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Abstract: We applied a multivariate analysis (MVA) to spectroscopic data of gas mixtures in
the mid-IR in order to calculate the concentrations of the single components which exhibit
strongly overlapping absorption spectra. This is a common challenge in broadband spectroscopy.
Photoacoustic (PA) measurements of different volatile organic compounds (VOCs) in the wavelength
region of 3250 nm to 3550 nm served as the exemplary detection technique. Partial least squares
regression (PLS) was used to calculate concentrations from the PA spectra. After calibration, the PLS
model was able to determine concentrations of single VOCs with a relative accuracy of 2.60%.

Keywords: multivariate analysis; partial least squares regression; PLS; photoacoustic spectroscopy;
PAS; OPO; overlapping spectra; concentration determination; VOC

1. Introduction

Photoacoustic spectroscopy (PAS) is an established method for the detection of trace gases and
the analysis of gaseous samples. PAS can be used for various applications such as stack gas emissions
analysis, car exhaust gas analysis, explosives detection, control of manufacturing processes, and
environmental control. It is based on the absorption of electromagnetic radiation. The thermal
relaxation of the excited molecules leads to an increase in pressure. If the radiation is periodically
modulated, it will result in an acoustic wave with the same frequency [1–6]. A schematic PAS setup is
shown in Figure 1.
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Figure 1. Schematic of a basic photoacoustic spectroscopy (PAS) setup.

Spectroscopic sensors obtain their result by spectrum analysis. In practical applications,
spectroscopic measurements are usually not performed on single component samples but on
multicomponent mixtures. However, mixtures, especially of larger molecules, often result in strongly
overlapping spectra [6,7]. In this case, an identification of the components and the determination
of their concentrations are difficult as no wavelengths that are exclusively characteristic for single
ingredients exist. However, in many situations, identification and concentration determination is
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possible with the tools of multivariate analysis (MVA). These techniques represent an alternative to
traditional fitting methods [8,9] or machine learning methods such as artificial neural networks (ANN)
or support vector machines [10,11]. MVA covers a large group of techniques. Their objective can be
either [12]

• Classification of data or
• Multivariate regression.

Classification serves the purpose of discovering datasets with common properties. Regression,
on the other hand, is supposed to identify relations between different sets of variables. The MVA is
an established technique in different scientific areas such as psychology, sociology, environmental
sciences, and biosciences [12,13].

We have developed the first spectroscopic sensor system for the six most relevant lung cancer
biomarkers [14]. However, their spectra do not only feature single cross-sensitivities, but also cover
the exact same wavelength range. Advancing our system to a real analyzer requires supplying it
with a processing algorithm that allows deriving the ingredients’ concentrations of a mixture from a
measured spectrum. This has now been accomplished.

This analytical task represents a regression problem and is very common in science [15]. Different
regression methods are available in the field of multivariate analysis. Particularly common are the
multiple linear regression (MLR), the principal component regression (PCR), and the partial least
squares regression (PLS) [15,16]. When dealing with spectroscopic data, the PLS is superior to the
other techniques because this data is strongly correlated and often noisy. Conversely, the MLR is more
suitable for uncorrelated data and smaller sets [15].

A PLS model was trained with experimental spectra of single components and synthetic spectra
of mixtures and tested on experimental mixture data. A reliable concentration determination could, for
instance, lead to new methods in medical diagnostics [17]. However, the introduced multicomponent
analysis might as well be applied to similar tasks such as environmental monitoring, the control of
manufacturing processes, and explosives detection [1].

2. Materials and Methods

2.1. Experimental Setup

We developed a photoacoustic analyzer based on a continuous-wave optical parametric oscillator
(cw-OPO) as the radiation source (Argos Model 2400-BB-5 Module C from Lockheed Martin
Aculight Bothel, WA, USA). An ytterbium fiber laser represented the optical pump source (Model
YLR-10-1064-LP-SF from IPG Photonics, Oxford, MA, USA). OPOs are spectrally tunable in a wide
range, emitting relatively high powers. They use an optically nonlinear crystal to split a pump photon
into two resulting photons called the signal and the idler, respectively. The idler wavelength can be
tuned between 3250 nm and 3550 nm with output powers of up to 1.3 W. Details of the OPO and the
pump laser can be obtained elsewhere [18].

The modulation of the radiation was realized by an all-optical Mach–Zehnder modulator.
This in-house development is based on a Mach–Zehnder interferometer [19,20] with an optically
nonlinear crystal inserted in one path (beam splitter BSW510 from Thorlabs, Newton, NJ, USA).
The crystal’s refractive index can be changed by an electrical field (Pockels effect). A recombination of
the two previously separated paths leads to constructive or destructive interference, depending on the
applied electrical voltage.

A standard H-type cell sealed with calcium fluoride (CaF2) windows contained the sample.
The name originates from the shape of the cell’s cross-section of which the center tube represents
an acoustically resonant cavity. The resonator is flanked on both sides with buffer volumes of larger
diameters. The length of the resonant cavity is 60 mm (diameter: 6 mm) and the overall length,
including the buffer volumes, is 120 mm. The geometry of the cell is designed to result in a longitudinal
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resonance frequency of 2.81 kHz. It centrally incorporates the digital MEMS microphone for the
detection of the photoacoustic signal (ICS-43432 from InvenSense, San Jose, CA, USA).

The 24 Bit I2S output signal of the MEMS microphone was processed by a microcontroller
(PIC32 from Microchip Technology, Chandler, AZ, USA). The extraction of the photoacoustic signal
at the modulation frequency was performed by means of a digital Goertzel filter [21–23]. In order to
determine the current wavelength of the OPO radiation, a small fraction of the beam was directed to a
spectrum analyzer (721A-IR from Bristol Instruments, Victor, NY, USA).

The obtained data, particularly the Goertzel filter result and the wavelength, were readout by a
PC. At each wavelength, the photoacoustic signal was measured ten times, averaged in order to reduce
noise, and divided by the averaged optical power.

For a single component, the photoacoustic signal S as function of the wavelength λ can be
expressed as

S(λ) = CP(λ)Ntotcσ(λ), (1)

where C denotes the so-called cell constant, P the optical power, Ntot the total molecular density, c the
concentration of the absorbing substance, and σ its absorption cross-section [1,24,25]. The cell constant
incorporates the cell geometry as well as the microphone position and the amplification due to the
acoustic resonance. Since the emission power of the OPO is wavelength-dependent, we utilized the
power normalized photoacoustic signal for further processing. The power is measured after passing
through the sample cell by a thermal detector (3A-FS-SH from Ophir Optronics, Jerusalem, Israel).
Reference spectra from Pacific Northwest National Library (PNNL) show a maximum absorption of
400 × 10−6 at a path length of one meter and a concentration of 1 ppm for the selected volatile organic
compounds (VOCs) in the wavelength range of interest [26]. This corresponds to a power loss of
approximately 0.45% after passage through the cell filled with 100 ppm VOC. Since the accuracy of the
power meter is stated to be 3%, the power loss due to absorption was neglected for the normalization.

In multicomponent environments, the resulting spectrum is a linear combination of the single
spectra. In the case of unsaturated absorption, the photoacoustic signal of an N-component gas mixture
at a given wavelength is therefore given by [6,24,25]

S(λ) =
N

∑
i=1

Si(λ) = CP(λ)Ntot

N

∑
i=1

ciσi(λ). (2)

Further details of the experimental setup and the measuring technique can be found elsewhere [14].

2.2. Measurements

Gas samples of the following six VOCs were investigated with our experimental setup:

• 2-butanone,
• 1-propanol,
• isoprene,
• ethylbenzene,
• styrene, and
• hexanal.

These VOCs have all been linked to lung cancer as potential breath biomarkers. For an appropriate
diagnostic application, a precise determination of the VOCs’ concentration is necessary. Single component
gas samples of 100 ppm VOC in nitrogen (purity 5.0) were prepared in Tedlar bags [27,28]. The gas
samples were created by evaporation of the liquid VOC inside the nitrogen-filled bag. The required
liquid volume VVOC of a given VOC was calculated according to the following equation:

VVOC =
VN2 ·cVOC·MVOC

Videal ·ρVOC
, (3)
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where VN2 denotes the volume of the nitrogen gas under normal pressure (the volume of the Tedlar
bag), cVOC the desired VOC concentration, MVOC the molar mass of the VOC, Videal the molar volume
of an ideal gas, and ρVOC the density of the liquid VOC. The liquid VOC was inserted into the
Tedlar bag with a disposable syringe and left at room temperature for one hour. After this time,
the liquid was completely evaporated. Although Tedlar bags do not completely prevent diffusion
through the container wall, this effect can be neglected due to the relatively short storage time [27,28].
For multicomponent measurements, the required amounts of the different VOCs were inserted into
the bag accordingly. The uncertainty of the concentrations equals ca. 1 ppm.

During the preparation time of the gas sample, the photoacoustic cell and the gas sampling system
were evacuated in order to remove any potential residue from previous measurements.

The signal-to-noise ratios of our measurements are based on a reference noise measurement.
During this measurement, the photoacoustic cell was filled with nitrogen (purity 5.0) which does not
show any absorbance in the respective wavelength region. Since the maximum absorptions of the six
VOCs differ, each VOC exhibits a specific signal-to-noise ratio. The values range from 43 dB to 55 dB.

2.3. Partial Least Squares Regression

The inner relation of the PLS can be resolved to

Y = XBPLS + G, (4)

where BPLS corresponds to the so-called regression coefficient matrix, describing the relation between the
datasets X (predictor matrix) and Y (response matrix), and G corresponds to the error matrix [15,16,29].

We performed the PLS calculations with MATLAB. This commercial software implements the
Simple Partial Least Squares (SIMPLS) algorithm [30] which was used to determine the regression
coefficient matrix BPLS in Equation (4). In this calibration process, also referred to as training,
the photoacoustic reference spectra are the rows of the matrix X. The rows of Y consist of the
associated (known) concentrations of the six VOCs. A high absolute value of a regression coefficient
signalizes significant influence of a certain wavelength on the concentration [15].

After the model calibration, the concentrations vector Y of an unknown gas mixture can be
determined by a simple vector (or matrix) multiplication of the photoacoustic spectrum vector X with
the regression coefficient matrix BPLS according to Equation (4).

3. Results

3.1. Calibration of the Model

The PLS model was configured to calculate six principal components (PLS factors), each representing
the contribution of one substance to the overall spectrum. In order to calculate the six variables,
the number of reference spectra must be larger than six. The measured spectra of the six single
VOCs in nitrogen (each 100 ppm) represented the first reference dataset. Each spectrum comprises
the photoacoustic signals at 301 different wavelengths. The six spectra are shown in Figure 2.
The photoacoustic signal is given in arbitrary units (a.u.) as the microphone outputs digital values.
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After the determination of the regression coefficient matrix using the SIMPLS algorithm, the 
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Figure 2. Measured volatile organic compound (VOC) spectra (each 100 ppm in nitrogen).

Additional reference spectra were synthetically generated by combining variations of the single
VOC spectra. For this, we scaled the original measurements with the factors 0, 0.3, 0.7, or 1, and we
added them to one another in all possible combinations. This resulted in a total of 46 = 4096 reference
spectra. The scaling “generated” concentrations of 0 ppm, 30 ppm, 70 ppm, and 100 ppm for each
VOC. In order to consider the fluctuation of the photoacoustic signal and to improve the robustness
of the model, Gaussian noise was added to the six original spectra. A long-term measurement of the
photoacoustic signal at a constant wavelength resulted in an amplitude fluctuation of approximately
5%. Therefore, we decided on a noise power of 10% of the spectrum power, which is defined as the
root mean square (RMS) of all measuring points. An example of spectra with and without additional
noise is shown in Figure 3.
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After the determination of the regression coefficient matrix using the SIMPLS algorithm, the
calibration was evaluated. For this, a tenfold cross-validation was applied [15] to the reference
dataset and reached a standard deviation of 2.65 ppm compared to the true concentrations without any
a priori knowledge of the possible concentration levels. The model was able to explain 98% of the total
variance, leaving only 2% being attributed to noise. In general, values above 90% are desirable in MVA.
The root mean square error of calibration (RMSEC) between true concentrations yi and concentrations ŷi
calculated by the PLS model,

RMSEC =

√√√√ 1
N

N

∑
i=0

(yi − ŷi)
2, (5)

reached 2.65 ppm [12]. After the training of the model, unknown mixture samples could be analyzed.

3.2. Multicomponent Measurements

The calibrated PLS model was applied to the photoacoustic spectra of two-component mixtures.
For this, 2-butanone and 1-propanol were mixed (without the four other VOCs) in ratios of
30 ppm/70 ppm, 50 ppm/50 ppm, and 70 ppm/30 ppm, respectively. Figure 4 shows the three
measurements. Table 1 lists the six concentrations determined by the trained PLS model.
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Table 1. Concentrations of all six VOCs determined by the trained partial least squares (PLS) model.

VOC 30 ppm (2-but.)/70 ppm
(1-prop.)

50 ppm (2-but.)/50 ppm
(1-prop.)

70 ppm (2-but.)/30 ppm
(1-prop.)

2-Butanone 33 46 71
1-Propanol 75 53 25

Isoprene 2 0 −3
Ethylbenzene 4 −1 −1

Styrene −6 −2 4
Hexanal −8 4 3

The derived concentrations show a mean deviation from the true concentrations (sometimes
referred to as bias) of approximately 5 × 10−3 ppm and a standard deviation of 3.93 ppm. The RMSE
(Equation (5)) equals 3.82 ppm.
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The accuracy of the results can be further improved if boundary conditions are taken into account.
Concentrations of substances are logically limited to values larger or equal to zero. However, it is
also possible to obtain negative concentrations as a result of the PLS. If negative concentrations are
considered equal to zero, we increase the accuracy of the prediction. The resulting standard deviation
of the concentration corresponds to 2.60 ppm and the RMSE to 2.79 ppm.

In order to assess the predictive ability of the model, the predicted residual error sum of squares
(PRESS) was calculated. This value is strongly related to the standard deviation and the RMSE.
The smaller the PRESS value, the better the model [29]. It can be calculated according to the following
equation [12,31]:

PRESS =
N

∑
i=0

(yi − ŷi)
2, (6)

where yi denotes the true concentrations (scaling factors) and ŷi the values predicted by the model.
For the standard and the enhanced dataset (negative concentrations = 0), the PRESS values equal
263 ppm2 and 140 ppm2, respectively.

4. Discussion

The application of multivariate analysis (MVA) in broadband spectroscopy leads to an increased
specificity and sensitivity compared to sensors based on single wavelengths. Partial least squares
regression (PLS) is a technique particularly suited for the analysis of spectroscopic data and allows for
a fast and efficient processing. After the training of the model with spectra of known concentrations,
the calculation of concentrations from new spectroscopic data represents a simple matrix multiplication.
The computational effort is thus low compared to alternative methods like artificial neural networks,
support vector machines, or traditional fitting. In addition, standard PLS algorithms like SIMPLS are
often implemented in software such as MATLAB and can be applied without advanced coding skills.

The quality of the MVA results does not only depend on the applied method but also on the
ingredients’ spectra. PLS would, for example, encounter problems if the single component spectra
show a high resemblance to one another. In addition, the spectra need to be linearly independent.
If the spectrum of one component is identical (or very similar) to a linear combination of two (or more)
others, they would be indistinguishable. In summary, each one of the overlapping single spectra needs
to provide characteristic features in the examined wavelength region.

The potential of MVA is limited by the quality of the experimental data. Spectra with features
smaller than the noise cannot be resolved by the algorithm. This limitation strongly depends on
the experimental setup, the absorption strength of the investigated components, as well as their
concentrations. The influence of certain parameters that could deteriorate the performance was
reduced. For instance, the normalization of the photoacoustic signal with respect to the optical power
eliminates the effect of power fluctuations. Also, the OPO’s emission wavelength strongly depends
on environmental parameters such as temperature. However, variations of the wavelength do not
considerably affect our results because the wavelength steps are chosen to be comparably small (on
average 0.2 nm).

We applied PLS to analyze the photoacoustic spectra of gaseous mixtures. The investigated
volatile organic compounds 2-butanone, 1-propanol, isoprene, ethylbenzene, styrene, and hexanal
exhibit strongly overlapping absorption spectra in the wavelength range of the optical parametric
oscillator between 3250 nm to 3550 nm. After the calibration of the model with 4096 reference spectra
(synthesized from the six original measurements), PLS was able to compute concentrations with
a relative accuracy of 2.60%.

The results of this investigation were achieved using a comparably small number of measured
reference spectra and validation spectra. More spectral data from different concentration levels and
mixtures will be collected in the future in order to further improve and test the PLS model.
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