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Abstract: For synthetic aperture radars, it is difficult to achieve forward-looking and staring
imaging with high resolution. Fortunately, terahertz coded-aperture imaging (TCAI), an advanced
radar imaging technology, can solve this problem by producing various irradiation patterns with
coded apertures. However, three-dimensional (3D) TCAI has two problems, including a heavy
computational burden caused by a large-scale reference signal matrix, and poor resolving ability at
low signal-to-noise ratios (SNRs). This paper proposes a 3D imaging method based on geometric
measures (GMs), which can reduce the computational burden and achieve high-resolution imaging for
low SNR targets. At extremely low SNRs, it is difficult to detect the range cells containing scattering
information with an ordinary range profile. However, this difficulty can be overcome through GMs,
which can enhance the useful signal and restrain the noise. By extracting useful data from the range
profile, target information in different imaging cells can be simultaneously reconstructed. Thus,
the computational complexity is distinctly reduced when the 3D image is obtained by combining
reconstructed 2D imaging results. Based on the conventional TCAI (C-TCAI) model, we deduce
and build a GM-based TCAI (GM-TCAI) model. Compared with C-TCAI, the experimental results
demonstrate that GM-TCAI achieves a more impressive performance with regards to imaging
ability and efficiency. Furthermore, GM-TCAI can be widely applied in close-range imaging fields,
for instance, medical diagnosis, nondestructive detection, security screening, etc.

Keywords: coded-aperture imaging; three-dimensional (3D); geometric measures (GMs); pulse
compression

1. Introduction

Unlike synthetic aperture radars, terahertz coded-aperture imaging (TCAI) [1–3] can overcome
the difficulties of achieving forward-looking and staring imaging with a high resolution. Referring to
the imaging theory of both optical coded-aperture imaging [4,5] and radar coincidence imaging
(RCI) [6,7], this imaging technology reconstructs target information with arbitrary measurement
modalities, which are achieved by producing spatiotemporal independent signals with the coded
aperture. Besides, terahertz waves (0.1–10 THz) have better penetrability than light and shorter
wavelengths than microwaves, both of which guarantee their advantage in detecting hidden objects in
security screening [8–10].

To develop coding devices and imaging methods for TCAI, the Defense Advanced Research
Project Agency (DARPA) has proposed a project named advanced scanning technology for imaging
radars (ASTIR) [11]. Recently, the Harvard Robotics Laboratory (HRL), participating in the ASTIR
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project, has developed a high-resolution, low-power coded aperture subreflector array (CASA) that can
potentially see weapons or explosives concealed on a person, at tactically safe distances [12]. Besides,
metasurfaces have also shown great promise in the flexible manipulation of terahertz and millimeter
waves, which have been applied in fields of high-resolution computational imaging [13,14] and some
scanning devices [15,16]. Therefore, metasurfaces are used to provide device support for TCAI.

However, due to a large number of meshed grid cells [3,17], the large-scale reference signal matrix
increases computational complexity. Worse still, current TCAI algorithms lack the ability to reconstruct
low signal-to-noise ratio (SNR) targets. At extremely low SNRs, the useful signal is drowned in noise,
thus leading to a mismatch between the back signal and reference signal matrices. Recently, an imaging
method was proposed to obtain the range profile with matched filtering [18], which is a step in pulse
compression. However, when the SNR is under −10 dB, pulse compression has the additional problem
of having to extract true target positions from the range profile, thus resulting in imaging failure.
In simulation conditions, target positions can be extracted with knowledge of the imaging parameters.
However, for practical applications, target positions are unknown.

By studying the intrinsic geometrical nature of traditional signals, information geometry provides
a new way to deal with existing problems of signal processing [19]. As an important tool of information
geometry, geometric measures (GMs) can transform traditional signal processing into manifold signal
processing, thus improving signal-detection performance [20].

In this paper, we propose a new TCAI method based on geometric measures (GMs). The GMs’
decision maker helps extract useful range profile data, the signal quality of which is improved
significantly. By constructing a covariance matrix of the range profile under TCAI architecture,
the range profile data is projected into manifold space. Thus, the tough problems of 3D TCAI can be
solved in the manifold with GMs. Although GMs provide a new perspective of signal processing, there are
few examples of practical applications of GMs for radar imaging. We attempt to introduce GMs or
information geometry into the radar imaging field. Eventually, range profile cells corresponding to
different imaging planes are subdivided. Then, the three-dimensional (3D) target reconstruction is
decomposed into a combination of two-dimensional (2D) images.

In this paper, Section 2 introduces the basic imaging principle and the model of conventional
TCAI (C-TCAI). Then, the imaging model and procedure of GM-based TCAI (GM-TCAI) is described
in detail. In Section 3, numerous experiments demonstrate the imaging ability of GM-TCAI for low
SNR 3D targets. Finally, Section 4 concludes with the advantages of GM-TCAI for future applications.

2. Imaging Method

2.1. Conventional TCAI

3D TCAI mainly features a transmitter, a receiver, a reflective coded aperture, and the 3D imaging
area, as shown in Figure 1. The transmitter sends the transmitting signal to the reflective coded
aperture, while the receiver receives the back signal with the target information. The coded aperture
randomly modulates the amplitude or phase of the transmitting signal. In Figure 1, the various colors
in the coded aperture denote various amplitudes or phase modulations of the transmitting signal.
The 3D imaging area is subdivided into several imaging planes across various ranges. Subsequently,
the divided imaging planes are further meshed into tiny grid cells, while scatters are located in the
centers of the grid cells.

Firstly, the transmitter transmits a linear frequency modulation (LFM) signal, which is shown below:

St(t) = rect
(

t
Tp

)
· A · exp

[
j2π

(
fct +

1
2

γt2
)]

, (1)

where St(t) is the transmitting LFM signal at time t, Tp is the pulse width, A is the amplitude, fc is the
center frequency, γ is the chirp rate of the signal, j is the imaginary unit, and rect(·) is the rectangular
window function.
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Figure 1. Schematic diagram of three-dimensional terahertz coded-aperture imaging (3D TCAI). 
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below: 

21( ) rect exp 2
2t c

p

tS t A j f t t
T

π γ
    = ⋅ ⋅ +          ,

 (1) 

where ( )tS t  is the transmitting LFM signal at time t , pT  is the pulse width, A  is the amplitude, 

cf  is the center frequency, γ  is the chirp rate of the signal, j is the imaginary unit, and ( )rect ⋅  is 
the rectangular window function. 

For the purpose of clarity, we assume the LFM signal arriving at the coded aperture to be a plane 
wave. The time delay terms for each transmitting element of the coded aperture are the same, and as 
such, they can be set as zero. For a coded aperture containing Q transmitting elements, the radiating 
signal through the coded aperture can be expressed as: 

( )2
, ,

1

1( ) rect exp 2 exp
2

Q

c t q c t q
q p

tS t A j f t t j
T

π γ ϕ
=

    = ⋅ ⋅ + ⋅ ⋅         


,
 (2) 

where ,t qA  and ,t qϕ  are the random modulation terms of amplitude and phase, respectively, for the 

qth transmitting element at time t. 
Secondly, the radiating signal illustrates the 3D imaging area, which contains K  grid cells.  
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Figure 1. Schematic diagram of three-dimensional terahertz coded-aperture imaging (3D TCAI).

For the purpose of clarity, we assume the LFM signal arriving at the coded aperture to be a plane
wave. The time delay terms for each transmitting element of the coded aperture are the same, and as
such, they can be set as zero. For a coded aperture containing Q transmitting elements, the radiating
signal through the coded aperture can be expressed as:

Sc(t) =
Q

∑
q=1

rect
(

t
Tp

)
· At,q · exp

[
j2π

(
fct +

1
2

γt2
)]
· exp

(
j · ϕt,q

)
, (2)

where At,q and ϕt,q are the random modulation terms of amplitude and phase, respectively, for the qth
transmitting element at time t.

Secondly, the radiating signal illustrates the 3D imaging area, which contains K grid cells.
For high-resolution imaging, the radiation field of the 3D imaging area is spatiotemporally independent.
Reflected by the 3D target, the back signal arriving at the receiver is written as:

Sr(t) =
K

∑
k=1

Q

∑
q=1

rect
( t− tq,k

Tp

)
· At,q · βk · exp

[
j2π

(
fc

(
t− tq,k

)
+

1
2

γ
(

t− tq,k

)2
)]
· exp

(
j · ϕt,q

)
, (3)

where βk is the scattering coefficient corresponding to the kth grid cell, tq,k is the total time delay after
passing though the qth transmitting element, the kth grid cell, and the receiver.

Based on the time discretion of Equation (3), the conventional mathematical model of TCAI is
deduced as:

Sr = S ·β
Sr(t1)

Sr(t2)

. . .
Sr(tN)

 =


S(t1, 1) S(t1, 2) . . . S(t1, K)
S(t2, 1) S(t2, 2) . . . S(t2, K)

. . . . . . . . . . . .
S(tN , 1) S(tN , 2) . . . S(tN , K)

 ·


β1

β2

. . .
βK

 , (4)

where Sr = (Sr(tn)), n = 1, · · ·N, S = (S(tn, k)), k = 1, · · ·K, n = 1, · · · , N, and β = (βk), k = 1, · · ·K
are the back signal vector, reference signal matrix, and scattering-coefficient vector, respectively. N and
K are the amount of sampling time and number of grid cells, respectively. The array element of S is
as follows:

S(tn, k) =
Q

∑
q=1

rect
(

t
Tp

)
· At,q · exp

[
j2π

(
fc

(
t− tq,k

)
+

1
2

γ
(

t− tq,k

)2
)]
· exp

(
j · ϕt,q

)
. (5)

Based on the concept of solving linear equations, it is difficult to solve Equation (4) when there is
a mismatch between the receiving signal vector, Sr, and the reference-signal matrix, S. Unfortunately,
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the reference signal matrix is deduced from Equation (5) under ideal conditions, while the real back
signal is received with a low SNR.

2.2. GM-Based TCAI

To solve the low SNR problem for TCAI, we deduced a new imaging model based on GMs,
which is shown in Figure 2. The back signal matrix, SR = [Sr1, · · · , Sri, · · · , SrN ], in Figure 2 is
composed of M back signal pulses. Sri, n = 1, 2, · · · , N is a vector described as (Sri1, Sri2, · · · , SriM)T ,
where [·]T denotes the transposition of the vector or matrix. Firstly, the range profile matrix,
FSR = [FSr1, · · · , FSri, · · · , FSrN ], was obtained by pulse compression of the back signal matrix,
SR. Even with a range profile, the target-containing range cells were still unable to be detected at
extremely low SNRs. Therefore, we took advantage of GMs to extract range cells which included
scattering information.
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2.2.1. Pulse Compression through the Dechirping Technique

3D TCAI has two problems, including a heavy computational burden caused by a large-scale
reference signal matrix, and poor resolving ability at low SNRs. To solve these problems, this paper
transformed the back signal from the time domain into the frequency domain with pulse compression,
which is a useful method to reduce computational complexity and enhance the SNR.

For the pulse compression, we defined a reference signal, the time delay of which was set as zero.
The reference signal was written as:

Sre f (t) = rect
(

t
Tp

)
· exp

[
j2π

(
fct +

1
2

γt2
)]

. (6)

By mixing the back signal and the reference signal, the dechirping signal was deduced as:

Sri f (t) = Sr(t) · S∗re f (t)

=
K
∑

k=1

Q
∑

q=1
rect

( t−tq,k
Tp

)
· At,q · βk · exp

[
j2π

(
−γtq,kt− fctq,k +

1
2 γ
(

tq,k

)2
)]
· exp

(
j · ϕt,q

) . (7)

After Fourier transformation, the range profile could be formulated as below:

FSri f ( f ) = F
[
Sri f (t)

]
=

K
∑

k=1

Q
∑

q=1
sinc

(
Tp

(
f + γtq,k

))
· Aq · βk · exp

{
j2π

(
−γtq,k f − fctq,k +

1
2 γ
(

tq,k

)2
)}
· exp

(
j · ϕt,q

) , (8)
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where f is the frequency variable, F(·) is the Fourier transform, and sinc(u) = sin(πu)
πu is the

impulse function.
The back signal matrix, SR, was compressed row by row via Equations (7) and (8), and it was

finally transformed into a range profile matrix, FSR, each column of which denoted a range cell.

2.2.2. Signal Extraction by GMs

The range profile should have presented spike pulses at target positions. However, when the SNR
was under −10 dB, it was difficult to recognize the target positions from the range profile, and thus,
this resulted in imaging failure. Therefore, this paper tried to get the right positions of spike pulses
by using GMs to learn the intrinsic nature of the range profile. Therefore, the following section
describes the use of GMs to detect target positions, which are the foundation of successful imaging.
Firstly, Figure 3 is provided to illustrate the interpretation of traditional distances into Euclidean space,
and geometric divergences into manifold space. The difference between two elements was calculated
as a function of their distance in Euclidean space. The detection of GMs in the manifold domain was
highly improved by utilizing intrinsic divergences of the required covariance matrices. To achieve this,
the Kullback–Leibler divergence (KLD) [19,20] was adopted to extract useful range profile data.
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divergences in manifold space, where R represents the traditional distance or geometric divergence of
each element.

A. Problem Description

This step transformed the existing problems of TCAI into a theoretical framework of information
geometry. The range profile extraction could be formulated as a hypothesis problem, which was
described as: {

H0 : FSr(n) = w(n), n = 1, 2, · · · , N
H1 : FSr(n) = s(n) + w(n), n = 1, 2, · · · , N

, (9)

where s(n) denotes the useful signal containing target information when FSr(n) satisfies the hypothesis
H1, and w(n) is the correlated Gaussian noise disturbing FSr(n).
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As a column of the FSR matrix, FSri could be derived from either of the hypotheses described in
Equation (9). To classify FSri, the covariance matrix, Ri, of the range profile, FSri, was defined by:

Ri = E
[
(FSri)(FSri)

H
]
=


r0 r1 · · · rM−1

r1 r0
. . .

...
...

. . . . . . r1

rM−1 · · · r1 r0

, (10)

where rk = E
[
FSri,mFSri,m+k

]
is defined as the correlation coefficient, FSr describes the complex

conjugate of FSr, [·]H denotes the conjugate transposition of matrix, and Ri is a Toeplitz Hermitian
positive-definite (HPD) matrix [21,22], with RH

i = Ri. As a closed, self-dual convex cone, the HPD
matrix manifold provided a higher-rank symmetric space [23]. The correlation coefficient of FSr was
given by its sample mean, which was written as:

r̂k =
1
M

M−1−|k|

∑
m=0

FSri,mFSri,m+k, |k| ≤ M− 1. (11)

The range profile data in each cell was remodeled by Equation (10), while the covariance
matrix represented the target or noise information. In this way, the range profile data, FSri =

{FSri1, FSri2, · · · , FSri,M}, was projected into manifold space with M dimensions.

B. Geometry Solution

The information of each range cell was described by its related Ri, which was an HPD matrix
estimated by the range profile data, FSri, according to Equation (10). To decide the range cell type,
we measured the difference between the detected HPD matrix, RD, and the mean matrix, R, using KLD.

The KLD-based mean [20], R, of a set of HPD matrices, {R1, R2, · · · , RN}, was calculated by

R = argmin
N

∑
i=1

D2(R||Ri) =

(
1
N

N

∑
i=1

R−1
i

)−1

, (12)

where D(·) denotes the KLD calculation.
Finally, the decision was made by comparing the distance between RD and R with an adaptive

detection threshold, γ.
According to ref. [20], the KLD between two HPD matrices, R1 and R2, is formulated as:

D(R1, R2) = tr
(

R−1
2 R1 − I

)
− log10 det

(
R−1

2 R1

)
, (13)

where tr(·) denotes the matrix trace, while det(·) describes the matrix determinant.
Then, the KLD-based decision maker is performed with:

D
(
RD, R

) H0
≶
H1

γ, (14)

where γ is the threshold between noise and target range cells. When D
(
RD, R

)
> γ, the range cell

contains target information, and its corresponding FSrD will be indexed and extracted.

C. Range Profile Extraction
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Unlike FSR = [FSr1, · · · , FSri, · · · , FSrN ], the range profile matrix, FSR, can be described in
another form, which is shown as:

FSR =

[(
FSr1

)T
, · · · ,

(
FSri

)T
, · · · ,

(
FSrM

)T
]

, (15)

where FSri =
(

FSri1, FSri2, · · · , FSriN )T denotes the row element of FSR.
According to Equation (8), the range profile FSri presents a spike pulse at f = −γtq,k,

where tq,k = rq,k/c, and rq,k is the distance delay corresponding to tq,k. Therefore, the scattering
information within the same range gathers in the same spike pulse. The 3D imaging area in Figure 1
has four imaging planes across various ranges. As each imaging plane was located in several range
cells adjacent to one another, the range profile vector, FSri, showed four spike pulses. On one hand,
the four spike pulses included all the information of the 3D target. On the other hand, each spike
pulse only contained the target information within its imaging plane. As described in Section 2.2.2,
the corresponding spike pulses of FSri were indexed and extracted using GMs. Subsequently, the target
in each imaging plane was reconstructed one by one, and then synthesized together to obtain the entire
3D target.

Using GMs, different spike pulses in FSri were extracted separately. For example, in Figure 1,
FSri could be subdivided into FSri

1, FSri
2, FSri

3, and FSri
4, as shown in Figure 4. Moreover, r1, r2, r3,

and r4 were indexed as corresponding row positions of FSri
1, FSri

2, FSri
3, and FSri

4 in FSri.
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2.2.3. Conformation of the Reference Signal Matrix

As shown in Figure 4, K1, K2, K3, and K4 were the numbers of the grid cells in the four imaging
planes. FSi was the range profile reference signal matrix related to FSri, while FSi

1, FSi
2, FSi

3, and
FSi

4 were the range profile reference signal matrices corresponding to FSri
1, FSri

2, FSri
3, and FSri

4,
respectively. Moreover, FSi

1, FSi
2, FSi

3, and FSi
4 were partly extracted from FSi

o1, FSi
o2, FSi

o3, and FSi
o4,

which were later introduced. Apparently, only FSi
1, FSi

2, FSi
3, and FSi

4 needed to be constructed, instead
of the whole matrix, FSi.

Firstly, the time-domain reference signal matrices Si
1, Si

2, Si
3, and Si

4 were deduced from
Equations (4) and (5).

Similar to Equations (7) and (8), we dechirped and transformed each column of Si
1, Si

2, Si
3, and

Si
4 into the frequency domain. For example, S(t, k), the reference signal in the kth column, could be

processed with:
Si f (t, k) = S(t, k) · S∗re f (t), (16)
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FSi f ( f , k) = F
[
Si f (t, k)

]
. (17)

Through pulse compression, we obtained the original range profile reference signal matrices,
FSi

o1, FSi
o2, FSi

o3, and FSi
o4.

As shown in Figure 4, the row numbers of FSi
o1, FSi

o2, FSi
o3, and FSi

o4 were the same as that of FSri.
As described in the section describing range profile extraction, r1, r2, r3, and r4 were the row position
tags of FSri

1, FSri
2, FSri

3, and FSri
4. As such, we could use r1, r2, r3, and r4 to extract corresponding

rows of FSi
o1, FSi

o2, FSi
o3, and FSi

o4, and finally get the required range profile reference signal matrices,
FSi

1, FSi
2, FSi

3, and FSi
4.

2.2.4. Imaging Model Based on GMs

With M pulses denoted in Figure 2, we could combine all range profile vectors and reference
signal matrices. For example, with an imaging plane named x, the synthesized range profile vector
and reference signal matrix could be written as:

FSrGM
x =

[(
FSr1

x

)T
, · · · ,

(
FSri

x

)T
, · · · ,

(
FSrM

x

)T
]T

, (18)

FSGM
x =

[(
FS1

x

)T
, · · · ,

(
FSi

x

)T
, · · · ,

(
FSM

x

)T
]T

. (19)

Then, the mathematical model based on a decision made using geometric measures could be
formulated as:

FSrGM
x = FSGM

x ·βx, (20)

where βx is the scattering coefficient vector of imaging plane x. Based on this model, each imaging
plane in Figure 1 could be reconstructed in parallel to reduce the computational burden. Finally,
the imaging results of all imaging planes were combined to reconstruct the 3D target.

The high-resolution image was then obtained through GM-TCAI. Table 1 shows the whole
imaging procedure below.

Table 1. Imaging procedure of geometric measure-based terahertz coded-aperture imaging (GM-TCAI).

Input Back signal matrix, SR = [Sr1, Sr2, · · · , SrN ], with M back signal vectors.

Step 1 Obtain the range profile matrix, FSR = [FSr1, · · · , FSri, · · · , FSrN ], via Equations (7) and (8).

Step 2 Obtain the HPD matrices, R1, R2, · · · , RN , from FSr1, · · · , FSri, · · · , FSrN via Equation (10).

Step 3 Calculate the mean KLD, R, of the HPD matrices, R1, R2, · · · , RN , via Equation (14).

Step 4

for I = 1:N,
compare the divergence between Ri and R referring to Equation (12), and extract the range profile vectors,
FSri

1, FSri
2, FSri

3, and FSri
4, via Equation (14).

end
Return:
(1) The row position tags, r1, r2, r3, and r4, of the imaging planes containing targets.
(2) Combination of the extracted range profile vectors, FSrGM

1 , FSrGM
2 , FSrGM

3 , and FSrGM
4 , via Equation (18).

Step 5
Construct the range profile reference signal matrices, FSGM

1 , FSGM
2 , FSGM

3 , and FSGM
4 , corresponding to FSrGM

1 ,
FSrGM

2 , FSrGM
3 , and FSrGM

4 via Equation (19) and the procedure detailed in Section 2.2.3.

Step 6 Reconstruct
_
β1,

_
β2,

_
β3, and

_
β4 from different imaging planes, according to Equation (20).

Return Obtain the initial 3D imaging result,
_
β, through a combination of

_
β1,

_
β2,

_
β3, and

_
β4.

3. Experimental Results

In this section, the range profile cells containing scattering information were indexed by GM
divergence, using KLD. Each cluster cell corresponded to one imaging plane at a fixed range.
Through the useful compressed sensing (CS) algorithm, total variation (TV) regularization can recover
both sparse and extended targets [24]. By incorporating TV regularization, both sparse and extended
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targets were tested to compare C-TCAI and GM-TCAI at extremely low SNRs. We adopted the relative
imaging error (RIE) and probability of successful imaging (PSI) [25] to estimate the performance
of GM-TCAI.

Firstly, the RIE was defined as:

MSE , 20 log10
(
‖β̂−β‖2/‖β‖2

)
, (21)

where β̂ and β are the estimated and true targets, respectively.
Secondly, the PSI was defined as:

PSI , min
(
β̂
)

Λ/max
(
β̂
)

Λ
, (22)

where Λ denotes the correct positions containing targets,
(
β̂
)

Λ carries the same values as β̂ at Λ, and(
β̂
)

Λ
takes zeroes at Λ, and the same values as β̂ at the other positions. Herein, the presence of

successful imaging was proportional to the value of the PSI.
The basic parameters in the experiments are shown in Table 2. The 3D imaging area included

four imaging scenes, which denoted the imaging planes across four different ranges. By adding 0 or π,
the coded aperture randomly modulated the phase of the transmitting signal. The computer performing
the experiments was equipped with an i5-6200U processor, and 8 GB of memory.

Table 2. Primary parameters used in the experiments.

Parameter Value

Center frequency (fc) 340 GHz
Bandwidth (B) 20 GHz

Pulse Width (Tp) 100 ns
Size of the coded aperture 0.5 m × 0.5 m

Number of coded-aperture array elements 25 × 25
Sampling frequency (f s) 25 GHz

Range of Scene 1 1.5 m
Range of Scene 2 2 m
Range of Scene 3 2.5 m
Range of Scene 4 3 m

Size of the grid cell 0.0025 m × 0.0025 m
Number of grid cells in each scene 30 × 30

GM divergence Kullback–Leibler divergence (KLD)

3.1. Range Profile Extraction Based on GMs

According to Equation (4), C-TCAI reconstructed the target through the original back signals,
which are shown in Figure 5a–c. To obtain the range profile, the back signal vector was processed with
pulse compression, which is described in detail in Section 2.2.1. As the 3D imaging area contained
four scenes or imaging planes, the range profiles in Figure 5d–f should have presented four spike
pulses around 1.5 m, 2 m, 2.5 m, and 3 m. However, the SNR was too low to detect the target position.
Referring to Equation (10), each range cell corresponded to an HPD matrix, Ri. To detect the true
target position, the GM divergences between each HPD matrix, Ri, and the mean HPD matrix, R,
were calculated. As shown in Figure 5g–i, the spike pulses corresponding to scenes 1, 2, 3, and 4 were
easy to judge, and were marked with red, green, blue, and yellow rectangular boxes, respectively.
With differing range information located in each spike pulse, it was easy to divide and extract the
range profiles of each scene. Using the processed signal, target reconstructions of the four scenes could
be performed simultaneously at low SNRs.
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Figure 5. (a–c) The back signals at −15 dB, −20 dB, and −25 dB, respectively; (d–f) the range profiles
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3.2. Imaging Results for Sparse Targets

The sparse targets of “N”, “U”, “D”, and “T” shapes were distributed in scenes 1, 2, 3, and 4,
respectively. NUDT is the abbreviation of the National University of Defense Technology. To simulate
the original back signals for TCAI, various radiation patterns were convolved with the scattering
coefficients in the 3D imaging area. For the sparse targets, ten pulses were adopted to obtain the back
signal matrix, SR, which was compressed to construct the range profile matrix, FSR. Through the
GMs’ decision maker, the imaging data was extracted from the range profile. C-TCAI and GM-TCAI
were based on Equations (4) and (20), respectively. Referring to the four scenes in the 3D imaging
area, the size of the reference signal matrix for C-TCAI was 3600 × 3600, while the size for GM-TCAI
was 900 × 900. Therefore, the computational complexity of C-TCAI was much larger than that of
GM-TCAI. Using the imaging method of TV regularization, Table 3 presents the time consumption of
C-TCAI and GM-TCAI for the sparse targets. Apparently, the imaging time of GM-TCAI was much
shorter than that of C-TCAI.

Figure 6 gives comparisons of the imaging results of C-TCAI and GM-TCAI at various SNRs.
Figure 6a–c describes the results of C-TCAI at−25 dB,−15 dB, and−5 dB, while Figure 6d–f shows the
results of GM-TCAI at −25 dB, −15 dB, and −5 dB. When the SNRs were −25 dB and −15 dB, C-TCAI
resolved nothing of the targets, as shown in Figure 6a,b. Even at −5 dB, C-TCAI could only reconstruct
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a blurred image with some unclear scatters. As shown in Figure 6d–f, GM-TCAI could reconstruct
all target points with correct positions and scattering information. Therefore, the performance of
GM-TCAI was deemed impressive at extremely low SNRs.
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Figure 6. Comparison of imaging results for C-TCAI and GM-TCAI for sparse targets at various SNRs.
(a–c) Imaging results for C-TCAI at −25 dB, −15 dB, and −5 dB; (d–f) imaging results for GM-TCAI at
−25 dB, −15 dB, and −5 dB.

The RIE and PSI were used to quantitatively evaluate the imaging results. Figure 7a presents the
RIE comparisons of C-TCAI and GM-TCAI. The RIEs of GM-TCAI were always lower than those of
C-TCAI. Especially at lower SNRs, the difference in RIEs between GM-TCAI and C-TCAI was much
larger. As shown in Figure 7b, the PSIs of GM-TCAI were always higher than one, where PSI > 1
denotes successful imaging. Therefore, GM-TCAI could always achieve successful imaging, regardless
of the SNR. However, the PSIs of C-TCAI were always too small to guarantee successful imaging.
Considering the runtime comparison, GM-TCAI could achieve efficient and high-resolution imaging
for sparse targets.
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Figure 7. Imaging evaluations of conventional TCAI (C-TCAI) and GM-based TCAI (GM-TCAI) using:
(a) the relative imaging error (RIE); and (b) the probability of successful imaging (PSI), at various SNRs
for sparse targets.

Table 3. Runtime for sparse target.

Conventional TCAI GM-TCAI

Runtime 41.4877 s 1.1040 s
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3.3. Imaging Results for Extended Targets

The extended targets with “N”, “U”, “D”, and “T” shapes were located in scenes 1, 2, 3, and 4,
respectively. As the extended targets were more complex than the sparse targets, fifty pulses were used
to obtain the back signal matrix, SR, and construct the range profile matrix, FSR. Using the imaging
method of TV regularization, Table 4 presents the time consumption of C-TCAI and GM-TCAI for the
extended targets. Obviously, GM-TCAI could save more time than C-TCAI. Compared with Table 3,
extended target reconstruction needed more time than sparse target reconstruction.

Table 4. Runtime for extended target.

C-TCAI GM-TCAI

Runtime 51.1916 s 14.6427 s

For the extended targets, Figure 8 presents comparisons of the imaging results of C-TCAI and
GM-TCAI at various SNRs. When the SNRs were −25 dB and −15 dB, it was difficult to distinguish
the target in the imaging results from C-TCAI, as shown in Figure 8a,b. At −5 dB, C-TCAI could only
reconstruct the blurred contour of the target, as shown in Figure 8c. Despite some background noise in
Figure 8d, GM-TCAI could clearly reconstruct the useful target information. As shown in Figure 8e,f,
GM-TCAI performed better and better with increasing SNRs. Thus, GM-TCAI could also reconstruct
the extended target with excellent performance at low SNRs.
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Figure 8. Comparison of imaging results for C-TCAI and GM-TCAI for extended targets at various
SNRs. (a–c) Imaging results for C-TCAI at −25 dB, −15 dB, and −5 dB; (d–f) imaging results for
GM-TCAI at −25 dB, −15 dB, and −5 dB.

Using the RIE and PSI, Figure 9 presents the quantitative comparison of C-TCAI and GM-TCAI.
Similar to those in Figure 7a, the RIEs of GM-TCAI in Figure 9a were always lower than those of C-TCAI.
As shown in Figure 9b, the PSIs of GM-TCAI could guarantee successful imaging, while the PSIs of
C-TCAI denoted difficulty in obtaining successful imaging. Therefore, GM-TCAI was an effective
imaging method for both sparse and extended 3D targets.



Sensors 2018, 18, 1582 13 of 14

Sensors 2018, 16, x FOR PEER REVIEW 13 of 15 

 

in Figure 8d, GM-TCAI could clearly reconstruct the useful target information. As shown in Figure 
8e,f, GM-TCAI performed better and better with increasing SNRs. Thus, GM-TCAI could also 
reconstruct the extended target with excellent performance at low SNRs. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 8. Comparison of imaging results for C-TCAI and GM-TCAI for extended targets at various 
SNRs. (a–c) Imaging results for C-TCAI at −25 dB, −15 dB, and −5 dB; (d–f) imaging results for  
GM-TCAI at −25 dB, −15 dB, and −5 dB. 

Using the RIE and PSI, Figure 9 presents the quantitative comparison of C-TCAI and GM-TCAI. 
Similar to those in Figure 7a, the RIEs of GM-TCAI in Figure 9a were always lower than those of  
C-TCAI. As shown in Figure 9b, the PSIs of GM-TCAI could guarantee successful imaging, while the 
PSIs of C-TCAI denoted difficulty in obtaining successful imaging. Therefore, GM-TCAI was an 
effective imaging method for both sparse and extended 3D targets. 

  
(a) (b) 

Figure 9. Imaging evaluations of C-TCAI and GM-TCAI using: (a) the relative imaging error (RIE); 
and (b) the probability of successful imaging (PSI), at various SNRs for extended targets. 

4. Conclusions 

This paper proposed a 3D imaging method based on GMs to reduce computational burden and 
achieve high-resolution imaging for low SNR targets. The GMs’ decision maker extracted the useful 
range profile data, which was categorized into various imaging planes. The range profile reference 
signal matrices were then constructed corresponding to extracted range profile data for each imaging 
plane. Based on C-TCAI, we deduced a GM-TCAI model. Finally, numerical experimental results 
demonstrated that our imaging method achieved efficient imaging with less computational burden, 
and high-resolution imaging for both sparse and extended targets at low SNRs. Thus, GM-TCAI 
holds promising practicability for close-range imaging fields, such as security checks, medical 

SNR(dB)
-25 -20 -15 -10 -5 0

R
IE

(d
B)

-80

-60

-40

-20

0

20
GM-TCAI
C-TCAI

SNR(dB)
-25 -20 -15 -10 -5 0

PS
I

0

1

2

3

4

5

6
GM-TCAI
C-TCAI

Figure 9. Imaging evaluations of C-TCAI and GM-TCAI using: (a) the relative imaging error (RIE);
and (b) the probability of successful imaging (PSI), at various SNRs for extended targets.

4. Conclusions

This paper proposed a 3D imaging method based on GMs to reduce computational burden and
achieve high-resolution imaging for low SNR targets. The GMs’ decision maker extracted the useful
range profile data, which was categorized into various imaging planes. The range profile reference
signal matrices were then constructed corresponding to extracted range profile data for each imaging
plane. Based on C-TCAI, we deduced a GM-TCAI model. Finally, numerical experimental results
demonstrated that our imaging method achieved efficient imaging with less computational burden,
and high-resolution imaging for both sparse and extended targets at low SNRs. Thus, GM-TCAI holds
promising practicability for close-range imaging fields, such as security checks, medical diagnosis,
nondestructive detection, etc. Although GMs have opened a new gate for radar imaging, few theories
of information geometry have been applied to practical radar imaging. Through the imaging solution
presented in this paper, we hope that more radar imaging problems can be solved with information
geometry theories by other researchers.
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