐻3(𝐶0, 𝐶1, 𝐶3, ℛ𝑠
∗, ℛ𝑒) = 𝛽 and 𝜋 = 𝐻1(𝐶1). Then 

𝑆2 = (∏ 𝑔𝛼𝑘
𝐼𝐴
∗𝑠 )𝜃𝑠𝑢𝑖𝑑

′′ 𝑁𝐴
∗𝑠

(∏ (𝐴𝜌𝑠
∗(𝑖)𝑉𝑖)

𝑎𝑖𝑠𝑢𝑖𝑑
′′ +𝑏𝑖

𝑖∈[ℓ𝑠
∗] ) (𝑘0 ∏ 𝑘𝑖

𝑐𝑖𝑙
𝑖=1 )

𝑤
(𝛾1𝛾2

𝜋)𝑤𝛽 =

(∏ 𝑔𝛼𝑘
′ +𝑎𝑞+1

𝐼𝐴
∗𝑠 ) 𝜃𝑠𝑢𝑖𝑑

′′ 𝑁𝐴
∗𝑠
𝐶1

𝐿2(𝑐)+𝛽(𝜎1+𝜋𝜎2)
(∏ (𝑔

𝜑𝜌𝑠
∗(𝑖) ∏ 𝑔−𝑎𝑗M𝑠

∗(𝑖,𝑗)
𝑁𝐴

∗𝑠

𝑗∈[𝑛𝑠
∗] )

𝑎𝑖𝑠𝑢𝑖𝑑
′′ +𝑏𝑖ℓ𝑠

∗

𝑖=1 ) =

(∏ 𝑔𝛼𝑘
′

𝐼𝐴
∗𝑠 )𝑔𝑁𝐴

∗𝑠𝑎𝑞+1
𝜃𝑠𝑢𝑖𝑑

′′ 𝑁𝐴
∗𝑠
𝐶1

𝐿2(𝑐)+𝛽(𝜎1+𝜋𝜎2)
∏ 𝑆1,𝑖

𝜑𝜌𝑠
∗(𝑖)ℓ𝑠

∗

𝑖=1 𝑔
𝑁𝐴

∗𝑠(∑ ∑ −𝑎𝑗M𝑠
∗(𝑖,𝑗)

(𝑎𝑖𝑠𝑢𝑖𝑑
′′ +𝑏𝑖)𝑗∈[𝑛𝑠

∗]𝑖∈[ℓ𝑠
∗] )

=

(∏ 𝑔𝛼𝑘
′

𝐼𝐴
∗𝑠 )𝑔𝑁𝐴

∗𝑠𝑎𝑞+1
𝜃𝑠𝑢𝑖𝑑

′′ 𝑁𝐴
∗𝑠
𝐶1

𝐿2(𝑐)+𝛽(𝜎1+𝜋𝜎2)
∏ 𝑆1,𝑖

𝜑𝜌𝑠
∗(𝑖)ℓ𝑠

∗

𝑖=1 𝜃−𝑠𝑢𝑖𝑑
′′ 𝑁𝐴

∗𝑠
=

(∏ 𝑔𝛼𝑘
′

𝐼𝐴
∗𝑠 )𝑔𝑁𝐴

∗𝑠𝑎𝑞+1
𝐶1

𝐿2(𝑐)+𝛽(𝜎1+𝜋𝜎2)
∏ 𝑆1,𝑖

𝜑𝜌𝑠
∗(𝑖)ℓ𝑠

∗

𝑖=1 , where 𝑎⃗ ∙ M𝑠
∗ = 1⃗⃗, 𝑏⃗⃗ ∙ M𝑠

∗ = 0⃗⃗  and 

∑ ∑ −𝑎𝑗M𝑠
∗(𝑖,𝑗)(𝑎𝑖𝑠𝑢𝑖𝑑

′′ + 𝑏𝑖)𝑗∈[𝑛𝑠
∗]𝑖∈[ℓ𝑠

∗] = −𝑎𝑠𝑢𝑖𝑑
′′ . 

Thus, ℬ  can calculate 𝑔𝑎𝑞+1
= (

𝑆2

(∏ 𝑔
𝛼𝑘

′

𝐼𝐴
∗𝑠 )𝐶1

𝐿2(𝑐⃗⃗)+𝛽(𝜎1+𝜋𝜎2)
∏ 𝑆1,𝑖

𝜑𝜌𝑠
∗(𝑖)ℓ𝑠

∗

𝑖=1

)

1 𝑁𝐴
∗𝑠⁄

 and then break the 

q-PBDHE assumption by computing 𝑒(𝑔𝑎𝑞+1
, 𝑔𝑤) . Let 𝐸1  be the event that 𝐿(𝑐) = 0  in some 

𝑆𝑖𝑔𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 𝑞𝑢𝑒𝑟𝑦 and 𝐸2 be the event that 𝜛𝑚 ≠ 𝜚0 + ∑ 𝑏𝑖𝜚𝑖
𝑙
𝑖=1  in the forgery phase. Then we 
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have 𝑃𝑟[¬𝐸1 ∧ ¬𝐸2] =
1

(𝑙+1)𝜛
(1 −

2𝑞𝑆𝐶

𝜛
) . If 𝜛 = 4𝑞𝑆𝐶 , then 𝑃𝑟[¬𝐸1 ∧ ¬𝐸2] =

1

8(𝑙+1)𝑞𝑆𝐶
. Thus the 

advantage of ℬ solving the q-PBDHE assumption is at least 𝒜𝑑𝑣ℬ ≥
𝜖

8(𝑙+1)𝑞𝑆𝐶
. The runtime of ℬ is 

at most 𝑇′ = 𝑇 + 𝑂(ℓ𝑠,𝑚𝑛𝑠,𝑚𝑢𝑚 + (𝑛𝑠,𝑚 + |𝑈|ℓ𝑠,𝑚𝑛𝑠,𝑚
2 )𝑞𝑠𝑘 + (|𝑈̃| + ℓ𝑠,𝑚)𝑞𝑝𝑠𝑘 + (𝑙 + ℓ𝑒,𝑚 + ℓ𝑠,𝑚 +

ℓ𝑒,𝑚𝑛𝑒,𝑚)𝑞𝑆𝐶 + ℓ𝑒,𝑚𝑞𝐷𝑆)𝑇
𝑒 + 𝑂(ℓ𝑒,𝑚𝑞𝐷𝑆)𝑇

𝑝. □ 

6.3. Signcryptor Privacy 

Based on the security model defined in Definition 10, we prove that our scheme guarantees 

signcryptor privacy in Theorem 3. 

Theorem 3. Our scheme guarantees the signcryptor privacy. 

Proof. The challenger sends 𝑃𝑃, 𝑃𝐾, {𝑃𝐾𝑘 , 𝑆𝐾𝑘}𝐼𝐴
 to the adversary 𝒜. Then 𝒜 outputs two signing 

attribute sets 𝑈0
𝑠̃ , 𝑈1

𝑠̃  satisfying ℛ𝑠(𝑈0
𝑠̃) = 1 = ℛ𝑠(𝑈1

𝑠̃) . The challenger selects 𝒷
𝑅
←{0,1}  and 

computes 𝐶𝑇𝒷 with the secret signing key 𝑆𝐾𝑢𝑖𝑑,𝑘
𝑠,𝒷 ← 𝑆𝑒𝑐𝑟𝑒𝑡𝐾𝑒𝑦𝐺𝑒𝑛(𝑃𝑃, 𝑃𝐾𝑘 , 𝑆𝐾𝑘 , 𝑃𝐾𝑢𝑖𝑑 , 𝑈𝒷

𝑠̃). Note 

that both the challenger and 𝒜 can compute 𝑆𝐾𝑢𝑖𝑑,𝑘
𝑠,𝒷  for 𝑈𝒷

𝑠̃ , where 𝑘 ∈ 𝐼𝐴 . Specifically, 𝐾𝑢𝑖𝑑,𝑘
𝑠,𝒷 =

𝑔𝛼𝑘𝜃𝑠𝑢𝑖𝑑
𝒷

, 𝐹𝑢𝑖𝑑,𝑥
𝑠,𝒷 = 𝐴𝑥

𝑠𝑢𝑖𝑑
𝒷

, where 𝑠𝑢𝑖𝑑
𝒷

𝑅
← ℤ𝑝

∗ . 

If the challenger uses 𝑆𝐾𝑢𝑖𝑑,𝑘
𝑠,0 , then it can generate the ciphertext 𝐶𝑇0 =

{𝐶0, 𝐶1
0, {𝐶2,𝑖

′0 , 𝐶2,𝑖
′′0, 𝐷𝑖

′0, 𝐷𝑖
′′0}

𝑖∈[ℓ𝑒]
, {𝑆1,𝑖

0 }
𝑖∈[ℓ𝑠]

, 𝑆2
0, 𝑡𝑡} as follows. 

𝐶1
0 = 𝑔𝑤0 , 𝐶3

0 = (𝛾1𝛾2
𝜋0)𝑤0  where 𝜋0 = 𝐻1(𝐶1

0). 

{𝐶2,𝑖
′0 = 𝜃𝜆𝑖

′0
𝐴

𝜌𝑒(𝑖)

−𝑟𝑖
′0

, 𝐷𝑖
′0 = 𝑔𝑟𝑖

′0
, 𝐶2,𝑖

′′0 = 𝜆𝑖
0 − 𝜆𝑖

′0, 𝐷𝑖
′′0 = 𝑟𝑖 − 𝑟𝑖

′0}
𝑖∈[ℓ𝑒]

, {𝑆1,𝑖
0 = 𝑔𝑎𝑖

0𝑠𝑢𝑖𝑑
′′0 +𝑏𝑖

0
}
𝑖∈[ℓ𝑠]

. 

𝐻2(∏ 𝑆1,𝑖
0

𝑖∈[ℓ𝑠] , 𝑡𝑡, ℛ𝑠, ℛ𝑒) = (𝑐1, 𝑐2, … , 𝑐𝑙) ∈ {0,1}𝑙. 𝐻3(𝐶0, 𝐶1
0, 𝐶3

0, ℛ𝑠, ℛ𝑒) = 𝛽. 

𝑆2
0 = (∏ 𝑔𝛼𝑘

𝐼𝐴
𝑠 )𝜃𝑠𝑢𝑖𝑑

′′0 𝑁𝐴
𝑠
(∏ (𝐴𝜌𝑠(𝑖)𝑉𝑖)

𝑣𝑖
0𝑠𝑢𝑖𝑑

′′0 +𝑡𝑖
0

𝑖∈[ℓ𝑠] ) (𝑘0 ∏ 𝑘𝑖
𝑐𝑖𝑙

𝑖=1 )
𝑤0(𝐶3

0)𝛽 , where 𝑠𝑢𝑖𝑑
′′0 = 𝑠𝑢𝑖𝑑

0 + 𝑠𝑢𝑖𝑑
′0  

and 𝑠𝑢𝑖𝑑
′0

𝑅
← ℤ𝑝

∗ . 

If the challenger uses 𝑆𝐾𝑢𝑖𝑑,𝑘
𝑠,1 , and sets 𝑤0 = 𝑤1, 𝜆𝑖

′0 = 𝜆𝑖
′1, 𝑟𝑖

0 = 𝑟𝑖
1, 𝑟𝑖

′0 = 𝑟𝑖
′1, 𝑠𝑢𝑖𝑑

′1 = 𝑠𝑢𝑖𝑑
′′0 − 𝑠𝑢𝑖𝑑

1 , 

then 𝜆𝑖
0 = 𝜆𝑖

1 , 𝑠𝑢𝑖𝑑
′′0 = 𝑠𝑢𝑖𝑑

′′1 = 𝑠𝑢𝑖𝑑
′′ . Thus 𝐶1

0 = 𝐶1
1, 𝜋0 = 𝜋1, 𝐶2,𝑖

′0 = 𝐶2,𝑖
′1 , 𝐶2,𝑖

′′0 = 𝐶2,𝑖
′′1, 𝐶3

0 = 𝐶3
1, 𝐷𝑖

′0 =

𝐷𝑖
′1, 𝐷𝑖

′′0 = 𝐷𝑖
′′1. The challenger sets 𝑎1⃗⃗⃗⃗⃗ ∙ Μ𝑠 = 1⃗⃗ and sets 𝑏𝑖

1 = (𝑎𝑖
0 − 𝑎𝑖

1)𝑠𝑢𝑖𝑑
′′ + 𝑏𝑖

0. Then 𝑏1⃗⃗⃗⃗⃗ ∙ Μ𝑠 = 0⃗⃗ 

and 𝑎𝑖
0𝑠𝑢𝑖𝑑

′′ + 𝑏𝑖
0 = 𝑎𝑖

1𝑠𝑢𝑖𝑑
′′ + 𝑏𝑖

1. Hence 𝑆1,𝑖
0 = 𝑆1,𝑖

1 , 𝑆2
0 = 𝑆2

1, and 𝐶𝑇0 = 𝐶𝑇1. 

Similarly, if the challenger firstly uses 𝑆𝐾𝑢𝑖𝑑,𝑘
𝑠,1  to generate 𝐶𝑇1 =

{𝐶0, 𝐶1
1, {𝐶2,𝑖

′1 , 𝐶2,𝑖
′′1, 𝐷𝑖

′1, 𝐷𝑖
′′1}

𝑖∈[ℓ𝑒]
, {𝑆1,𝑖

1 }
𝑖∈[ℓ𝑠]

, 𝑆2
1, 𝑡𝑡}, then it can generate 𝐶𝑇0  with 𝑆𝐾𝑢𝑖𝑑,𝑘

𝑠,0  and 𝐶𝑇1 =

𝐶𝑇0. Therefore, 𝒜 can only outputs a random guess 𝒷′ and the probability is at most 
1

2
. □ 

6.4. Collusion Resistance 

High-Level Overview 

In our scheme, the secret keys of each user are associated the random elements 𝑑𝑢𝑖𝑑 , 𝑠𝑢𝑖𝑑  

picked by CA which are difficult for each user, fog node, authority and cloud server to compute or 

learn. Therefore, the colluders such as the user, fog node, and cloud server cannot selectively replace 

or convert the components of the secret keys under the discrete logarithm assumption. Additionally, 

since 𝑢𝑖𝑑 chosen by CA is globally unique in the system and 𝑑𝑢𝑖𝑑 and 𝑠𝑢𝑖𝑑  are kept secret, secret 

keys generated from different authorities for the same 𝑢𝑖𝑑 can be tied together for signcryption and 

designcryption, and the secret keys generated for different users cannot be combined. 

Let 𝑆𝑐 denote the set of colluders, and 𝑈𝑑̃ is the combined decryption attribute set of 𝑆𝑐. Recall 

that the message ℳ  is blinded by ∏ ∆𝑘
𝑤

𝑘∈𝐼𝐴
𝑒 = ∏ 𝑒(𝑔, 𝑔)𝛼𝑘𝑤

𝑘∈𝐼𝐴
𝑒 . It is infeasible to directly 

reconstruct ∏ 𝑒(𝑔, 𝑔)𝛼𝑘𝑤
𝑘∈𝐼𝐴

𝑒  due to the blindness of 𝛼𝑘 and the hardness of discrete logarithm 

assumption. Thus the colluders have to compute ∏ 𝑒(𝐾𝑢𝑖𝑑,𝑘
𝑑 , 𝐶1)𝑘∈𝐼𝐴

𝑒  and have to cancel the 

redundant element 𝑒(𝜃, 𝑔)𝑤𝑁𝐴
𝑒𝑑𝑢𝑖𝑑 = ∏ 𝑒(𝑔, 𝑔)𝑤ℎ𝑑𝑢𝑖𝑑

𝑘∈𝐼𝐴
𝑒 , where 𝜃 = 𝑔ℎ . Due to BDH assumption, 

the only way to cancel 𝑒(𝜃, 𝑔)𝑤𝑁𝐴
𝑒𝑑𝑢𝑖𝑑  is to compute the denominator 
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∏ ∏ [𝑒 (𝐶2,𝑖
′ 𝜃𝐶2,𝑖

′′
𝐴

𝜌𝑒(𝑖)

−𝐷𝑖
′′

, 𝑔𝑑𝑢𝑖𝑑) 𝑒 (𝐷𝑖
′𝑔𝐷𝑖

′′
, 𝐹𝑢𝑖𝑑,𝜌𝑒(𝑖)

𝑑 )]
𝜎𝑖𝑁𝐴

𝑒

𝑖∈𝐼𝐴𝑘
𝑘∈𝐼𝐴

𝑒  in 𝑃𝑎𝑟𝑡𝑖𝑎𝑙𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 algorithm, which 

means 𝐹𝑢𝑖𝑑,𝜌𝑒(𝑖)
𝑑 = 𝐴𝜌𝑒(𝑖)

𝑑𝑢𝑖𝑑  with the same 𝑑𝑢𝑖𝑑 holds for all 𝜌𝑒(𝑖) ∈ 𝑈𝑑̃. However, since the colluders 

are individually unauthorized for decryption, none of the colluders holds 𝐴𝜌𝑒(𝑖)
𝑑𝑢𝑖𝑑  for all 𝜌𝑒(𝑖) ∈ 𝑈𝑑̃ 

simultaneously. Moreover, since the secret key cannot be replaced, converted or combined, 

{𝐴𝜌𝑒(𝑖)
𝑑𝑢𝑖𝑑 }

𝑈𝑢𝑖𝑑∈𝑆𝑐,𝜌𝑒(𝑖)∈𝑈𝑑̃
 are associated with different 𝑑𝑢𝑖𝑑 . Hence the colluders cannot successfully 

decrypt the ciphertext even though 𝑈𝑑̃ satisfies the encrypt predicate defined in the ciphertext. 

Specifically, according to Theorems 1 and 2, we can prove that our scheme guarantees the collusion 

resistance under q-PBDHE assumption in Theorem 4. 

Theorem 4. The proposed data access control scheme is collusion resistance. 

Proof. For the designcryptor, we state that the security game defined in Definition 9 implies the 

collusion resistance. Suppose that 𝑆𝑐  denotes the set of colluders who are unauthorized for 

decryption and 𝑈𝑑̃ =∪ {𝑈𝑖
𝑑̃}

𝑖∈𝑆𝑐
. If the colluders can decrypt 𝐶𝑇∗  when ℛ𝑒

∗(𝑈𝑑̃) = 1 , then the 

algorithm ℬ which can solve the q-PBDHE assumption can be constructed as follows. 

In the initialization phase, the challenger sets ℛ𝑒
∗  as the selected challenge encryption 

predicate. In 𝒪𝑠𝑘 , 𝒜  queries for the secret decryption key corresponding to the colluder’s 

individual attribute set 𝑈𝑖
𝑑̃. Since the colluders are individually unauthorized for decryption, we 

have ℛ𝑒
∗(𝑈𝑖

𝑑̃) = 0, which satisfies the constraint of 𝒪𝑠𝑘 defined in Definition 8. Then in challenge 

phase, the challenger encrypts ℳ𝒷 under ℛ𝑒
∗ . If the colluders can decrypt the ciphertext, then 𝒜 

can guess the bit 𝒷̂ , and thus ℬ  can solve the q-PBDHE assumption with non-negligible 

probability. 

Similarly, for the signcryptor, the Theorem 2 guarantees that no colluders such as users, fog 

nodes or cloud server can generate the signature by combining their information if they are 

individually unauthorized to sign the plaintext. Otherwise, the colluders can build an adversary and 

output a forgery to win the game in Definition 9 and break q-PBDHE assumption. 

Therefore, the colluding users, fog nodes, and cloud server cannot sign or decrypt the data, and 

our OMDAC-ABSC scheme guarantees collusion resistance. □ 

6.5. Revocation Security 

Assume the attribute 𝑥 of 𝑈 is revoked from 𝐴𝐴𝑘. 𝐴𝐴𝑘 issues the update secret keys 𝑑𝑈𝐾𝑥 =

𝑔𝑑𝑢𝑖𝑑(𝜑𝑥
′ −𝜑𝑥), 𝑠𝑈𝐾𝑥 = 𝑔𝑠𝑢𝑖𝑑(𝜑𝑥

′ −𝜑𝑥) and sends the keys to the non-revoked users. 𝑑𝑈𝐾𝑥  and 𝑠𝑈𝐾𝑥 are 

associated with the secret value 𝑑𝑢𝑖𝑑 , 𝑠𝑢𝑖𝑑  chosen by CA and attribute version key 𝜑𝑥
′ , 𝜑𝑥 chosen by 

𝐴𝐴𝑘. Therefore, due to the blindness of 𝑑𝑢𝑖𝑑 , 𝑠𝑢𝑖𝑑 , 𝜑𝑥
′ , and 𝜑𝑥, the revoked user 𝑈 cannot update 

his/her secret signing or decryption key, even though he/she can corrupt some attribute authorities 

(not the authority 𝐴𝐴𝑘 corresponding to 𝑥) or collude with the non-revoked user. 

Theorem 5. Our OMDAC-ABSC scheme guarantees the forward and backward revocation security. 

Proof. 

Forward Security. If there exists 𝑖  such that 𝜌𝑠(𝑖) = 𝑥 , the newly joined user can sign the 

plaintext and generate the signature component 𝑆2 associated with 𝐴𝑥
′ , which is the same as the 

updated attribute public key of 𝐴𝐴𝑘. Thus the 𝑉𝑒𝑟𝑖𝑓𝑦 algorithm holds if user’s signing attributes 

satisfy the signing predicate. Otherwise, the newly joined user’s secret decryption keys are all 

associated with 𝐴𝑥
′ , which is the same as that in the components 𝐶2,𝑖

′ . Thus the newly joined user can 

decrypt ciphertext if his/her attribute set satisfies the embedded encryption predicate. 

Backward security. If there exists 𝑖  such that 𝜌𝑠(𝑖) = 𝑥 , and the revoked user reverse the 

signature component 𝑆2 back to the non-revoked state which is associated with 𝐴𝑥, then the 𝑉𝑒𝑟𝑖𝑓𝑦 

algorithm cannot hold since the attribute public key of 𝐴𝐴𝑘 has been updated to 𝐴𝑥
′ . 
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Otherwise, assume 𝐶𝑇𝑜𝑙𝑑
′  denotes the ciphertext which is updated from 𝐶𝑇𝑜𝑙𝑑  in attribute 

revocation phase, we have 𝐶2,𝑖
′ = 𝜃𝜆𝑖

′
𝐴𝜌𝑒(𝑖)

′ −(𝑟𝑖
′+𝑟𝑖

′′)
 and 𝐷𝑖

′ = 𝑔𝑟𝑖
′+𝑟𝑖

′′
. It is hard for the revoked user to 

cancel 𝑐𝑈𝐾𝑖 and 𝑔𝑟𝑖
′′

 since they are associated with the values 𝜑𝑥
′ , 𝜑𝑥 which are secretly chosen by 

𝐴𝐴𝑘 and 𝑟𝑖
′′ randomly picked by cloud server. Therefore, the revoked user cannot reverse the 𝐶𝑇𝑜𝑙𝑑

′  

back to 𝐶𝑇𝑜𝑙𝑑 . 

For the ciphertext 𝐶𝑇𝑛𝑒𝑤  which is uploaded after the attribute revocation phase, we have 

𝐶2,𝑖
′ = 𝜃𝜆𝑖

′
𝐴𝜌𝑒(𝑖)

′ −𝑟𝑖
′

 for 𝑖 such that 𝜌𝑒(𝑖) = 𝑥. The revoked user cannot transform these components 

into the ones associated with 𝐴𝜌𝑒(𝑖) due to the blindness of the attribute version keys 𝜑𝑥
′ , 𝜑𝑥 chosen 

by 𝐴𝐴𝑘  and random element 𝑟𝑖
′  picked by fog node. Therefore, our OMDAC-ABSC scheme 

guarantees the forward and backward revocation security. □ 

7. Scheme Analysis 

7.1. Security and Functionality 

In this subsection, we detail the comprehensive security and functionality comparison among 

the proposed scheme and some MA-ABE schemes [21–26], CP-ABSC schemes [12–15] and ABE 

based schemes used for fog computing [16–20] in Tables 1–3. Therein, ✓ represents the capability to 

achieve the corresponding index, whereas ⨯ denotes the opposite. MBF represents monotone 

Boolean function, and TG represents the threshold gate. 

Table 1. Security and Functionality Comparison of MACP-ABE Schemes. 

Schemes [21] [22] [23] [24] [25] [26] Ours 

Collusion Resistance ⨯ ✓ ✓ ✓ ✓ ✓ ✓ 

Standard Model ✓ ⨯ ⨯ ⨯ ⨯ ⨯ ✓ 

Encryption Predicate MBF MBF MBF MBF MBF MBF MBF 

Encryption Outsourcing ⨯ ⨯ ⨯ ⨯ ✓ ⨯ ✓ 

Decryption Outsourcing ⨯ ✓ ⨯ ⨯ ✓ ✓ ✓ 

Anonymous Authentication ⨯ ⨯ ⨯ ✓ ⨯ ⨯ ✓ 

Attribute Revocation ⨯ ✓ ⨯ ⨯ ⨯ ✓ ✓ 

Table 2. Security and Functionality Comparison of CP-ABSC Schemes. 

Schemes [12] [13] [14] [15] Ours 

Collusion Resistance ✓ ✓ ✓ ✓ ✓ 

Standard Model ✓ ⨯ ✓ ⨯ ✓ 

Signcryptor Privacy ✓ ✓ ✓ ⨯ ✓ 

Signing Predicate MBF MBF MBF MBF MBF 

Encryption Predicate MBF MBF MBF TG MBF 

Signcryption Outsourcing ⨯ ⨯ ⨯ ⨯ ✓ 

Designcryption Outsourcing ⨯ ⨯ ⨯ ⨯ ✓ 

Multi-Authority ⨯ ⨯ ⨯ ⨯ ✓ 

Public Verifiability ⨯ ⨯ ✓ ✓ ✓ 

Attribute Revocation ⨯ ⨯ ⨯ ⨯ ✓ 

Table 3. Security and Functionality Comparison of ABE based Schemes for Fog Computing. 

Schemes [16] [17] [18] [19] [20] Ours 

Collusion Resistance ✓ ✓ ✓ ✓ ✓ ✓ 

Standard Model ⨯ ⨯ ⨯ ✓ ✓ ✓ 

Encryption Predicate TG MBF TG TG MBF MBF 

Encryption Outsourcing ✓ ✓ ⨯ ✓ ⨯ ✓ 

Decryption Outsourcing ✓ ✓ ✓ ✓ ✓ ✓ 

Multi-Authority ⨯ ✓ ⨯ ⨯ ⨯ ✓ 

Anonymous Authentication ✓ ⨯ ⨯ ⨯ ⨯ ✓ 

Attribute Revocation ⨯ ⨯ ⨯ ✓ ⨯ ✓ 
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Tables 1–3 show that our scheme supports many useful properties, such as multi-authority, 

collusion resistance, computation outsourcing, anonymous authentication, expressiveness, public 

verifiability and attribute revocation. Our scheme also realizes the security in the standard model. 

7.2. Asymptotic Complexity and Performance 

This section numerically analyzes the asymptotic complexity and performance of the proposed 

OMDAC-ABSC scheme against some MACP-ABE schemes [21,22,24–26], CP-ABSC schemes [12–15], 

and ABE based schemes [16–20] used for fog computing in terms of the size of secret key, ciphertext 

and update key, and computation overhead (exponentiations and pairing computations) of 

𝑆𝑖𝑔𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 , 𝐷𝑒𝑆𝑖𝑔𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛  and 𝑈𝑝𝐶𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡  algorithms. We focus on the computation 

overhead on the user side because of the limited computation resources. For simplicity, in 

asymptotic complexity analysis we ignore the cost time of Hash functions and operations in ℤ𝑝. 

Table 4 summarizes the notations used in this section. 

Table 4. Notations. 

Notations Meaning 

𝑇𝔾
𝑒/𝑇𝔾𝑇

𝑒  Running time required for one exponentiation in 𝔾 and 𝔾T. 

𝑇𝑝 Running time for one pairing operation. 

𝑁𝐴 Number of involved authorities. 

|𝔾|/|𝔾𝑇|/|ℤ𝑝| Size of the element in 𝔾, 𝔾T, and ℤp. 

𝑙𝑒 /𝑙𝑠 Number of required attributes in decryption and verification. 

|𝑈𝑑̃| Number of decryption attributes. 

|𝑈̃| Number of signing and decryption attributes. 

𝑆 Least interior nodes satisfying the access policy tree. 

7.2.1. Asymptotic Complexity 

Table 5 details the storage comparison on MACP-ABE schemes. It is clear that the size of the 

secret decryption key in our OMDAC-ABSC is larger than that in [24,25] due to the components 

{𝐾𝑢𝑖𝑑,𝑘
𝑑 }

𝑘∈𝐼𝐴
. Table 5 also illustrates that the size of ciphertext in our scheme is larger than that in 

[21,22,26], and has the advantage over [25]. Since our scheme supports public verification of 

signcryptor’s attributes, the ciphertext contains the signature components {𝑆1,𝑖}𝑖∈[ℓ𝑠]
, 𝑆2, which result 

in a reducing (1 + 𝑙𝑠)|𝔾| of storage overhead. Although the scheme in [24] can also verify the data 

owner’s attributes, it requires 2 + 2𝑙𝑠 signature group elements and is not publicly verifiable since it 

needs the plaintext message in verification algorithm. Additionally, both of our scheme and [25] 

requires the data owner to compute the ciphertext components {𝐶2,𝑖
′′ , 𝐷𝑖

′′}
𝑖∈[ℓ𝑒]

 when performing 

𝑈𝑠𝑒𝑟_𝑆𝑖𝑔𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 algorithm. This cost is 2𝑙𝑒|ℤ𝑝|. 

For attribute revocation, it is apparent that our scheme and [22] incur relatively the same 

storage overhead. Compared with [26], our scheme requires the attribute authority supervising the 

revoked attribute 𝑥  to compute the ciphertext update key 𝑐𝑈𝐾 = {(𝐷𝑖
′)𝜑𝑥−𝜑𝑥

′
}
𝜌𝑒(𝑖)=𝑥

 when 𝑥  is 

selected as an encryption attribute, and thus incurs at most 𝑙𝑒 group elements, whereas the scheme 

[26] only sends 𝜑𝑥 − 𝜑𝑥
′  to the cloud. However, as shown in [22], DAC-MACS [26] cannot guarantee 

backward revocation security. 

Table 6 shows the computation overhead comparison of 𝑆𝑖𝑔𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛  and 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 

algorithms on the user side and 𝑈𝑝𝐶𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡 algorithm on the cloud. From the table, we can see 

that the encryption and decryption cost of our scheme are both irrelevant to the number of 

attributes. In data signcryption phase, our scheme asks fog nodes to compute and generate part of 

the ciphertext which is associated with the signing and encryption predicates. Thus the signcryption 

cost of data owner can be reduced as 𝑇𝔾𝑇

𝑒 + 3𝑇𝔾
𝑒 in encryption and (𝑙𝑠 + 𝑙 + 2)𝑇𝔾

𝑒  in signing. In 

decryption phase, our scheme only incurs the cost of one exponentiation in 𝔾𝑇 . Hence the 

performance of ours is better than most schemes except for [25]. To guarantee the CCA security in 

the standard model (see Theorem 1), our scheme requires the data owner to compute the components 

𝐶1  and 𝐶3 , which results in a slight reducing 3𝑇𝔾
𝑒  of computation efficiency compared with [25]. 
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However, our scheme performs better than [25] with respect to attribute revocation. Moreover, the 

DAC-MACS scheme in [26] only incurs the cost of 𝑙𝑒 exponentiations in 𝔾 in ciphertext update phase, 

while our scheme incurs twice this cost. The reason is that we re-randomize 𝐶2,𝑖
′  and 𝐷𝑖

′  in 

𝑈𝑝𝐶𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡 algorithm to realize the backward revocation security. 

Table 5. Storage Comparison of MACP-ABE based Schemes. 

Schemes Secret Decryption Key Ciphertext 
Update Key 

Secret Key Update Ciphertext Update Key 

[21] (6𝑁𝐴 + |𝑈𝑑̃|)|𝔾| |𝔾𝑇| + (3𝑁𝐴 + 2𝑙𝑒)|𝔾| - - 

[22] (2 + 2|𝑈𝑑̃|)|𝔾| |𝔾𝑇| + (3 + 𝑁𝐴 + 3𝑙𝑒)|𝔾| 2|𝔾| 𝑙𝑒|𝔾| 

[24] |𝑈𝑑̃||𝔾| (𝑙𝑒 + 1)|𝔾𝑇| + (2 + 2𝑙𝑒 + 2𝑙𝑠)|𝔾| - 𝑙𝑒|𝔾𝑇| 

[25] |𝑈𝑑̃||𝔾| (3𝑙𝑒 + 1)|𝔾𝑇| + 4𝑙𝑒|𝔾| + 2𝑙𝑒|ℤ𝑝| (2|𝔾| + |𝔾𝑇|)𝑙𝑒 𝑙𝑒|𝔾𝑇| 

[26] (2𝑁𝐴 + |𝑈𝑑̃|)|𝔾| |𝔾𝑇| + (1 + 3𝑙𝑒)|𝔾| |𝔾| |ℤ𝑝| 

Ours (𝑁𝐴 + |𝑈𝑑̃|)|𝔾| |𝔾𝑇| + (2 + 2𝑙𝑒 + 𝑙𝑠)|𝔾| + 2𝑙𝑒|ℤ𝑝| |𝔾| 𝑙𝑒|𝔾| 

Table 6. Time Comparison of 𝑆𝑖𝑔𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛, 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 and 𝑈𝑝𝐶𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡. 

Schemes 
𝑺𝒊𝒈𝒏𝒄𝒓𝒚𝒑𝒕𝒊𝒐𝒏 (User Side) 

𝑫𝒆𝒄𝒓𝒚𝒑𝒕𝒊𝒐𝒏 (User Side) 𝑼𝒑𝑪𝒊𝒑𝒉𝒆𝒓𝒕𝒆𝒙𝒕 
Encryption Signing 

[21] 𝑁𝐴𝑇𝔾𝑇

𝑒 + (3𝑁𝐴 + 3𝑙𝑒)𝑇𝔾
𝑒 - (4𝑁𝐴 + 2𝑙𝑒)𝑇

𝑝 + (𝑁𝐴 + 𝑙𝑒)𝑇𝔾𝑇

𝑒  - 

[22] 2𝑁𝐴𝑇𝔾𝑇

𝑒 + (3 + 𝑁𝐴 + 4𝑙𝑒)𝑇𝔾
𝑒 - 𝑇𝔾𝑇

𝑒  2𝑙𝑒𝑇𝔾
𝑒 

[24] (1 + 2𝑙𝑒)𝑇𝔾𝑇

𝑒 + 3𝑙𝑒𝑇𝔾
𝑒 (2 + 3𝑙𝑠 + 2𝑙𝑠𝑛𝑠)𝑇𝔾

𝑒 2𝑙𝑒𝑇
𝑝 (1 + 2𝑙𝑒)𝑇

𝑝 

[25] 𝑇𝔾𝑇

𝑒  - 2𝑇𝔾𝑇

𝑒  𝑙𝑒𝑇
𝑝 

[26] 𝑁𝐴𝑇𝔾𝑇

𝑒 + (1 + 5𝑙𝑒)𝑇𝔾
𝑒 - 𝑇𝔾𝑇

𝑒  𝑙𝑒𝑇𝔾
𝑒 

Ours 𝑇𝔾𝑇

𝑒 + 3𝑇𝔾
𝑒  (𝑙𝑠 + 𝑙 + 2)𝑇𝔾

𝑒  𝑇𝔾𝑇

𝑒  2𝑙𝑒𝑇𝔾
𝑒 

If we set 𝑁𝐴 = 1, then the proposed scheme is a traditional CP-ABSC scheme. In Table 7, we 

compare the asymptotic complexity of OMDAC-ABSC with CP-ABSC schemes [12–15]. As seen 

from Table 7, the size of the secret key is linear to the size of the attribute universe, which is not 

different between our scheme and others. Our scheme incurs a slight reducing 𝑙𝑒|𝔾| + 2𝑙𝑒|ℤ𝑝| of 

storage overhead than other schemes on the ciphertext. The reason is that we add {𝐶2,𝑖
′′ , 𝐷𝑖

′, 𝐷𝑖
′′}

𝑖∈[ℓ𝑒]
 

to realize the attribute revocation and outsourced encryption, which are not considered in other 

schemes. Meanwhile, the ciphertext in our scheme consists of 𝑙𝑠 + 1 group elements for verification, 

while that in [12] is 2𝑙𝑠 + 2. Table 7 also indicates that our scheme incurs less computation overhead 

of 𝐷𝑒𝑆𝑖𝑔𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 on the user side than do the other schemes since most costly job of decryption is 

outsourced to fog nodes. Compared with [14], our construction requires 3 + 𝑙𝑠 pairing operations in 

total in decryption (user side) and verification, whereas in [14], (5 + 𝑙𝑠)  pairings are needed. 

Moreover, since our scheme supports public verifiability, the verification algorithm can be 

performed by a trusted intermediate party. Thus the user can recover the plaintext within one 

exponentiation in 𝔾𝑇. In contrast, the schemes in [12,13,15] are not publicly verifiable, and thus 

incur large amount of computation overhead in verification and decryption on the user side. In 

[12,13], the number of pairings is linear to the number of attributes. In [15], although the size of 

ciphertext is only 6|𝔾|, eight pairings are required to recover the plaintext. 

Table 8 details the storage and computation overhead comparison of our scheme and some ABE 

based data access control schemes for fog computing. Since the schemes in [16,18–20] do not support 

multi-authority, we set 𝑁𝐴 = 1 in our scheme for comparison. It is illustrated that the size of secret 

decryption key in OMDAC-ABSC is less than that in others. Since our scheme enables any trusted 

third party to verify the data owner’s attributes, the ciphertext contains the signature components 

{𝑆1,𝑖}𝑖∈[ℓ𝑠]
, 𝑆2, which result in a reducing (1 + 𝑙𝑠)|𝔾| of storage overhead on the cloud side. For 

encryption, on the user side, our scheme incurs 3𝑇𝔾
𝑒 to compute 𝐶1 and 𝐶3 and thus is less efficient 

than [17]. However, our scheme guarantees the CCA security, which is not considered in [17]. For 

decryption, on the user side, our scheme and [17] both incurs less computation overhead than other 

schemes since the two schemes only require one exponentiation in 𝔾𝑇. Therefore, our scheme is 

efficient from a computation point of view. 
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Table 7. Asymptotic Complexity Comparison of CP-ABSC based schemes. 

Schemes Secret Key Ciphertext 
𝑫𝒆𝑺𝒊𝒈𝒏𝒄𝒓𝒚𝒑𝒕𝒊𝒐𝒏 

Verification Decryption (User Side) 

[12] (4 + |𝑈̃|)|𝔾| (
4 + 𝑙𝑒
+2𝑙𝑠

) |𝔾| (2 + 2𝑙𝑠)𝑇
𝑝 + (2𝑙𝑠 + 3)𝑇𝔾

𝑒 (2 + 2𝑙𝑒)𝑇
𝑝 + 𝑙𝑒𝑇𝔾𝑇

𝑒  

[13] (4 + |𝑈̃|)|𝔾| |𝔾𝑇| + (
5 + 𝑙𝑒
+𝑙𝑠 +

𝑛𝑠

) |𝔾| (6 + 𝑙𝑠𝑛𝑠 + 2𝑙𝑠)𝑇
𝑝 + 𝑙𝑠𝑇𝔾𝑇

𝑒 + 2𝑙𝑠𝑛𝑠𝑇𝔾
𝑒  2𝑙𝑒𝑇

𝑝 + 𝑙𝑒𝑇𝔾𝑇

𝑒  

[14] (4 + |𝑈̃|)|𝔾| (
5 + 𝑙𝑒
+𝑙𝑠

) |𝔾| (3 + 𝑙𝑠)𝑇
𝑝 + (𝑙𝑠 + 𝑙 + 1)𝑇𝔾

𝑒 2𝑇𝑝 + 3𝑙𝑒𝑇𝔾
𝑒 

[15] (6𝑙𝑒 + 3𝑙𝑠)|𝔾| 6|𝔾| 6𝑇𝑝 2𝑇𝑝 + (4𝑙𝑒 + 4𝑙𝑒
2)𝑇𝔾

𝑒 

Ours (2 + |𝑈̃|)|𝔾| |𝔾𝑇| + (2 + 2𝑙𝑒 + 𝑙𝑠)|𝔾| + 2𝑙𝑒|ℤ𝑝| (3 + 𝑙𝑠)𝑇
𝑝 + (𝑙𝑠 + 𝑙 + 1)𝑇𝔾

𝑒 𝑇𝔾𝑇

𝑒  

Table 8. Storage and Computation Overhead Comparison of ABE based Schemes for Fog Computing. 

Schemes 
Secret 

Decryption Key 
Ciphertext 

Encryption Decryption 

Fog Node User Fog Node User 

[16] (2 + 2|𝑈𝑑̃|)|𝔾| |𝔾𝑇| + (3 + 2|𝑈𝑑̃|)|𝔾| (2 + 2|𝑈𝑑̃|)𝑇𝔾
𝑒  𝑇𝔾𝑇

𝑒 + 3𝑇𝔾
𝑒 

(2|𝑈𝑑̃| + 4)𝑇𝑝

+ (2𝑆 + 2)𝑇𝔾𝑇

𝑒  
𝑇𝑝 

[17] (2 + |𝑈𝑑̃|)|𝔾| 
|𝔾𝑇| + (1 + 2𝑙𝑒)|𝔾|

+ (2 + 2𝑙𝑒)|ℤ𝑝| 
4𝑙𝑒𝑇𝔾

𝑒 + 𝑇𝔾
𝑒 𝑇𝔾𝑇

𝑒  
(1 + 2𝑙𝑒)𝑇

𝑝

+ (1 + 7𝑙𝑒)𝑇𝔾
𝑒 

𝑇𝔾𝑇

𝑒  

[18] (1 + 2|𝑈𝑑̃|)|𝔾| (2 + |𝑈𝑑̃|)|𝔾| + 2𝑙|ℤ𝑝| - 𝑇𝔾𝑇

𝑒 + (2 + |𝑈𝑑̃|)𝑇𝔾
𝑒 (3 + 3|𝑈𝑑̃|)𝑇𝑝 4𝑇𝔾𝑇

𝑒  

[19] (3 + |𝑈𝑑̃|)|𝔾| |𝔾𝑇| + (3 + |𝑈𝑑̃|)|𝔾| (2 + |𝑈𝑑̃|)𝑇𝔾
𝑒  2𝑇𝔾𝑇

𝑒 + 4𝑇𝔾
𝑒  

(|𝑈𝑑̃| + 2)𝑇𝑝

+ (2𝑆 + 2)𝑇𝔾𝑇

𝑒  
𝑇𝑝 

[20] (2 + |𝑈𝑑̃|)|𝔾| (2 + 2𝑙𝑒)|𝔾| + 𝑙|ℤ𝑝| - 𝑇𝔾𝑇

𝑒 + (3 + 3𝑙𝑒)𝑇𝔾
𝑒 (1 + 2𝑙𝑒)𝑇

𝑝 + 𝑙𝑒𝑇𝔾𝑇

𝑒  
𝑇𝔾𝑇

𝑒

+ 2𝑇𝔾
𝑒 

Ours (1 + |𝑈𝑑̃|)|𝔾| 
|𝔾𝑇| + (2 + 2𝑙𝑒 + 𝑙𝑠)|𝔾|

+ 2𝑙𝑒|ℤ𝑝| 
3𝑙𝑒𝑇𝔾

𝑒 𝑇𝔾𝑇

𝑒 + 3𝑇𝔾
𝑒 

(1 + 2𝑙𝑒)𝑇
𝑝 + 𝑙𝑒𝑇𝔾𝑇

𝑒

+ 3𝑙𝑒𝑇𝔾
𝑒 

𝑇𝔾𝑇

𝑒  

7.2.2. Performance 

We implement the whole architectures of MACP-ABE schemes [21,22,24–26], CP-ABSC 

schemes [12–15] and our scheme with Pairing-based Cryptography (PBC) library version 0.5.14 on 

an Ubuntu system 14.04 with a 2.6 GHz processor and 4G RAM. We employ 160-bit Type A elliptic 

curve group constructed on 𝑦2 = 𝑥3 + 𝑥 over a 512-bit finite field. The computation cost for one 

pairing operation is 2.9 ms, and that of exponentiation on 𝔾  and 𝔾T  are 0.7 and 0.2 ms, 

respectively. Each value in Figures 3–8 is the mean of 10 simulation trials. 

For simplicity, suppose each user holds the same number of attributes 𝑁𝐴𝐴 from each authority 

and |𝐴𝐴𝑘̃| = |𝐴𝐴𝑘̃ ∩ 𝑈𝑑̃| = 𝑁𝐴𝐴, where 𝑘 ∈ [𝑁𝐴]. 𝑁𝐴
𝑒 = 𝑁𝐴

𝑠 = 𝑁𝐴. Then, in signcryption we set 𝑙𝑒 =

𝑙𝑠 = 𝑁𝐴𝐴 × 𝑁𝐴, and thus the comparison of computation overhead of 𝑆𝑖𝑔𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 (without signing) 

and 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛  algorithms on the user side between our scheme and [21,22,24–26] can be 

conducted according to parameters 𝑁𝐴  and 𝑁𝐴𝐴 . We also generate the signing and encryption 

predicates as AND-gate in the form of (𝑎1 and 𝑎2 and … and 𝑎𝑙𝑠
) and (𝑎1 and 𝑎2 and … and 𝑎𝑙𝑒

). In 

Figures 3 and 5, we set 𝑁𝐴 = 10, while in Figures 4 and 6, we assume 𝑁𝐴𝐴 = 10. During the 

comparison between our scheme and the ones in [21,22,24–26], we do not take into account the 

signing protocol since the schemes in [21,22,25,26] do not support attribute-based signature. 

Figures 3 and 4 show that the encryption algorithm in our scheme is more efficient than that in 

[21,22,24,26]. The reason is that the most costly job of encryption has been outsourced to the fog 

nodes. Although our scheme incurs more computation overhead than the one in [25], we realize 

CCA security in the standard model and attribute-level revocation. Figures 5 and 6 give the 

comparison of decryption time on the user side. It is illustrated that the performance of our scheme 

is relatively the same as that of [22,25,26], and is better than that of [21,24] because our scheme only 

incurs one exponentiation and one multiplication in 𝔾𝑇. 



Sensors 2018, 18, 1609 30 of 36 

 

 

Figure 3. Encryption (user side). 

 

Figure 4. Encryption (user side). 

 

Figure 5. Decryption (user side). 

 

Figure 6. Decryption (user side). 

Assume that 𝑁𝐴 = 1 and ℓ𝑒 = ℓ𝑠 = 𝑁𝐴𝐴. Figures 7 and 8 describe the comparison of computation 

overhead of 𝑆𝑖𝑔𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 and 𝐷𝑒𝑆𝑖𝑔𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 algorithms among the schemes [12–15] and ours. It is 

clear that our 𝑆𝑖𝑔𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 algorithm incurs less computation overhead than other schemes because of 

the outsourced signcryption. Since our scheme and Y. Sreenivasa’s scheme [14] are publicly verifiable, 
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the 𝑉𝑒𝑟𝑖𝑓𝑦(𝑃𝑃, 𝐶𝑇) algorithm can be outsourced to a trusted party, and then our scheme needs only 

one exponentiation and one multiplication in 𝔾𝑇 on the user side to recover the plaintext message. 

 

Figure 7. Signcryption (user side). 

 

Figure 8. Designcryption (user side). 

Moreover, we simulate the schemes in [16–20] and our scheme on an android phone (MEIZU 

m1 note platform with an ARM Cortex A53-based processor MT6752@1.7 GHz, Android 5.1, and 

2GB RAM) as user’s IoT device and a laptop (2.6 GHz processor, Ubuntu system 14.04, and 4G 

RAM) as the fog node. The underlying curve for pairings is also Type A curve in JPBC 2.0.0 [18], 

where the running time for pairing is 6 ms in Ubuntu system and 175 ms in Android. For 

comparison, we set 𝑁𝐴 = 1 in our scheme and do not consider the signing protocol since the 

schemes in [16,18–20] do not support multi-authority and the schemes in [16–20] do not support 

attribute-based signature. Figures 9 and 10 show the comparison of computation overhead of 

encryption algorithm and Figures 11 and 12 show the comparison of decryption algorithm. The 

results are the average number of 10 runs. In Figure 9 we only compare the cost time of encryption 

on fog node between ours and the schemes in [16,17,19] since the schemes in [18,20] do not support 

encryption outsourcing. 

It is illustrated in Figure 10 that the computation time of encryption algorithm on data owner in 

our scheme is basically the same as that in [17], and is smaller than that in [18,20] because of the 

encryption outsourcing. Compared with [16,19], the encryption algorithm in our scheme incurs 

slightly more computation overhead since our scheme requires the data owner to sample 

{𝐶2,𝑖
′′ , 𝐷𝑖

′′}
𝑖∈[ℓ𝑒]

 and perform one Hash function 𝜋 = 𝐻1(𝐶1) (we do not take into account the Hash 

functions 𝐻2 and 𝐻3 here since they are involved in signing protocol). However, the encryption 

time is approximately 0.14–0.8 s, which is acceptable to the end users. 
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Figure 9. Encryption (fog node side). 

 

Figure 10. Encryption (user side). 

Figure 11 indicates that on the fog node side, the decryption algorithm of our scheme incurs 

more computation overhead than the schemes in [16,18–20]. However, Figure 12 shows that our 

scheme performs better than other schemes except for [17] in efficiency of decryption time on the 

user side. This is because our scheme outsources the most computation-consuming job of 

decryption to the fog node and only incurs the cost of one exponentiation and one multiplication in 

𝔾𝑇  on the user side. In Figure 11, the decryption time of our scheme one the fog node is 

approximately 0.1–1 s, which increases almost linearly with the number of attributes.  

 

Figure 11. Decryption (fog node side). 

However it is shown in Figure 12 that the running time of 𝐹𝑢𝑙𝑙𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 algorithm is nearly 

0.03 s, which is acceptable for the end user. Since our scheme is public verifiable, the verification 

can be performed on any trusted third party and does not increase the computation burden of the 

user. Additionally, Huang et al. [16] and Zhang et al. [19] only support threshold access policy, while 

our scheme supports any monotone Boolean function. Overall, our scheme performs well in 

encryption and decryption on the user side and supports additional useful properties such as multi 

authorities, anonymous authentication, and public verifiability. 
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Figure 12. Decryption (user side). 

8. Conclusions 

In this paper, we proposed OMDAC-ABSC scheme for data sharing in fog computing system. 

The proposed scheme realizes the security in the standard model and supports many practical 

properties, such as confidentiality, fine-grained access control, anonymous authentication, attribute 

revocation, and public verifiability. The heavy computation operations of the signcryption and 

designcryption algorithms are outsourced to the fog nodes making our scheme more efficient and 

more suitable for fog computing than the existing ABSC schemes. The security analysis, asymptotic 

complexity, and performance comparisons indicate that our construction hits a good balance 

between the security and overhead efficiency. 

One problem with outsourced decryption is to verify that whether the partial decryption 

performed by fog nodes is correct. In ABE scheme, verifiable outsourcing has been adopted to 

overcome this problem, as in [17,30–32]. A similar technique can be used in our ABSC construction 

to address verifiable outsourcing, which will be our future work. Moreover, realizing a fully secure 

MACP-ABSC based access control scheme instead of a selectively secure scheme will be another 

challenge. 
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Appendix A 

Table A1. Notations used in OMDAC-ABSC scheme. 

Notations Meaning 

𝑆𝐴, 𝑆𝑈 Set of attribute authorities and the set of users. 

𝑁𝐴 Number of attribute authorities. 

𝑢𝑖𝑑/𝑎𝑖𝑑 Identity of user/authority. 

𝑑𝑜/𝑑𝑢 Identity of data owner (signcryptor)/data user (designcryptor). 

𝑈̃ Attribute set of the user. 

𝑨𝑨̃ Attribute set of the attribute authority. 

𝑈𝑑̃/𝑈𝑠̃ Decryption/Signing attribute set of the user. 𝑈̃ = 𝑈𝑑̃ ∪ 𝑈𝑠̃ 

𝐼𝐴
𝑠/𝐼𝐴

𝑒 
Set of the indexes of the authorities involved in signing/encryption. 𝐼𝐴 = 𝐼𝐴

𝑠 ∪ 𝐼𝐴
𝑒 . 

𝑁𝐴
𝑠 = |𝐼𝐴

𝑠|. 𝑁𝐴
𝑒 = |𝐼𝐴

𝑒|. 

𝐻1, 𝐻2, 𝐻3 Collision resistant hash functions. 
ℛ𝑠 ≔ (Μ𝑠, 𝜌𝑠) 
ℛ𝑒,𝑗 ≔ (Μ𝑒, 𝜌𝑒) Signing and Encryption Predicate 

Μ𝑠
𝑖/Μ𝑒

𝑖  𝑖th row of Μ𝑠
𝑖/Μ𝑒

𝑖 . 

M𝑠
(𝑖,𝑘)

/M𝑒
(𝑖,𝑘)

 (𝑖, 𝑘)th element of Μ𝑠
𝑖/Μ𝑒

𝑖 . 

ℓ𝑠/ℓ𝑒 Number of rows of Μ𝑠/Μ𝑒 of ℛ𝑠/ℛ𝑒. 
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𝑛𝑠/𝑛𝑒 Number of columns of Μ𝑠/Μ𝑒 of ℛ𝑠/ℛ𝑒. 

ℓ𝑚 Maximum value of ℓ𝑠. 

𝑃𝑃 = {

𝑔, 𝜃, 𝛾1, 𝛾2,
{𝑘0, 𝑘1, … , 𝑘𝑙},

{𝑉1, 𝑉2 … ,𝑉ℓ𝑚
}
} Public parameters. 

𝑠𝑢𝑖𝑑 , 𝑑𝑢𝑖𝑑 Secret values chosen by CA for each user with identity 𝑢𝑖𝑑. 

𝜑𝑥 , 𝜑𝑥
′  Attribute version key for attribute 𝑥. 

𝐴𝑥 , 𝐴𝑥
′  Attribute public key for attribute 𝑥. 

𝑃𝑃𝐾𝑢𝑖𝑑 = {
𝑔𝑠𝑢𝑖𝑑 , 𝑔𝑑𝑢𝑖𝑑 ,

{𝑉𝑖
𝑠𝑢𝑖𝑑}

𝑖∈[ℓ𝑚]

} Partial public key generated by CA for each user 𝑈𝑢𝑖𝑑. 

𝑃𝑃𝐾𝑎𝑖𝑑 = ∆𝑎𝑖𝑑 Partial public key generated by CA for each attribute authority 𝐴𝐴𝑎𝑖𝑑. 

𝑃𝐾𝑢𝑖𝑑 = {

𝑔𝑠𝑢𝑖𝑑 , 𝑔𝑑𝑢𝑖𝑑 , 𝑔1 𝑧𝑢𝑖𝑑⁄ ,
𝜃𝑧𝑢𝑖𝑑 , 𝑔𝑧𝑢𝑖𝑑 ,

{𝑉𝑖
𝑠𝑢𝑖𝑑}

𝑖∈[ℓ𝑚]

} Public key of the user 𝑈𝑢𝑖𝑑. 

𝑆𝐾𝑢𝑖𝑑 = 𝑧𝑢𝑖𝑑  Secret key of the user 𝑈𝑢𝑖𝑑. 

𝑃𝐾𝑎𝑖𝑑 = {

∆𝑎𝑖𝑑,
𝑋𝑎𝑖𝑑 , 𝑌𝑎𝑖𝑑 , 𝑍𝑎𝑖𝑑,

{𝐴𝑥}𝑥∈𝐴𝐴𝑎𝑖𝑑̃

} Public key of the authority 𝐴𝐴𝑎𝑖𝑑. 

𝑆𝐾𝑎𝑖𝑑 = {𝛽𝑎𝑖𝑑, 𝛾𝑎𝑖𝑑, {𝜑𝑥}𝑥∈𝐴𝐴𝑎𝑖𝑑̃
} Secret key of the authority 𝐴𝐴𝑎𝑖𝑑. 

𝑃𝐾𝑢𝑖𝑑,𝑎𝑖𝑑 = {
𝑃𝐾𝑢𝑖𝑑,𝑎𝑖𝑑

1 , 𝑃𝐾𝑢𝑖𝑑,𝑎𝑖𝑑
2 ,

𝑃𝐾𝑢𝑖𝑑,𝑎𝑖𝑑
3 } Public key for each pair of user 𝑈𝑢𝑖𝑑 and authority 𝐴𝐴𝑎𝑖𝑑. 

𝐹𝑢𝑖𝑑,𝑥
𝑠 /𝐹𝑢𝑖𝑑,𝑥

𝑑  Signing/Decryption attribute key of 𝑈𝑢𝑖𝑑 for attribute 𝑥. 

𝑆𝐾𝑢𝑖𝑑,𝑎𝑖𝑑
𝑠 = {

𝐾𝑢𝑖𝑑,𝑎𝑖𝑑
𝑠 ,

{𝐹𝑢𝑖𝑑,𝑥
𝑠 }

𝑥∈𝑈𝑠̃∩𝐴𝐴𝑎𝑖𝑑̃

} Secret signing key of 𝑈𝑢𝑖𝑑 generated by 𝐴𝐴𝑎𝑖𝑑. 

𝑆𝐾𝑢𝑖𝑑,𝑎𝑖𝑑
𝑑 = {

𝐾𝑢𝑖𝑑,𝑎𝑖𝑑
𝑑 ,

{𝐹𝑢𝑖𝑑,𝑥
𝑑 }

𝑥∈𝑈𝑠̃∩𝐴𝐴𝑎𝑖𝑑̃

} Secret decryption key of 𝑈𝑢𝑖𝑑 generated by 𝐴𝐴𝑎𝑖𝑑. 

𝑃𝑆𝐾𝑢𝑖𝑑,𝑎𝑖𝑑
𝑠

= {

𝑃𝑆𝑢𝑖𝑑,𝑎𝑖𝑑, 𝑃𝑉𝑢𝑖𝑑,

{𝑃𝐹𝑢𝑖𝑑,𝑥
1 , 𝑃𝐹𝑢𝑖𝑑,𝑥

2 }
𝑥∈𝑈𝑠̃∩𝐴𝐴𝑎𝑖𝑑̃

,

{𝑉𝑖
𝑧𝑢𝑖𝑑 , 𝑉𝑖

𝑠𝑢𝑖𝑑𝑧𝑢𝑖𝑑}
𝑖∈[ℓ𝑚]

} 
Proxy secret key for signing. 

𝑃𝑆𝐾𝑢𝑖𝑑,𝑎𝑖𝑑
𝑑 = 𝑆𝐾𝑢𝑖𝑑,𝑎𝑖𝑑

𝑑  Proxy secret key for decryption. 

𝑠𝑈𝐾𝑢𝑖𝑑,𝑥, 𝑑𝑈𝐾𝑢𝑖𝑑,𝑥  Signing and decryption update keys for attribute 𝑥. 

𝑐𝑈𝐾, 𝑠𝑈𝐾 Ciphertext update keys. 

𝑎⃗/𝑏⃗⃗ Vectors chosen by fog node for signing protocol. 

𝑠𝑢𝑖𝑑
′  Secret value randomly chosen by fog node to randomize proxy secret key. 

{𝑟1
′, 𝑟2

′, … , 𝑟ℓ𝑒

′ }, {𝜆1
′ , 𝜆2

′ , … , 𝜆ℓ𝑒

′ },𝑤′ Random values chosen by fog node for signcrypion. 

{𝑟1, 𝑟2, … , 𝑟ℓ𝑒
}, {𝜀2, … , 𝜀𝑛𝑒

},𝑤 Random values chosen by data owner for signcrypion. 

𝑡ℎ𝑟𝑒𝑡𝑡 Time threshold. 

{𝜏2, 𝜏3, … , 𝜏𝑛𝑠
} 

Random values used for verification. 

𝜛𝑖 = (1, 𝜏2, 𝜏3,… , 𝜏𝑛𝑠
) ∙ Μ𝑠

𝑖  

{𝜎1, 𝜎2, … , 𝜎ℓ𝑒
} Random values chosen by fog node for designcryption. 

𝐶𝑇′ Partial ciphertext computed by fog node in signcryption. 

𝐶𝑇𝑝 Partial ciphertext computed by fog node in designcryption. 

𝐶𝑇 Ciphertext. 
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