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Abstract: This paper presents a novel nonlinear piezoelectric energy harvesting system which consists
of linear piezoelectric energy harvesters connected by linear springs. In principle, the presented
nonlinear system can improve broadband energy harvesting efficiency where magnets are forbidden.
The linear spring inevitably produces the nonlinear spring force on the connected harvesters,
because of the geometrical relationship and the time-varying relative displacement between two
adjacent harvesters. Therefore, the presented nonlinear system has strong nonlinear characteristics.
A theoretical model of the presented nonlinear system is deduced, based on Euler-Bernoulli beam
theory, Kirchhoff’s law, piezoelectric theory and the relevant geometrical relationship. The energy
harvesting enhancement of the presented nonlinear system (when n = 2, 3) is numerically verified
by comparing with its linear counterparts. In the case study, the output power area of the
presented nonlinear system with two and three energy harvesters is 268.8% and 339.8% of their
linear counterparts, respectively. In addition, the nonlinear dynamic response characteristics are
analyzed via bifurcation diagrams, Poincare maps of the phase trajectory, and the spectrum of the
output voltage.
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1. Introduction

In order to solve the challenging issue of the energy supply for wireless sensors, small portable
devices and MEMS, piezoelectric vibration energy harvesting based on the piezoelectric effect has been
receiving more and more attention over the past two decades [1–10]. Meanwhile, piezoelectric vibration
energy harvesting will positively promote the development of the structural health monitoring
and the precision actuation [11–18]. Up to now, many different kinds of linear resonance based
piezoelectric vibration energy harvesters have been designed, modeled, simulated and experimentally
tested to investigate their energy harvesting performance [19–24]. However, these resonance based
linear piezoelectric vibration energy harvesters are very sensitive to the external excitation frequency,
which leads to the reduced capacity of vibration energy harvesting when they are subjected to a wide
range of excitation frequencies. This issue has been inspiring many researchers to focus on widening
the operating bandwidth of the vibration energy harvesters and enhancing their energy harvesting
performance based on the active and adaptive frequency-tuning schemes [25–34].

Currently, intensive investigation is focusing on magnet-based nonlinear energy harvesting in the
purpose of widening the operating frequency range and enhancing the energy harvesting performance.
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It was demonstrated that magnet-based nonlinear monostable energy harvesters have a wider effective
bandwidth and a higher energy harvesting efficiency than their linear counterparts [35–39]. What’s more,
the advantages of high-energy interwell oscillations and the broadband operating frequency range of the
bistable configurations have been employed to harvest energy from broadband base excitations [40–46].
Recently, tristable energy harvesters with suitable design parameters were introduced and they
experimentally exhibited a better energy harvesting performance compared to bistable energy harvesters
under a very low level excitation [47–53]. These magnet-based nonlinear energy harvesters have been
verified that they have an excellent energy harvesting performance and the broadband characteristics.
However, in some special application areas (where magnets have the undesirable influence to the host
objects or ambient environment), magnets are forbidden. Therefore, investigation of the non-magnet based
vibration energy harvesting enhancement technique is necessary and meaningful.

For the non-magnet based vibration energy harvesting enhancement technique, Leland and Wright [54]
presented a resonance-changeable piezoelectric vibration energy harvester with an adjustable axial preload.
This harvester provides a wider operating frequency range than that of traditional linear energy
harvesters. Shahruz et al. [55] presented a broadband piezoelectric vibration energy harvesting
system by gathering several linear energy harvesters with different resonant frequencies together.
Kim et al. [56] and Wu et al. [57] separately proposed a two degree of freedom (2-DOF) energy
harvesting system, and their results showed that such systems have two peak displacement amplitudes
at two different resonant frequencies causing a wider operating frequency range than that of the linear
1-DOF energy harvester. Kuch and Karami [58] provided a theoretical model of a nonlinear hybrid
rotary-translational energy harvester and explored the application for powering heart pacemakers.
Liu et al. [59] designed a bistable piezoelectric energy harvester based on a buckled spring-mass
system, and their results show that a maximum power of 16 mW could be obtained for a 0.3 g chirp
excitation. Chen et al. [60,61] utilized the internal resonance mechanism to enhance vibration-based
energy harvesting, and they made a theoretical analysis via nonlinear methods. Xu and Tang [62]
developed a cantilever-pendulum energy harvesting system, which could harvest vibration energy of
excitations from three directions in simulation. Li et al. [63] numerically and experimentally verified
the broadband characteristics of a compressive-mode energy harvester. Wei and Jing [64] proposed a
nonlinear energy harvesting system via a lever system combined with an X-shape supporting structure,
and the numerical results show that this system provides a great flexibility and/or a unique tool for
tuning and improving energy harvesting efficiency via matching excitation frequencies and covering a
wider frequency range.

Previous research theoretically and experimentally verified on the enhanced performance of the
non-magnet based vibration energy harvesting technique [54–64]. More importantly, non-magnet
based vibration energy harvesting has an irreplaceable application potential in some special fields
where magnets are forbidden. Meanwhile, more research and investigations about the non-magnet
based vibration energy harvesting technique are need to promote the development and application
of vibration energy harvesting. Therefore, it is meaningful to present new concepts or structures
based non-magnet based nonlinear energy harvesting technique to enhance vibration energy
harvesting performance.

This paper presented a novel nonlinear piezoelectric energy harvesting system (NPEHS) based
on linear-element coupling, and it contains linear piezoelectric energy harvesters connected by
linear springs. In Section 2, a theoretical model of the presented NPEHS is derived based on
Euler-Bernoulli beam theory, Kirchhoff’s law, piezoelectric theory, and the assumed geometrical
relationship. In Section 3, case study is provided. In Section 4, the nonlinear dynamic response
characteristics of the presented NPEHS are analyzed via bifurcation diagrams, Poincare maps of the
phase trajectory, and the spectrum of the output voltage. Finally, key conclusions are presented.
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2. Concept and Modeling

The idea of the presented NPEHS is based on the linear element coupled system, as its schematic
diagram shown in Figure 1. The equivalent model of each linear energy harvester is surrounded
by the closed blue dotted line, which was explored in Ref. [3]. Although each independent energy
harvester has linear characteristics, based on coupled dynamic behaviors [65–67], the whole system
will exhibit nonlinear characteristics when two adjacent linear energy harvesters are connected by
linear springs (K1, . . . Kn−1 stand for their stiffness). Figure 2 shows the structure diagram of the
presented NPEHS. In principle, the NPEHS contains n linear piezoelectric energy harvesters with
different resonant frequencies, and they are connected by n − 1 linear springs. The base excitation
is imposed in the z direction, which is the same direction of the bending vibration of each energy
harvester of the NPEHS. All the linear springs are connected in the y direction (width direction of
each energy harvester). The NPEHS will exhibit nonlinear dynamic response characteristics when it
is subjected to an excitation, because the nonlinear spring force is inevitably produced by the linear
springs (which are disproportionately extended by the different vibration displacements from two
connected adjacent energy harvesters in the system). The bending stiffness for a cantilever beam with

rectangular cross section is EI = bEh3

12 . Therefore, the ratio of the bending stiffness for the lateral motion

(y direction) EIy and the bending stiffness for the transverse motion (z direction) EIz is EIy
EIz

=
(

b
h

)2
.

In this paper, the width b of the substrate is 65 times more than of the thickness h, which will be given
in Table 1 in Section 3. Therefore, EIy is more than 4000 times of EIz. In this case, the lateral motion
is negligible. It is truly that the harvester will become softer in the y direction as the stiffness of the
connected spring increases. However, the stiffness of the connected spring is much smaller than the
lateral equivalent stiffness in this study.
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Table 1. Geometrical parameters (mm).

L Lp Lc b hs hp

Harvester-1 80 20 5 15 0.10 0.5
Harvester-2 80 20 5 15 0.18 0.5
Harvester-3 80 20 5 15 0.23 0.5

In this paper, a theoretical model of the NPEHS is deduced based on Euler-Bernoulli beam theory,
piezoelectric theory, Kirchhoff’s law, and the relevant geometric relationship. In the theoretical model,
we assume that all the linear springs are elastic and own the constant stiffness.

In order to obtain the theoretical model of the presented NPEHS under a base excitation,
the electromechanical governing equations of each linear energy harvester should be firstly built
based on Euler-Bernoulli beam theory, proportional damping, piezoelectric theory, and Kirchhoff’s law.
In this study, each linear piezoelectric energy harvester in the proposed system has the non-uniform
cross-section as its schematic shown in Figure 3. The length of the substrate and the piezoelectric
layers of the drawn harvester is L and Lp (in the x direction), respectively. The thickness of the former
and the latter is hs and hp (in the z direction), respectively. Lc is the half length of the cuboid tip mass
block. R is the external resistance load. b is the width (in the y direction) of both the substrate and the
piezoelectric layers.
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As one of the mechanisms for energy conversion, piezoelectric laminates bonded to cantilever
beams have been widely studied. The piezoelectric constitutive equations are used to describe their
electromechanical behavior, as shown in Appendix A. For a thin cantilever beam with the uniform
cross-section, these parameters are given by Erturk and Inman [3]. Based on Euler-Bernoulli beam
theory, piezoelectric effect, and Kirchhoff’s law, the electromechanical governing equations of a linear
piezoelectric energy harvester with non-uniform cross-section can be written as:

EI ∂4v(x,t)
∂x4 + cs

∂5v(x,t)
∂x4∂t + cm

∂v(x,t)
∂t + m ∂2v(x,t)

∂t2 − ϑV(t)
[

dδ(x)
dx −

dδ(x−Lp)
dx

]
= . . .

−
[
m + Mtipδ(x− L) + MtipLc

dδ(x−L)
dx

]
∂2vb(t)

∂t2

(1)

Cp
dV(t)

dt
+

V(t)
R

+ ϑ
∫ Lp

0

∂3v(x, t)
∂x2∂t

dx = 0 (2)

where vb(t) is the base displacement used as the excitation; v(x, t) is the displacement of the
energy harvester relative to the base; V(t) is the output voltage across R; cm and cs are the
external damping coefficient (mass-proportional damping) and the internal damping coefficient of the
composite structure (stiffness-proportional damping), respectively. Mtip is the tip mass; the equivalent
capacitance of the piezoelectric layers for parallel connection in this paper is Cp = 2εS

33bLp/hp;
the electromechanical coupling term is ϑ = e31b(hs + hp) for parallel connection of the piezoelectric
layers; m and EI are the mass per unit length of and the bending stiffness of the energy harvester,
respectively. They depend on the location of the piezoelectric layers, as follows: m1 = bρshs + 2bρphp,
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for 0 ≤ x ≤ Lp; m2 = bρshs, for Lp < x ≤ L; EI1 = 2
3 b
(

Esh3
s

8 + Ep

((
hp +

hs
2

)3
− h3

s
8

))
, for 0 ≤ x ≤ Lp;

EI2 = bEsh3
s

12 , for Lp < x ≤ L. ρp and ρs are the density of the piezoelectric layers and the substrate,
respectively; hp and hs are the thickness of the piezoelectric layers and the substrate, respectively;
Ep and Es are the Young’s modulus of the piezoelectric layers and the substrate, respectively.

The relative displacement v(x, t) in the physical coordinates can be written as the combination of
the mode shape φi(x) and the modal coordinates ri(t), as follows:

v(x, t) =
n

∑
i=1

φi(x)ri(t) (3)

Since the piezoelectric layers are not covering the whole beam, the mode shape of the energy
harvester is comprised of two different parts:

(φ(x))1 = A1 sin(β1x) + B1 cos(β1x) + C1sinh(β1x) + D1 cosh(β1x), for 0 ≤ x ≤ Lp (4)

(φ(x))2 = A2 sin(β2x) + B2 cos(β2x) + C2sinh(β2x) + D2 cosh(β2x), for Lp < x ≤ L (5)

The eigenvalue equations are given by:

EI1(φ)
iv
1 −m1ω2(φ)1 = 0 (6)

EI2(φ)
iv
2 −m2ω2(φ)2 = 0 (7)

where ω = β2
1

√
EI1
m1

= β2
2

√
EI2
m2

.
At the clamped end, the displacement and the angle of rotation should be zero. Since the linear

piezoelectric energy harvester is considered to meet Euler-Bernoulli beam theory, the condition of the
displacement, the angle of rotation, the bending moment and the shear force are continuous at the
joint position of two different parts.

Based on boundary conditions shown in Appendix A, orthogonality conditions of the normalized
mode shapes can be used to get the final dynamic model:∫ Lp

0 (φi(x))1m1(φj(x))1dx +
∫ L

Lp
(φi(x))2m2(φj(x))2dx+(φi(L))2Mtip(φj(L))2 + . . .

(φi(L))′2(It + MtipL2
c )(φj(L))′2 + (φi(L))2MtipLc(φj(L))′2 + . . .

(φi(L))′2MtipLc(φj(L))2 = δij

(8)

∫ Lp

0
(φi(x))′′1 EI1(φj(x))′′1 dx +

∫ L

Lp
(φi(x))′′2 EI2(φj(x))′′2 dx = δijω

2 (9)

where i and j present the vibration modes. δij is the Kronecker delta, which is defined as unity when i
is equal to j and zero otherwise.

In principle, the relative displacement v(x, t) in the physical coordinates consists of an unlimited
number of the mode shape φi(x) and the modal coordinates ri(t) (i = 1, 2, 3, . . . , n), as shown in
Equation (3). Meanwhile, the first vibration mode of piezoelectric energy harvesters was theoretically
and experimentally verified to play an overwhelming role in vibration energy harvesting [1,3,8,68,69].
Therefore, this study only considers the first vibration mode. The electromechanical governing
equations is reduced to only include the first vibration mode of the energy harvester. Based on
above derivation, the electromechanical governing equations in the first-order modal coordinates are
obtained, as follows:

..
r(t) + 2ζω

.
r(t) + ω2r(t)− θV(t) = f (t) (10)

Cp
.

V(t) +
V(t)

R
+ θ

.
r(t) = 0 (11)
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where the modal electromechanical coupling coefficient θ = ϑ((φ(Lp))
′
1 − (φ(0))′1). ζ is the equivalent

modal damping ratio, which is based on empirical values in experiments and models [3,70,71].
The modal force f (t) is defined as the following equation:

f (t) = −
[∫ Lp

0
m1(φ(x))1dx +

∫ L

Lp
m2(φ(x))2dx + Mtip(φ(L))2 + MtipLc(φ(L))′2

]
∂2vb(t)

∂t2 (12)

By far, the modeling process of the linear piezoelectric energy harvester is completed. In order to
get the complete theoretical model of the proposed system, the connected springs should be considered.
The detailed geometrical relationship of two adjacent energy harvesters is assumed as the schematic
diagram depicted in Figure 4. Since the vibration direction is in the z direction, Di is the original length
of spring-i. vi(L, t) and vi+1(L, t) are the tip displacement of harvester-i and harvester-(i+1) relative to
the base, respectively.
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As shown in Figure 4, the transient length of spring-i is D′i , as follows:

D′i =
√

D2
i + (vi(L, t)− vi+1(L, t))2 (13)

The transient included angle ϕi between spring-i and the z axis can be written as:

cos(ϕi) =
vi(L, t)− vi+1(L, t)

D′i
(14)

Assuming all the springs being elastic and owning constant stiffness, based on Hooke’s law, the effective
force generated by spring-i upon harvester-i is its component force in the z direction, as follows:

F(i+1)i = Ki(D′1 − Di) cos(ϕi) (15)

where Ki is the linear stiffness of spring-i.
Similarly, the effective spring force between any two adjacent energy harvesters can be calculated.

In this study, each energy harvester separately connects with an external load resistance. Therefore,
there are n mutually independent electrical equations based on Kirchhoff’s law. Finally, the theoretical
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model of the NPEHS with n linear energy harvesters in the first-order modal coordinate system are
obtained and described by the following equations:

{ ..
r1(t) + 2ζ1ω1

.
r1(t) + ω2

1r1(t)− θ1V1(t) + (φ(L))1(2)F21 = f1(t)

(Cp)1

.
V1(t) +

V1(t)
R1

+ θ1
.
r1(t) = 0{ ..

r2(t) + 2ζ2ω2
.
r2(t) + ω2

2r2(t)− θ2V2(t)− (φ(L))2(2)F21 + (φ(L))2(2)F32 = f2(t)

(Cp)2

.
V2(t) +

V2(t)
R2

+ θ2
.
r2(t) = 0{

. . .

. . .{ ..
rn(t) + 2ζnωn

.
rn(t) + ω2

nrn(t)− θnVn(t)− (φ(L))n(2)Fn(n−1) = fn(t)

(Cp)n

.
Vn(t) +

Vn(t)
Rn

+ θn
.
rn(t) = 0

(16)

where the subscripts 1, 2, . . . , n stand for the number of energy harvesters in the NPEHS. For example,
Fi(i−1) is the effective force generated by spring-(i − 1) upon harvester-(i − 1). Meanwhile, (φ(L))i(2)
stands for the mode shape of the second part (at the location of L) of the i-th energy harvester.

3. Case Study for Verifying Energy Harvesting Improvement

In the last section, the theoretical model of the NPEHS is derived. In order to verify its energy
harvesting enhancement, the NPEHS-1 (n = 2) and the NPEHS-2 (n = 3) are investigated below, and
their diagrams are shown in Figure 5a,b, respectively. The geometrical parameters of each harvester
are shown in Table 1. The material property parameters are depicted in Table 2. In detail, beryllium
bronze (UNS C1720) is selected as the substrate, whose density and Young’s modulus are 8250 kg/m3

and 125 GPa, respectively. Piezoelectric laminate properties are referred to [45]. The tip mass of each
harvester is made of the same material with the substrate, and its size is 15 × 10 × 5 mm3. The natural
frequency of harvester-1, harvester-2 and harvester-3 is calculated to be 2.59 Hz, 6.18 Hz and 8.86 Hz,
respectively. In this section, 0.2 g is selected as the harmonic base excitation level. In addition,
linearly increasing frequency excitation simulations with a low rate of frequency change (0.03 Hz/s)
are performed.
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Table 2. Material property parameters.

Substrate

Parameter Symbol Value
Young’s modulus Es 125 GPa

Density ρs 8250 kg/m3

Piezoelectric layers

Young’s modulus Ep 63 GPa
Density ρp 7700 kg/m3

Coupling coefficient d31 −285 × 10−12 C/N
Permittivity constant εS

33 3200 ε0
Permittivity of free space ε0 8.854 × 10−12 F/m

Under a harmonic base excitation, the output power of each energy harvester can be calculated by

using the equation P =
(√

2
2 VA

)2
/R (VA is the output voltage amplitude). By far, there is no generally

applicable criterion to determine the energy harvesting capacity. Over a wide range of excitation
frequencies, the total area of the output power of an energy harvesting system may stand for its energy
harvesting capacity [21]. In addition, the specific value of the energy harvesting improvement of the
NPEHS over the linear energy harvesters is very important to estimate its contribution. Therefore,
the output power area ratio γ can be used to evaluate the energy harvesting performance of the NPEHS
relative to its linear counterparts, as follows:

γ = P/PL (17)

where P and PL are the total output power area of the NPEHS and the corresponding linear
counterparts, respectively.

3.1. The NPEHS-1 with Two Energy Harvesters

Compared with energy harvesters in the system, the connected linear springs are easier to optimize
and select. If finding the maximum γ is the optimization objective, the connected linear springs
can be optimized by using Genetic Algorithm, Particle Swarm Optimization or other optimization
algorithms. A simplest way to optimize the connected linear springs is to calculate the energy
harvesting performance over a wide range of parameter values of the springs, and then we can find
the best parameters of the springs. In detail, γ of the NPEHS-1 with different springs (initial length
and stiffness can be confined in a certain range) can be calculated. However, the other parameters of
the NPEHS-1 should be set as constant, when we optimize the springs.

Figure 6 shows the output power area ratio γ of the NPEHS-1 along with different D1 (ranging
from 6 mm to 134 mm) and K1 (ranging from 10 N/m to 650 N/m). In detail, Figure 6a,b are the top
view and the oblique view of the output power area ratio γ along with different D1 and K1 of the
NPEHS-1. The brighter the area stand for the higher γ. It is found that the optimal initial length D1

and the optimal stiffness K1 of the connected spring-1 in the NPEHS-1 are 128 mm and 370 N/m,
respectively. In this case, γ is 2.688, which means that the output power area of the NPEHS-1 is 268.8%
of that of its linear counterparts. The ratio of the physical stiffness of the harvester-i and the stiffness

of connected spring can be approximate to ki
Ki

=
ω2

i
(φ(L))i(2)Ki

, and ω2
1

(φ(L))1(2)K1
and ω2

2
(φ(L))2(2)K1

are 0.086

and 0.70, respectively. As the output voltage shown in Figure 7, the NPEHS-1 with optimal spring-1
can efficiently harvest vibration energy over a wider range of excitation frequencies. In addition,
the response voltage curve of coupled harvesters in the NPEHS-1 shows obvious nonlinear dynamic
response characteristics, which can be identified by comparing with the response voltage curve of
linear harvesters in the same plots. The energy harvesting enhancement of the NPEHS-1 can be found
in the output power curves, as shown in Figure 8.
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If the excitation frequency range where the output power is larger than 20 µW is considered to be
effective, the effective bandwidth of the coupled harvester-1 is 0.45 Hz which is 321% of that (0.14 Hz)
of the linear harvester-1, as shown in the first plot of Figure 8. Meanwhile, the bandwidth of the
coupled harvester-2 is 4.86 Hz, while the bandwidth shrinks to be 0.86 Hz in its linear case, as shown
in the second plot of Figure 8. This demonstrates that the bandwidth of the NPEHS-1 is wider than its
linear counterparts. Figure 9 shows the different output power area ratio γ of the NPEHS-1 subject to
different load resistance R (ranging from 100 Ω to 108 Ω), and each γ is larger than 1.9. These results
further verify the improvement of the energy harvesting performance of the NPEHS-1.
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3.2. The NPEHS-2 with Three Energy Harvesters

In order to further examine the energy harvesting enhancement of the proposed system,
the NPEHS-2 which consists of harvester-1, harvester-2, harvester-3, spring-1 and spring-2 is studied.
Based on calculation, 320 N/m and 78 mm are the optimal stiffness and the optimal initial length of
spring-1, respectively. 180 N/m and 8 mm are the optimal stiffness and the optimal initial length of
spring-2, respectively. The ratio of the physical stiffness of the harvester-3 and the stiffness of spring-2
is about 3.371. The comparison of the NPEHS-2 and its linear counterparts is shown in Figures 10
and 11. The NPEHS-2 exhibits nonlinear dynamic response characteristics, since the voltage response
curves in Figure 10 have obvious frequency-jump phenomena [35–39]. Such nonlinear characteristics
can efficiently improve the vibration energy harvesting capacity. In this case, the output power area
ratio γ is 3.398, which is larger than that of the NPEHS-1. If the excitation frequency range where
the output power is larger than 20 µW is considered to be effective, the effective bandwidth of the
coupled harvester-1, the coupled harvester-2, and the coupled harvester-3 of the NPEHS-1 is 0.52 Hz,
3.30 Hz and 3.51 Hz, respectively, as the output power shown in Figure 11. However, the effective
bandwidth of the linear harvester-1, the linear harvester-2 and the linear harvester-3 is only 0.14 Hz,
0.86 Hz and 1.53 Hz, respectively. Figure 12 shows γ of the NPEHS-2 subject to different load resistance
R (ranging from 100 Ω to 108 Ω), and each γ is larger than 2.6. These results demonstrate that the
optimized NPEHS with three energy harvesters has a better energy harvesting performance than its
linear counterparts.
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4. Nonlinear Dynamic Analysis

Above results verify the energy harvesting enhancement of the presented NPEHS with two
or three energy harvesters. In order to reveal its dynamic mechanism, nonlinear dynamic analysis
is provided below. Figure 13 shows the bifurcation diagram of response voltages of the NPEHS-1
under zero initial conditions versus the excitation level. The excitation level ranging from 0 to 1.8 g
is the control parameter to numerically simulate the stable response voltage of the NPEHS-1 with
the excitation frequency of 5 Hz. It is found from Figure 13 that the NPEHS-1 may undergo periodic
and chaotic responses along with the increase of the excitation level, which demonstrates its strong
nonlinearity [66,67,71–73]. In purpose of checking these nonlinear dynamic response characteristics,
the phase plane portrait of the response displacement and the response velocity, and its Poincare map,
the time-domain output voltage and its spectrogram via fast Fourier transformation (the excitation
frequency is 5 Hz) are shown in Figures 14–21. In addition, the Poincare map is drawn by black dots.
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Figure 21. Dynamic responses of the coupled harvester-2 for the excitation level of 1.5 g.

When the excitation level is 0.1 g, Figures 14 and 15 show that the output voltage of the coupled
harvester-2 is larger than the coupled harvester-1, and the response voltage of the former is singly
periodic. However, the Poincare map in the phase trajectory of the coupled harvester-1 consists of a
series of discrete dots, as shown in the first plot of Figure 14. Its time-domain output voltage is the
sine curve with fluctuating. The corresponding spectrum in Figure 14 shows that the fundamental
harmonic is the uppermost component, while there is a non-ignorable 2.67 Hz fractional frequency
component which modulates the fundamental harmonic.

As the excitation level increased to 0.6 g, the dynamic response of the NPEHS-1 is quite different
with that when the excitation level is 0.1 g. In Figure 16, there are a lot of sub-harmonics and
super-harmonics in the response voltage of the coupled harvester-1, as shown in the spectrum.
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Meanwhile, there are more different discrete dots in the Poincare map of the phase trajectory for
the coupled harvester-2, as shown in Figure 17. In this case, the response of the coupled harvester-2
can be considered as chaotic response, which is confirmed by its spectrum.

As the excitation level is further increased to 0.9 g, the spectrum in both Figures 18 and 19 show
that there are the fundamental harmonic and the third harmonic in the response voltage of the two
coupled energy harvesters. The Poincare map of the phase trajectory of the coupled harvester-1 looks
like a fixed dot. This means that the response of the coupled harvester-1 is periodic, and there are no
obvious sub-harmonics in the response voltage. However, there are continuous frequency components
in the spectrum of the output voltage of the coupled harvester-2, and the fundamental harmonic is still
the major component. The Poincare map of the phase trajectory of the coupled harvester-2 consists of
a series of close dots, as the results shown in Figure 19.

When the excitation level is increased to 1.5 g, the response voltage is modulated by an infinite
number of sub-harmonics and super-harmonics, because there are continuous frequency components
in the spectrum of Figures 20 and 21. The corresponding Poincare map of phase trajectory consists of a
lot of discrete dots. Therefore, the responses of the NPEHS-1 at 1.5 g excitation are chaotic.

Above analysis demonstrates that the nonlinear dynamic response characteristics of the NPEHS
change along with the excitation conditions, and its response may be periodic or chaotic depending on
the excitation conditions and initial conditions. Meanwhile, the fundamental harmonic is an important
component in the response voltage and the response displacement, and there are sub-harmonics and
super-harmonics under some excitation conditions. These features can be used to enhance energy
harvesting and sensing in the further study.

5. Conclusions

As an alternative nonlinear energy harvesting technique, a novel nonlinear piezoelectric energy
harvesting system without magnets is presented in the purpose of enhancing vibration energy
harvesting performance. A theoretical model is derived based on Euler-Bernoulli beam theory,
piezoelectric theory, Kirchhoff’s law and the relevant geometrical relationship to predict the energy
harvesting performance. Based on the appropriate design parameters, the output power area of the
presented nonlinear system with two and three energy harvesters are 268.8% and 339.8% of their
corresponding linear counterparts, respectively. This verifies that the presented nonlinear system
can improve the energy harvesting efficiency under some specific conditions. In addition, nonlinear
dynamic response characteristics are investigated by using the bifurcation diagram, the Poincare
map of the phase trajectory, and the spectrum of the output voltage via fast Fourier transforms.
The fundamental harmonic is found to be one main component of the response voltage, and
sub-harmonics and super-harmonics are also found under some excitation conditions. This study
focuses on the design, modeling and dynamic analysis of a novel nonlinear energy harvesting system
for enhanced vibration energy harvesting. In the next step, further studies may focus on optimizing
the number of energy harvesters, performing experiments and presenting the interface circuit for
maximizing the energy harvesting performance.

Author Contributions: S.Z. presented the energy harvesting system, and derived the theoretical model, and
wrote the paper. B.Y. and D.J.I. helped to check the theoretical model and simulations, and also helped to revise
the paper.
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Appendix A

Piezoelectric equations and boundary conditions:
The piezoelectric constitutive equations are used to describe the electromechanical behavior,

defined as [3,74,75]:
T = cE

11S− e31E (A1)

D = e31S + εS
33E (A2)

where T and S are the mechanical stress and the mechanical strain, respectively; E and D are the electric
intensity and the electric displacement, respectively; e31 is the electromechanical coupling coefficient;
cE

11 is the elasticity modulus measured in the zero electric field; cS
33 presents s the piezoelectric material

permittivity constant at zero strain condition.
At the clamped end, the displacement and the angle of rotation should be zero, which results in

the following two equations for the boundary conditions:

(φ(0))1 = 0 (A3)

(φ(0))′1 = 0 (A4)

Since the linear piezoelectric energy harvester is assumed to meet Euler-Bernoulli assumptions,
the continuous condition of the displacement, the angle of rotation, the bending moment and the shear
force are defined as:

(φ(Lp))1 = (φ(Lp))2 (A5)

(φ(Lp))
′
1 = (φ(Lp))

′
2 (A6)

EI1(φ(Lp))
′′
1 = EI2(φ(Lp))

′′
2 (A7)

EI1(φ(Lp))
′′′
1 = EI2(φ(Lp))

′′′
2 (A8)

At the free end, the tip mass block should be fully considered [35,66], and the boundary conditions
are expressed as:

EI2(φ(L))′′2 −ω2MtipLc(φ(L))2 −ω2(It + MtipL2
c )(φ(L))′2 = 0 (A9)

EI2(φ(L))′′′2 + ω2Mtip(φ(L))2 + ω2MtipLc(φ(L))′2 = 0 (A10)

where It is the rotary inertia of the tip mass block.
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