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Abstract: In this paper, a low-power and small-area Single Edge Nibble Transmission (SENT)
transmitter design is proposed for automotive pressure and temperature complex sensor applications.
To reduce the cost and size of the hardware, the pressure and temperature information is processed
with a single integrated circuit (IC) and transmitted at the same time to the electronic control
unit (ECU) through SENT. Due to its digital nature, it is immune to noise, has reduced sensitivity
to electromagnetic interference (EMI), and generates low EMI. It requires only one PAD for
its connectivity with ECU, and thus reduces the pin requirements, simplifies the connectivity,
and minimizes the printed circuit board (PCB) complexity. The design is fully synthesizable,
and independent of technology. The finite state machine-based approach is employed for area efficient
implementation, and to translate the proposed architecture into hardware. The IC is fabricated in
1P6M 180 nm CMOS process with an area of (116 µm × 116 µm) and 4.314 K gates. The current
consumption is 50 µA from a 1.8 V supply with a total 90 µW power. For compliance with AEC-Q100
for automotive reliability, a reverse and over voltage protection circuit is also implemented with
human body model (HBM) electro-static discharge (ESD) of +6 kV, reverse voltage of −16 V to
0 V, over voltage of 8.2 V to 16 V, and fabricated area of 330 µm × 680 µm. The extensive testing,
measurement, and simulation results prove that the design is fully compliant with SAE J2716 standard.

Keywords: AEC-Q100; automotive; CMOS; low-power; pressure sensor; SAE J2716; single edge
nibble transmission (SENT); signal conditioning IC; temperature sensor

1. Introduction

With rapid improvement in technology, the utilization of complex electronic systems has increased
in automotive applications for comfort, safety, and efficiency. Electronic devices are rapidly taking
the place of mechanical components in automotive industry. Today’s research focuses on reducing
analog circuit complexity and on increasing the amount of digital signal processing to minimize
cost, size, and power consumption, with enhanced reliability and improved efficiency. Modern
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automobiles are now equipped with complex electromechanical systems comprised of dozens of
inter-networked ECU devices and sensors [1]. Among others, the most critical components of these
automotive electronic control systems are the sensors and actuators that convey physical quantities to
ECU in the form of electrical signals [2]. The micro-electro-mechanical systems (MEMS) sensors are
attaining great attention in a variety of applications including automotive, IoT, medical, agricultural,
industrial, etc. [3–6]. The controller area network (CAN) and local interconnect network (LIN) are
typical in-vehicle networks to connect ECU and actuators [7].

In the present day automotive applications, over 100 sensors per vehicle are fitted to minimize
human inattention and mistakes, fulfill environmental rules and regulations and to enhance traffic
flow [8]. These sensors are being used for measuring pressure, temperature, position, angular rate,
acceleration, comfort factors, etc. [9]. Until now, analog signals and techniques are the main source
of communication between the ECU and actuators [10]. Different methods have been reported
in the literature for conveying the sensor data to processing units. In [11], a compressed sensing
AFE for bio-sensor uses DAC at the output interface for transmitting sensor data. The interface
is an analog single line, and DAC takes a huge IC area, consumes relatively more power, and is
sensitive to noise. Reference [12] focuses on a sensor interface IC for biomedical applications, in which
the ADC outputs the sensor data. In this case, multiple pins are required for the sensor interface,
which demand more IC PADs, increase IC area and cost, and make connectivity and PCB more
complex. Reference [13] presents a temperature sensor with high-resolution first order sigma-delta
modulator (SDM). This design provides a single line digital stream. It requires additional filtering
modules before retrieving the sensor information in the ECU, which is additional cost. For automotive
applications, a capacitive sensor AFE is discussed in [4], in which addition processing modules, such as
analog-to-digital converter (ADC), gain and offset register banks, and serial interface are used outside
the IC. Reference [14] incorporates a digital serial interface into the AFE for electrocardiogram (ECG)
and electroencephalogram (EEG) monitoring applications, which requires three interface signals for
communication with the external processing unit. Reference [15] discusses a signal conditioning
and calibration method for sensors for an automotive tire pressure monitoring system (TPMS),
which incorporates wireless sensors, and a high- frequency antenna for transmitting sensor data
to the central receiver. For the high-resolution sensors, such as manifold air pressure sensors, mass air
flow sensors and throttle position sensors [16], conventional techniques and protocols are no longer
suitable for reporting the sensor information to the ECU. In the automotive industry, SENT, a SAE
J2716 digital communication protocol is the emerging technique for high-resolution data transmission
for automotive applications [17–20].

The focus of this paper is a highly reliable low-power, small-area SENT transmitter architecture
with protection. It includes the detailed SENT architecture, reverse voltage and over voltage protection
circuit for automotive reliability, and IC microphotograph and measurement results. The proposed
design is integrated with a pressure and temperature complex sensor signal conditioning IC for
automotive applications. This design has the strength to be incorporated into any sensor for
communicating with the ECU in the automotive. It is a very simple digital architecture that offers
simple connectivity, low cost, smaller area, and immunity to noise. For automotive reliability,
the reverse and over protection circuit [21] makes it compliant with AEC-100Q [22]. After gain
adjustment, amplification, analog-to-digital conversion and essential processing on sensor signal, it is
applied to the input of SENT block for transmission. The SENT transmitter encodes data according to
SAE J2716, and hands it over to the ECU for monitoring and action.

The rest of the paper is organized as follows: Section 2 briefly reviews the SENT protocol. Section 3
covers the block level structure of the pressure and temperature sensor frond end in which the proposed
SENT design is integrated. Section 4 investigates the detailed architecture of the proposed design
for the SENT transmitter. Section 5 discusses the reverse voltage and over voltage protection circuit.
Section 6 summarizes the measurement and simulation results, while Section 7 concludes the paper.
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2. Overview of the SENT Protocol

SENT protocol is the emerging technique in the automotive industry. This encoding scheme
is adopted for communicating the high-resolution sensor information from the sensor to the ECU.
The SENT digital communication protocol is anticipated as a replacement for the lower resolution ADC
and pulse width modulation (PWM) methods. It is a promising low-cost solution [23], and a smart
alternative to the controller area network (LIN) and local interconnect network (CAN) [17]. SENT is
a unidirectional communication scheme from the sensor to the controller and does not require any
synchronization or control signals from the receiver module. The ECU provides the supply voltage
and ground reference to the transmitter module. In response, the SENT transmitter provides a digitally
encoded stream to the ECU receiver module through a single signal wire. Therefore, at the physical
layer, only three connection wires are required between the transmitter and receiver modules for
this protocol.

After encoding through this protocol, the sensor signal is transmitted as a series of variable width
pulses with data encoded as falling to falling edge periods. The message pulse order is predefined
for the transmitter. Figure 1 shows the framing structure of a SENT message sequence. There are five
variants of pulses in one message sequence. The Synchronization and Calibration pulse is followed by
the Status and Communication, Data, Cyclic Redundancy Check (CRC), and Pause pulses. Each pulse
remains low for the fixed number of clock ticks. The pulse remains high for the variable duration,
which depends upon the type of pulse and nibble value. Figure 2 summarizes the timing characteristics
of each pulse. The transmission clock period for this protocol is from 3~90 µs. The Synchronization
and Calibration pulse indicates the start of the message sequence. Its period has a fixed duration of
56 clock ticks. It facilitates the ECU for synchronization of the frame stream, and the recovery of clock
and data information. The Status and Communication nibble pulse enables the transmitter to report
sensor-related miscellaneous information, such as part number, version, error codes, etc., to the ECU.
The 4-bit Data pulses encapsulate the value of the signal to be communicated, and the number of these
pulses may range from one to six. The number of nibbles is fixed for each application but may vary
among different applications. The CRC pulse is the checksum information and is calculated from data
nibbles of each message sequence. The Pause pulse is an optional fill pulse in SENT transmission
after CRC nibble. It maintains the constant number of clock ticks for each message sequence and
provides a relief for ECU to process the current frame. The SENT protocol supports two modes
for communication, namely fast channel communication, and slow channel communication. In fast
channel mode, the signal information is transmitted as one to six data nibbles. The short serial message
format and enhanced serial message format are used in slow channel mode. In both slow channel
formats, specific sensor related information is transmitted to ECU in Status and Communication
nibbles in several consecutive message sequences.
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3. Architecture of the Signal Conditioning IC for Pressure and Temperature Sensors

Figure 3 shows a block diagram of the front-end, housing the proposed SENT transmitter design.
It takes the pressure and temperature values from piezo-resistive type (PRT) and negative temperature
coefficient (NTC) sensors, respectively, processes for gain and offset compensations, converts to
digital bits, and encodes according to SENT protocol after calibration. The PRT Sensor uses the
phenomenon of piezo-resistivity, in which the electrical resistance of a material changes in response
to mechanical pressure and stress. The metal is a kind of piezo-resistive material to some extent,
but nowadays, pressure sensors utilize semiconductor silicon as piezo-resistive material. The four
piezo-resistors are connected electrically in a Wheatstone bridge configuration. When mechanical
pressure is applied on its surface, the output voltage changes. Due to the smaller size, direct signal
transduction mechanism, easy integration, etc., piezo-resistive pressure sensors have been most
commonly used in the automobile, aerospace, and petrochemical fields for pressure measurements [24].
The NTC Sensor is a non-linear type and is made of semiconductor material whose electrical resistance
decreases rapidly with small increase in temperature. Other than PRT and NTC sensors, the major
building blocks for this processing IC include the programmable gain array (PGA), ADC, digital
calibration module (DCM), main controller block (MCB), SENT transmitter (SENT), and reverse and
over voltage protection (ROVP) circuit. The multiplexer (MUX) selects one sensor at a time and passes
its measured value to the PGA. The same signal path is used for processing both temperature and
pressure sensor data after MUX. The PGA analog block is responsible for gain and offset compensation
in the input sensor signal, as the sensors have different sensitivity and offset values. It amplifies the
voltage obtained from the sensors and enhances the resolution ability. After compensation, the PGA
output has the same range, regardless of the sensors. It also ensures the constant polarity of the output
signal, irrespective of the polarity of input signal. The ADC has 10-bit resolution with dual sample
successive approximation (SAR) type architecture. It takes the analog PGA output, and converts
it into 10-bit digital data. The DCM controls the ADC operation, compensates the linearity of the
sensors, and increases the resolution of the input signals. It calibrates the IC for the minimum and
maximum applied pressure and temperature ranges. After the calibration, the final parameters, such as
the PGA gain, offset, and linearity compensation, are stored in one-time programmable (OTP) read
only memory (ROM). The DCM output is 24-bit, in which the 10 least significant bits represent the
temperature value, while the remaining 14 most significant bits are pressure sensor data. The MCB
monitors and controls each activity of the signal conditioning IC. It facilitates the calibration process,
alternately selects the PRT and NTC sensors, and adjusts the PGA gain and offset. An inter-integrated
circuit (I2C) slave controller is also embedded into MCB for its communication with the external
environment during the calibration process. The oscillator (OSC) is a spread spectrum clock source,
and it generates the triangular profile signal from self-clocked feedback. It controls the frequency of the
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relaxation oscillator. Moreover, its frequency is also controllable from MCB. The effect of temperature
variations on the PRT and NTC sensors are canceled by the temperature compensation circuit (TCC).
The final digital code from MCB after all specified processing is handed over to SENT, which encodes
it according to SAE J2716 standard.
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4. The Architecture of the SENT Transmitter

Figure 4 shows an architectural view of the proposed SENT design, which is hardware friendly.
The design is primarily partitioned into the SENT main controller (SMC), SENT CRC generator (SCG),
SENT pulse generator (SPG), and nibble data register (NDR) sub-blocks, based on their functionality.
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The number of clock ticks, Np of each pulse has Nlow and Nhigh count values, representing the low
and high duration, and is given in Equation (1):

NP = Nlow + Nhigh (1)

According to SAE J2716, the Nlow must be greater than four, and it is fixed for all types of pulses
in the message sequence for a particular application. The Nhigh is variable, and its value depends on
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the type of pulse. The number of clock cycles, Nnb of each nibble pulse (Status and Communication,
Data and CRC) is described in Equation (2):

Nnb = Ko f f set + Dnb (2)

where the Koffset is 12, and Dnb is the value of nibble, which may be from 0 to 15. Hence, Nnb ranges
from (12 to 27) clock ticks, as the nibble value Dnb changes from (0 to 15), respectively. The total clock
cycles for nibble pulses Ntnb is accumulated using Equation (3), as follows:

Ntnb = Nscn +
k

∑
i=0

Ndn,i + Dnb (3)

where k is the total number of Data nibbles, and Nscn and Ncn are the number of clock ticks for Status
and Communication and CRC nibbles, respectively. Equation (4) calculates the total number of clock
ticks, Nms of one message sequence, in which Nscp and Npp are the clock counts for Synchronization
and Calibration and Pause pulses, respectively:

Ntms = Nscp + Ntnp + Npp (4)

The total duration Tms of each frame is obtained by multiplying the Nms and clock period Tclk,
given in Equation (5):

Tms = Tclk × Ntnp =
Nms

fclk
(5)

When the Pause pulse is activated, the Tms is fixed for all message frames. In this case, the Npp

varies in each message frame, to make the total length constant. The architectural detail of each part is
described in the following subsections.

4.1. SENT Main Controller (SMC)

The SENT Main Controller is the brain of the proposed design and is based on the finite state
machine (FSM) model. It supervises other blocks, to encode the incoming sensor information from
DCM into SAE J2716 compliant message sequences. It generates the control signals, observes the status
responses, and manages the sequence of each pulse generation. Figure 5 shows the flowchart of the
SMC. Figure 6 shows the conceptual timing diagram that elaborates the related control and status
signals for the controller itself, and the entire datapath, including NDR, SCG, SPG, and M1 modules.
The controller, SMC enters into POWERUP state, after reset or start-up condition. It remains in this
state for only one clock cycle. All the registers and control signals settle to their default values, and the
dout signal is pulled up during this state. After power-up, the controller jumps to the SYNC_CALIB
state. The Synchronization and Calibration pulse is generated in this state. The pulse is low for Nlow
clock cycles and remains high to complete Nscp clock ticks. When the controller enters into this state,
the LoadNdr signal is asserted high for one clock cycle to sample din, 24-bit sensor information to
NDR. These six nibbles are also routed to SCG block, and it is triggered to compute the checksum for
the current message sequence. The CRC nibble value is calculated in eight clock cycles during this
state. The controller state register, SentState is incremented for transmitting Status & Communication
pulse in the next STATUS_COMM state. In this design, only the fast channel is used, and the optional
slow channel is disabled. Therefore, the controller remains in this state for the minimum possible
Koffset clock ticks and enters into the DATA_NIBBLE state. All the six nibbles are encoded in this state.
The NibSel remains high, and ShiftNdr toggles after every data nibble encoding to shift the NDR four
bits left and load the next nibble value to the SPG. The counter NibCnt facilitates the controller to
track the number of transmitted data nibbles. After all the six data nibbles are encoded, the next state
in the queue is CRC_NIBBLE, in which the checksum nibble, manipulated from SCG for the current
message frame, is transmitted. For this, the NibSel is deasserted low, to convey the computed CRC
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nibble CrcNib from SCG to SPG. If the Pause pulse encoding is enabled by pulling EnPause signal
high, the controller moves to PAUSE_PULSE state from the CRC_NIBBLE state. Otherwise, the current
message sequence is accomplished, and the controller jumps back to SYNC_CALIB state for the next
message sequence transmission. In the PAUSE_PULSE state, the controller waits for Npp clock ticks to
ensure the total Nms cycles for fixed Tms message sequence duration according to Equations (4) and (5),
respectively. The sensor information is encoded and transmitted as SENT message frames back-to-back
continuously, until the IC is powered up, without any control signals from the ECU.
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4.2. SENT CRC Cenerator (SCG)

The SENT CRC Generator is the key building block in the proposed design for computing the
checksum for every 24-bit input Data nibbles. The CRC nibble is computed by using the polynomial of
Equation (6) with initial 4-bit seed (0101)2:

P(x) = x4 + x3 + x2 + 1 (6)

Among the legacy and recommended CRC implementation types, defined in SAE J2716, later
with 16-element array is adopted. This implementation requires very few memory elements for the
CRC table, when compared with that of the 256-element array [17]. The CRC checksum is designed
as a bitwise exclusive OR with a 16-element array lookup. The checksum is reckoned by using all
data nibbles in sequence, and then check summing the result with an extra zero value. Figure 7 shows
the architecture of the SCG block. It is mainly composed of the CRC controller (CC), CRC table (CT),
CRC nibble register (CNR), CRC register (CR), and two multiplexers M2 and M3. The CNR is the
24-bit, parallel load, nibble shift left register, similar to NDR. The input sensor information nibbles are
copied to this register for computing checksum. The CT is a 16-element lookup table, and it holds the
unique, sequenced, and predefined 4-bit values [17], which are accessed by their addresses. The CRC
controller follows the checksum algorithm and computes the final value for each message sequence.
Figure 8 redraws the flow diagram of the CC, while Figure 9 plots the CNG timing diagram. When the
SMC asserts the EnCrc signal high for one clock cycle, the CC moves to LOAD state from the IDLE
state. The 24-input CrcDin is loaded to the CNR, and CR is set to its default value, by pulling the
control signal CtSel low. On the next clock cycle, the checksum calculation starts in the CALCRC state.
On every clock cycle, each data nibble is exclusive-ORed with one of the CT values, and stored in CR.
The current CrcNib value acts as a read address for CT to access the respective value. When all the
six nibbles are processed, the CC moves the DONE state for one clock cycle. The CRC nibble value is
achieved by exclusive-ORing the zero with the final result of the previous state. The CrcDone asserts
to high, and the controller jumps back into IDLE state. The CR keeps the final checksum value CrcNib
during its sleep mode in this state. It takes eight clock cycles to compute the checksum for six nibbles
of the current message sequence and remains in silent mode in IDLE state for the rest of time.
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4.3. SENT Pulse Generator (SPG)

The SENT Pulse Generator outputs all pulse types in predefined sequence controlled by the SMC.
Figure 10 shows its architecture. When the Pause pulse is activated, the PCNT counter enables at
the start of each message sequence and ensures constant message length equal to the Nms clock ticks.
It resets to zero at the end of the frame when its value approaches Nms. To maintain the low and
high widths of each pulse type, the clock tick counter, TCNT is incorporated. The pulse decision
logic (PDL) generates the SENT pulse sequence based on the state of SMC. It controls, monitors, and
compares the PCNT and TCNT values for their limits. The multiplexer M4 selects the upper values
for counters. In SYNC_CALIB state, for first Nlow clock ticks, the dout remains low, and then pulls to
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high, until the TCNT hits the Nscp value which is 56, as defined in [17]. Similarly, for STATUS_COMM
state, the pulse width is Nscn clock ticks, which is equal to Koffset in this design. For DATA_NIBBLE and
CRC_NIBBLE states, the value of each nibble Dnb determines the pulse duration. In the PAUSE_PULSE
state, the PCNT value is compared with Nms for constant message length for each frame. The output
signal PulseDone asserts high for one clock at the end of the message sequence, to move the SMC back
to SYNC_CALIB state, to encode the next frame.
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4.4. Nibble Data Register (NDR)

Figure 11 shows the Nibble Data Register, which is a 24-bit parallel load shift register.
The maximum possible six nibbles of sensor information from the DCM are sampled and loaded
into this register for encoding. It holds their values until the transmission of the current message
sequence is finished. During frame encoding, all the data at its input is ignored, and it samples only
when the next message sequence starts. It shifts four bits to the left at a time, and the most significant
nibble is directed to SPG through M1 multiplexer during each nibble encoding. The loading of 24-bit
sensor information and then its shifting are governed by the SMC with LoadNdr and ShiftNdr control
signals, respectively.
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5. Reverse and over Voltage Protection (ROVP)

The reliability of electronics components in automotive applications is crucial. Therefore, to enhance
the SENT transmitter reliability, and to make it compliant with AEC-Q100 [22], the highly reliable
protection circuit is integrated with the proposed design to preserve the sensor signal conditioning IC
from reverse and over voltages [21]. Figure 12 shows the circuit diagram of reverse and over voltage
protection, which is composed of MOSFETs and resistors, instead of conventional comparator-based
protection circuits. To prevent the transistors from breakdown, and to avoid the latch-up problem,
the potential zeroing technique is adopted in reverse voltage protection mode.
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The ESD is combined to protect the SENT transmitter from damage due to static electricity. Table 1
summarizes the behavior of transistors in different modes. In normal operation mode, the stacked
transistors M1 and M2, with withstand voltages of 8 V are turned on, and VDD_EXT is transferred
to VDD_INT with 29 mV voltage drop. In over voltage protection mode, these transistors are open
to cut off the external voltage. When external voltage exceeds 8.2 V, M4 turns on by R1 and R2, M3
gate voltage forms due to R4 and R5, and it also turns on, and eventually M1 and M2 turn off by R6
and R7. The M4 turns the M5 off while both grounds are connected by M5 body diode. Due to the
VGS and VDS of each transistor, the circuit is not damaged in the (−16 to 16) V range. In reverse mode,
the external voltage drops below 0 V, and M4 is turned off, and node A between M4 and R5 follows this
reverse voltage, which turns M5 off. In this way, both the grounds are isolated, and voltage between
VDD_INT and GND_INT is 0 V, which protects the SENT transmitter in reverse voltage. The ESD
diode is implanted to enhance the ESD performance and reliability of the protection circuit. In reverse
mode, if both grounds are at 0 V, the PMOS body diode cannot endure reverse voltage. Therefore,
for achieving 0 V between internal supply nodes, the potential zeroing approach is adopted.

Table 1. ROVP circuit operation summary.

Mode M1 M2 M3 M4 M5

Normal ON ON OFF OFF ON
Over protection OFF OFF ON ON OFF

Reverse
protection OFF OFF OFF OFF OFF

6. Measurement and Simulation Results

The presented SENT architecture is integrated with the pressure and temperature sensor signal
conditioning IC for automotive applications as depicted in Figure 3. The microphotograph of the
fabricated IC, marking the SENT and ROVP is captured in Figure 13. Table 2 summarizes the
implementation characteristics of the design. This sensor IC is designed with 1P6M 180 nm CMOS
process. The SENT layout occupies only 13.456 mm2 of total IC, and its implementation needs only
4.314 K gates. The power consumption of the architecture is very small, which is limited to 90 µW
with 50 µA current from 1.8 V voltage source. The design is fully synthesizable and Verilog HDL is
used to translate it into circuit level. The clock period is fixed to 8 µs, though it may be operated at
much higher frequencies. Most of the SENT designs are implemented in software, microcontrollers
or FPGA [25,26]. The SENT driver presented in [27] is implemented in 180 nm CMOS process and it
occupies and an area of 0.9 mm × 0.7 mm. The 97.86% area reduction is achieved in the proposed
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SENT design. Figure 14 captures the different simulation results for the SENT module. Figure 14a
shows the simulation of the CRC calculation. The checksum nibble (D)16 is computed from 24-bit
input (2A9D6B)16. Figure 14b shows the functional simulation after HDL implementation, where the
total message duration is 1.824 ms with 228 clock ticks for (2A9C63)16 six nibbles of data. Figure 14c,d
gives snapshots of post place and route (P&R) and post layout simulation verification for (F37D91)16

and (4CD163)16 input test vectors with (201 and 207) clock ticks and (1.068 and 1.656) ms frame
periods, respectively.
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Figure 14. SENT simulation results. (a) CRC calculation with data (2A9D6B)16 and CRC (D)16; (b) Data
(2A9C63)16, CRC (B)16, Clock Ticks 228, Duration 1.824 ms; (c) Data (F37D91)16, CRC (1)16, Clock Ticks
201, Duration 1.068 ms; (d) Data (4CD163)16, CRC (B)16, Clock Ticks 207, Duration 1.656 ms.
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Table 2. Design implementation summary.

SENT ROVP

Parameter Value Parameter Value

Circuit SENT transmitter Circuit Reverse and over protection circuit
Process 180 nm CMOS Process 180 nm CMOS

Maximum current 50 µA Integration level On-chip
Supply voltage 1.8 V Protection range (−16–16) V

Power consumption 90 µW ESD (HBM) 6 kV
Area 116 µm × 116 µm Area 330 µm × 680 µm

Gate count 4.314 K

Figure 15 shows the experimental setup for measuring the proposed SENT design after the
fabrication. Figure 15a gives the block diagram of the measurement framework, while Figure 15b
shows the actual testing lab environment. For pressure measurement, the Sensor Module is fitted
into Pressure Equipment, and then pressure is applied to the IC through PRT from the Nitrogen Gas
Cylinder. Similarly, the Sensor Module is placed in the Temperature Chamber, and the IC is exposed to
the temperature via NTC for temperature measurement, as is evident in Figure 15. After IC calibration,
these quantities are encoded according to SENT message format. The KOPF Automotive Interface,
a commercially available SENT monitor module compliant to SAE J2716 [28], receives the SENT traffic
from the IC, and communicates it to KFlexExplorer for analysis. The KFlexExplorer is a Graphical
User Interface (GUI) application running on Computer. It receives the SENT frames from KOPF
Automotive Interface and analyzes these received messages according to the SENT standard [29].
Figure 16 provides a snapshot of KFlexExplorer during measurement.
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Before measuring the pressure and temperature with the proposed SENTIC, it is first calibrated for
the minimum and maximum input ranges for pressure and temperature. The resultant corresponding
parameters, such as PGA gain, offset, linearity, minimum and maximum pressure, and temperature
codes, etc. are saved in the IC internal memory block ROM. The digitally encoded measured values
are mapped to actual values according the transfer function given in Equation (7).

Xc = Xmin +
Xmax − Xmin
Ymax − Ymin

(Ym − Ymin) (7)

Figure 17 shows the transfer characteristic curve for this equation, in which Ym is the measured
digital code from the IC that is mapped to Xc analog quantity. The Xmax and Xmin are the largest and
smallest digital code values when maximum, Ymax and minimum, Ymin inputs are applied at the sensors,
respectively. In the 24-bit SENT input signal, the 14 most significant bits, din<23:10> represent the
pressure code, while the remaining ten least significant bits, din<9:0> hold the temperature information.
Table 3 summarizes the measurable ranges for pressure and temperature and their corresponding
digital codes during calibration.
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Table 3. Pressure and temperature calibrated parameters.

Parameter Pressure Temperature

m 14 10
Ymax 11 bar 100 ◦C
Ymin 1 bar −40 ◦C
Xmax 149 883
Xmin 15436 59

In the measurement process, the pressure and temperature are applied on the IC separately,
and Tables 4 and 5 list the corresponding results, respectively. Figure 18 also plots the resulting
data. The SENT digital codes are fixed to their respective range values when the applied pressure or
temperature is beyond the calibrated limits. When applied pressure at the PRT sensor is increased from
1 bar to 11 bar, the SENT output also linearly increases from 149 to 15,436 respectively. If pressure is
applied beyond 11 bar, the IC digital controller clamps its output, and hence the dout is fixed to 15,436,
as clear from Figure 18a. The SENT design exhibits the same behavior for input temperature range,
as explored in Figure 18b. After fabrication, the SENT protocol operation is verified extensively in
different ways during IC measurements. In the digital controller MCB of the IC, there is a test pattern
generator (TPG) module for SENT design Built-In Self-Test (BIST). In the test mode, TPG generates
incremental patterns from (000000)16 to (FFFFFF)16 for SENT design verification. This BIST of SENT
block is rigorously verified with KOPF Automotive Interface and KFlexExplorer. Furthermore, the dout
pin of the IC is directly probed on the oscilloscope according to the measurement setup explained
in Figure 15 for analyzing the encoding accuracy and timing features. The period of each pulse
type is measured on the oscilloscope screen, and their corresponding type and value are decoded
from Equations (1) and (2). The total message duration Tms is analyzed on oscilloscope, and then
the total clock ticks Nms are calculated from Equation (5). Figure 19 illustrates the SENT message
sequences encoded by the proposed SENT architecture. Figure 19a shows the 24-bit input data is
(9A18CA)16 and calculated CRC value is (3)16. According to Equations (4) and (5), it takes 205 clock
ticks, and is transmitted in 1.640 ms duration. When the transmission duration of this message
sequence is measured on oscilloscope, it is also found to be 1.640 ms. Similarly, in Figure 19b,
the measured and calculated results are the same, and it is found that the (654321)16, (E)16, 187,
and 1.496 ms are the 24-bit data, 4-bit CRC, frame clock ticks, and the message period, respectively.
All the simulation and measurement results ensure that the proposed SENT design is fully compliant
with the protocol described in SAE J2716 standard. Figure 20 shows the protection circuit simulation
results. It summarizes the results for reverse, over and normal modes. The node C is critical for both the
over voltage protection mode, as well as normal mode. In normal mode, both nodes B and C are at 0 V,
while node C is at 16 V, to block the over voltage in over voltage protection mode. The node A guides
the reverse voltage protection mode by external voltage, VDDE. At code A, the potential zeroing
is accomplished, and as a result, in normal operational condition, the protection circuit operates
at 5 V with the protection range from (−16 to 16) V. Figure 21 shows the measurement results of
the reverse and over voltage protection design. When the external voltage exceeds 8.2 V, VDDI is
blocked from the VDDE by the protection circuit. The GNDI follows the reverse voltage, created by
the protection controller in the reverse voltage protection operational mode. Figure 21 shows that the
SENT transmitter is therefore protected. For reliable SENT implementation in automotive applications,
the ESD related requirement is the following AEC-Q100 criteria [22]. The HBM criteria specified
in AEC-Q100 is at least 2 kV, and an ESD is incorporated between VDDI and GNDI to satisfy this
reliability criterion in the protection circuit.
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Table 4. Pressure measurement (bar).

Pressure 0 1 2 3 4 5 6

Code 149 149 2852 4232 5883 7493 9228

Pressure 7 8 9 10 11 12 13

Code 10,919 12,626 13,855 14,646 15,436 15,436 15,436

Table 5. Temperature measurement (◦C).

Temperature −60 −40 −30 −20 −10 0 10 20 30

Code 59 59 101 144 180 216 279 342 414

Temperature 40 50 60 70 80 90 100 110 120

Code 486 569 652 714 766 829 833 833 833
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7. Conclusions 

This paper has presented a low-power and small-area SENT transmitter design for automotive 
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standard. The reverse and over voltage protection made it highly reliable and compliant to AEC-
100Q for the harsh automotive environment. The fabrication of the suggested design used 1P6M 180 nm 
CMOS technology. The occupied area for SENT was very small, which was 13.456 mm2 and it had 
consumed only 4.314 K gates for its logic implementation. It consumed only 50 μA current from a 
voltage supply of 1.8 V, and thus limited the power requirement only up to 90 μW. After IC 
fabrication, SENT transmitter architecture was extensively tested with KOPF Automotive Interface 
and KFlexExplorer, and achieved 100% accuracy with zero error. This paper also included a reverse 
and over voltage design for the protection of SENT in highly reliable automotive applications. The 
architecture had a range of protection to over voltage of (8.2 to 16) V, and to reverse voltage of (−16 
to 0) V. Also, in the ESD HBM test, the protection circuit satisfied the requirements at 6 kV. It occupied 
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7. Conclusions

This paper has presented a low-power and small-area SENT transmitter design for automotive
applications. The measurement and simulation results proved its full compliance with the SAE
J2716 standard. The reverse and over voltage protection made it highly reliable and compliant to
AEC-100Q for the harsh automotive environment. The fabrication of the suggested design used 1P6M
180 nm CMOS technology. The occupied area for SENT was very small, which was 13.456 mm2 and
it had consumed only 4.314 K gates for its logic implementation. It consumed only 50 µA current
from a voltage supply of 1.8 V, and thus limited the power requirement only up to 90 µW. After IC
fabrication, SENT transmitter architecture was extensively tested with KOPF Automotive Interface and
KFlexExplorer, and achieved 100% accuracy with zero error. This paper also included a reverse and over
voltage design for the protection of SENT in highly reliable automotive applications. The architecture
had a range of protection to over voltage of (8.2 to 16) V, and to reverse voltage of (−16 to 0) V.
Also, in the ESD HBM test, the protection circuit satisfied the requirements at 6 kV. It occupied a
330 µm × 680 µm area. The low power consumption, small occupied area, and high operational
accuracy of the proposed SENT transmitter design has made it very suitable for contemporary
automotive applications. The design has proved its strength to be integrated with any automotive
sensor to report sensor information to the ECU efficiently and accurately.
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