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Abstract: In this work, we consider a dual-rate scenario with slow input and fast output. Our objective
is the maximization of the decay rate of the system through the suitable choice of the n-input signals
between two measures (periodic sampling) and their times of application. The optimization algorithm
is extended for time-varying delays in order to make possible its implementation in networked control
systems. We provide experimental results in an air levitation system to verify the validity of the
algorithm in a real plant.

Keywords: multi-rate systems; optimization; aperiodic control; time-varying delay; air levitation system

1. Introduction

This paper is defined in the context of multi-rate systems. Specifically, we consider a dual-rate
system, where the output of the system is sampled with sampling period Ts but the input is applied
to the system in a faster way. Traditionally, if the controller transmits n input signals, these signals
are applied during Ts/n units of time (see [1,2] and references therein). In some cases, the times of
application of the input signals might be irregular [3–5] but there are no criteria in the literature to
decide this irregularity. In this work, we propose an optimization algorithm which provides not only
the input signals but also their times of application, and maximizes the decay rate of the system.

Literature review: The theory of multi-rate control systems has been extensively studied [6–8] due
to its multiple applications to real systems. For example, multi-rate control has been used for chemical
analyzers [9,10] , visual feedback [11,12], flight control [13], or disk drive servo systems [14,15].
Its application in networked control systems is more recent [5,16,17] and has enabled a saving
in communication resources since similar performance can be achieved with a reduced number
of transmissions. From the point of view of the optimization problem, optimal controllers have
been designed in the framework of multi-rate systems. In [18] an H2 optimal control is described.
A periodic optimal control is proposed in [19]. In [20], an optimal controller is designed based on
linear matrix inequality optimization. Several predictive controllers have been studied in [21–24].
However, even when these works propose different optimal controllers, they do not consider irregular
sampling or time-varying delays. In [25], the predictive control for multi-rate systems is extended to
the distributed case. However, even when these works propose different optimal controllers, they
consider neither irregular sampling nor time-varying delays. Recently, the ideas of minimum attention
control [26,27] and anytime attention control [28,29] have been studied for networked control systems.
In the minimum attention control, the time of application of the control signal is maximized while a
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certain level of performance is maintained. In anytime attention control, the time of application is
previously fixed depending on the available resources and the performance is maximized for that
period. The method proposed in this work attempts, in some way, to carry out a combination of both.
In the algorithm we maximize the decay rate of the system after a full sampling period of the output,
which is fixed, however within this interval of time we vary the times of application as desired to not
only maintain the performance but also to improve it.

Statement of contributions: In the present work, we continue the ideas proposed in [30]. In [30],
we developed a dual-rate controller to maximize the decay rate of the system through the computation
of optimal input signals. In this work, we extend the framework in four directions. Firstly, we
consider the optimization not only of the values of the input signals but also of their times of
application. This implies obtaining an aperiodic controller that decides the times of application, which
is significantly different with respect to other multi-rate aperiodic solutions (see [3] and references
therein). Secondly, we study the optimization problem under a model plant mismatching scenario,
which makes the algorithm more applicable to real processes. Thirdly, while in [30] constant delays
are considered, in this work we extend the solutions for time-varying delays. This approach is more
realistic from the point of view of networked control systems [31]. Fourthly, we provide guidelines to
implement the optimization algorithm in real systems with limited computation resources and show
satisfactory experimental results controlling an air levitation system. Therefore, the optimization with
respect to the times of application considering time-varying delays offers not only a larger decay rate
than in [30] but also allows dealing with the effect of the delays more efficiently. The contributions
of the paper with respect to the literature can be seen from different perspectives. The proposed
algorithm is the only one, to the best of our knowledge, that combines optimization and irregular
sampling. Hence, the proposed algorithm implies more degrees of freedom in the optimization
than other multi-rate optimization algorithms [19–24] because it considers the times of application.
Moreover, it provides a criterion to efficiently decide the form of this irregular sampling, which differs
from other irregular sampling schemes [3–5], where the times of application are predetermined.

Organization: The reminder of the paper is organized as follows. In Section 2, the problem
is presented and the lifted multi-rate model is developed. In Section 3, the proposed algorithm
is presented and we extend the results for time-varying delay systems. A discussion about how
to perform the optimization more efficiently in systems with hard computation constraints is also
provided. In Section 4, the experimental results are provided. Finally, a discussion about the benefits
of the method is given in Section 5.

Preliminaries

We define the set of real numbers and the set of natural numbers as R and N, respectively.
The n-dimensional real space is defined by Rn. We refer to the euclidean norm of vector x ∈ Rn

as ‖x‖ =
√

x>x. Let M ∈ Rn×m; M> denotes the transpose matrix of M. In addition, if M is a
symmetric real matrix, then the maximum and the minimum eigenvalue of M are denoted by λmax(M)

and λmin(M), respectively. We further denote a symmetric positive-definite matrix P ∈ Rn×n as
P > 0, while P ≥ 0, P < 0, and P ≤ 0 refer to symmetric positive-semidefinite, negative-definite,
and negative-semidefinite matrices, respectively. We denote the identity matrix I ∈ Rn×n by In.
Let A ∈ Rn×n and B ∈ Rn×m. We define µ(A) = max

{
µ|µ ∈ λ

(
(A + A>)/2

)}
. The norm of the

matrix exponential [32] can be bounded then such that

‖eAθ‖ ≤ eµ(A)θ ≤ eµ(A)(θ+ε), ∀ε ≥ 0. (1)

B(θ, A) denotes

B(θ, A) =


0 if θ ≤ 0

θ∫
0

eAsBds if θ > 0
(2)
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and Bµ(θ, A)

Bµ(θ, A) =


0 if θ ≤ 0

θ∫
0

eµ(A)s‖B‖ds if θ > 0
.

Consequently,
‖B(θ, A)‖ ≤ Bµ(θ, A) ≤ Bµ(θ + ε, A), ∀ε ≥ 0. (3)

Finally, we define the exponential stability of a system

ẋ(t) = f (t, x) (4)

where f : [0, ∞) × D → Rn is piecewise continuous in t and locally Lipschitz in x on [0, ∞) × D,
and D ∈ Rn is a domain that contains the origin x = 0 as follows [33]:

Definition 1. The equilibrium point x = 0 of (4) is exponentially stable if there exist positive constants ε, c,
and α such that

‖x(t)‖ ≤ ce−α(t−t0)‖x(t0)‖, ∀‖x(t0)‖ < ε (5)

and globally exponentially stable if (5) is satisfied for any initial state x(t0).

2. Problem Statement

Let us consider a continuous linear time-invariant (LTI) plant denoted by

ẋp(t) = Apxp(t) + Bpu(t)

y(t) = Cpxp(t) (6)

with xp(t) ∈ Rnxp the state vector of the plant, u(t) ∈ Rnu the input vector, y(t) ∈ Rny the output vector,
and Ap ∈ Rnxp×nxp , Bp ∈ Rnxp×nu , and Cp ∈ Rny×nxp the constant matrices. We assume that the output
of (6) is sampled with sampling period Ts as shown in Figure 1. In contrast, the controller changes the
input signal n times during Ts. Let us assume that each input ui for i = 1, ..., n remains constant using

a zero-order-hold (ZOH) and is applied during the period of time Ti satisfying Ts =
n
∑

i=1
Ti. Then,

u(t) =



u1 if t ∈ [kTs, kTs + T1)

u2 if t ∈ [kTs + T1, kTs + T1 + T2)
...

un if t ∈ [kTs +
n−1
∑

i=1
Ti, kTs +

n
∑

i=1
Ti)

. (7)

The discretization of (6)–(7) leads to a periodic linear time-varying discrete system, which implies
different problems in order to guarantee the stability and, consequently, in order to maximize the
decay rate. A way to avoid this is through lifting techniques [7,8]. We can write the dual-rate sampling
scenario in a lifted fashion as

xp(t) = eAp(t−Ts)xp(k) +
n

∑
i=1

Bi
p
(
t− Ts, Ap

)
ui (8)

with

Bi
p(t− Ts, Ap) = e

Ap

(
t−Ts−min

(
t−Ts ,

i
∑

j=0
Tj

))
× Bp

(
min

(
t− Ts −

i−1

∑
j=0

Tj, Ti

)
, Ap

)
. (9)
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Consequently, the state after a whole sampling period of the output is

xp((k + 1)Ts) = Ãpxp(kTs) + B̃pU (10)

with U =
[
u1 · · · un

]>
, Ãp = eApTs , and B̃p =

[
B1

p(Ts, Ap) · · · Bn
p(Ts, Ap)

]
.

Figure 1. Block diagram of a dual-rate system with fast input.

3. Control Algorithm for Decay Rate Optimization

In this section, we design the algorithm to maximize the decay rate of the system. A priori,
the decay rate of a system can be maximized as much as desired if the input signal is sufficiently large.
Naturally, this is not an appropriate solution for a real system, where the actuator might saturate the
input signal or might not allow fast changes. To overcome this issue, we consider an auxiliary LTI
controller for which we guarantee global asymptotic stability with a given maximum gain. Then,
we provide the necessary constraints to the optimization problem so that the decay rate is maximized
maintaining this maximum gain.

For the optimization of the decay rate, it is necessary to ensure the exponential stability of the
system. With this motivation, let us recall the following Lemma.

Lemma 1. The exponential stability of the discretized plant (10) is guaranteed with decay rate α̂ > 0, if there
exists a Lyapunov function V(xp(kTs)) = V(k) : Rnxp → R and positive scalars λ1, λ2 and positive integer q
such that

λ1‖xp(k)‖q ≤ V(k) ≤ λ2‖xp(k)‖q (11)

and
V(k + 1)− eqα̂Ts V(k) ≤ 0. (12)

Next, to compute the input signals {ui} and their times of application {Ti}, we require an
estimation of the model of the plant in order to obtain an estimated set of outputs {ypm,i}. Let us
consider that the model of the plant is described by the estimated state xpm, and let us define the
matrices Apm, Bpm, Cpm analogously to (6). Then, this produces the output
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ypm,1 = yp(kTs) for t ∈ [kTs, (k + 1)Ts)

ypm,i = Cpmxpm(kTs +
i−1

∑
j=0

Tj) for t ∈ [kTs, (k + 1)Ts) and 1 < i ≤ n.

Let us consider that there exists an auxiliary LTI controller as

ẋc(t) = Acxc(t) + Bce(t)

û(t) = Ccxc(t) + Dce(t), (13)

where e(t) = r(t)− y(t), with r(t) being the reference signal (we can take r(t) = 0 for simplicity),
xc(t) ∈ Rnxc the state vector of the controller, û(t) ∈ Rnu the auxiliary input vector, and Ac ∈ Rnxc×nxc ,
Bc ∈ Rnxc×ny , Cc ∈ Rnu×nxc , and Dc ∈ Rnu×ny the constant matrices. In a multi-rate scenario and using

a lifted framework, a virtual closed loop of the augmented state x̂> =
[

xp xc

]>
can be written as

x̂((k + 1)Ts) = Π(T̂1, ..., T̂n)x̂(kTs), (14)

where T̂i is the time of application of ûi, and

Π(T̂1, ..., T̂n) = eATs + eA(Ts−T̂1)B(T̂1, A)K

+
n

∑
i=2

e
A

(
Ts−

i
∑

j=1
T̂j

)
B(T̂i, A)Km

i

∏
j=1

(
eAm T̂i−j + Bm(T̂i−j, Am)Km

)
.

(15)

A =

[
Ap 0
0 Ac

]
, B =

[
Bp 0
0 Bc

]
, K =

[
−DcCp Cc

−Cp 0

]
, Am =

[
Apm 0

0 Ac

]
, Bm =

[
Bpm 0

0 Bc

]
,

Km =

[
−DcCpm Cc

−Cpm 0

]
and T̂0 = T0 = 0.

We further introduce the following assumption:

Assumption 1. Matrices Cc and Dc, a positive definite matrix P, and scalars T̂1, ..., T̂n ≥ 0 exist such that

n

∑
i=1

T̂n = Ts (16)

Π>(T̂1, ..., T̂n)PΠ(T̂1, ..., T̂n)− e−2α̂Ts P ≤ 0, (17)

are satisfied for some α̂ > 0.

Then, the following theorem can be stated.

Theorem 1. Consider the auxiliary discretized closed loop system (14). Suppose that Assumption 1 holds.
Then, (14) is globally exponentially stable with, at a minimum, a decay rate of α̂ > 0 and a gain

c(T̂1, ..., T̂n) =

√
λmax(P)
λmin(P)

eα̂Ts
(

eµ(A)Ts + eµ(A)(Ts−T̂1)Bµ(T̂1, A)‖K‖

+
n

∑
i=2

e
µ(A)

(
Ts−

i
∑

j=1
T̂j

)
Bµ(T̂i, Ap)‖Km‖

i

∏
j=1

(
eµ(Am)T̂i−j + Bmµ(T̂i−j, Am)‖Km‖

) )
.

(18)
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Proof of Theorem 1. Consider a Lyapunov function of the form

V(kTs) = x̂>(kTs)Px̂(kTs) (19)

where P > 0. Then,
λmin(P)‖x̂(kTs)‖2 ≤ V(kTs) ≤ λmax(P)‖x̂(kTs)‖2

is satisfied and (11) is fulfilled. The exponential decrease of the system (14) with decay rate α̂ for some
T̂1, ..., T̂n is achieved if (12) in Lemma 1 is satisfied, i.e., if

V((k + 1)Ts)− e−2α̂Ts V(kTs) =

x̂>(kTs)
(

Π>(T̂1, ..., T̂n)PΠ(T̂1, ..., T̂n)− e−2α̂Ts P
)

x̂(kTs) ≤ 0, (20)

which is guaranteed by (17). To find c(T̂1, ..., T̂n), we use (19) and (20). From (20),

V ((k + 1) Ts) ≤ e−2α̂Ts V (kTs) ≤ · · · ≤ e−2α̂kTs V (0)

and using (19), we obtain

‖x̂(k)‖ ≤

√
λmax(P)
λmin(P)

e−α̂kTs‖x̂(0)‖.

The state of the plant in any instance of time t = kTs + δ, ∀δ ∈ [0, Ts] is also exponentially stable
since it can be bounded in the view of (8) as follows

‖x̂(t)‖ ≤
(
‖eATs‖+ ‖eA(Ts−T̂1)‖B(T̂1, A)‖‖K‖

+
n

∑
i=2

e
‖A‖

(
Ts−

i
∑

j=1
T̂j

)
‖B(T̂i, A)‖‖Km‖

i

∏
j=1

(
‖eAmTi−j‖+ ‖Bm(T̂i−j, Am)‖‖Km‖

) )
‖x̂(kTs)‖

(21)

Since ‖x̂
(

kTs +
i

∑
j=0

Tj

)
‖ can be bounded recursively until obtaining a bound which depends on

x̂(0), and using (1) and (3), we can write

‖x̂(t)‖ ≤ c̃(T̂1, ..., T̂n)‖x̂(kTs)‖ ≤ c̃(T̂1, ..., T̂n)

√
λmax(P)
λmin(P)

e−α̂kTs‖x̂(0)‖

= c(T̂1, ..., T̂n)e−α̂(t)‖x̂(0)‖.
(22)

Thus, the proof is completed.

Having proved that there exists a controller able to globally exponentially stabilize (14), we
can design the input signals and their times of application, which maximize the decay rate of the
system (10). As aforementioned, maximizing the decay rate enlarges the gain. Therefore, we need to
establish constraints to maintain c in acceptable values. Let us consider the following assumptions in
order to guarantee the optimization of the decay rate while satisfying these conditions.

Assumption 2. A bound c̄ can be computed such that c̄ = max(c(T̂1, ..., T̂n)).
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Assumption 3. The set of control signals {ui} for i = 1, ..., n satisfies that

‖u1‖ ≤ ‖K‖‖x (kTs) ‖ (23)

‖ui‖ ≤ ‖Km‖‖xm

(
kTs +

i−1

∑
j=0

Tj

)
‖, for i > 1. (24)

Then, the following theorem can be stated.

Theorem 2. Consider the discretized closed loop system (10) and control signals {ui} applied during periods
{Ti} for i = 1, ..., n. Suppose that Assumption 2 and 3 hold. Then, the system (10) is globally exponentially
stable with at least decay rate α ≥ α̂ and gain c̄.

Proof of Theorem 2. By Assumption 2, c̄ ≥ c(T1, ..., Tn). From Theorem 1 it is guaranteed at least
α = α̂ if ui = ûi and Ti = T̂i for i = 1, ..., n. Equations (23) and (24) from Assumption 3 imply that
‖x(t)‖, for t ∈ [kTs, (k + 1)Ts), satisfies (in the view of (21))

‖x(t)‖ ≤
(
‖eATs‖+ ‖eA(Ts−T1)‖B(T1, A)‖‖K‖

+
n

∑
i=1

e
‖A‖

(
Ts−

i
∑

j=2
Tj

)
‖B(Ti, A)‖‖Km‖

×
i

∏
j=1

(
‖eAmTi−j‖+ ‖Bm(Ti−j, Am)‖‖Km‖

) )
‖x(kTs)‖

≤ c(T1, ..., Tn)‖x(0)‖ ≤ c̄‖x(0)‖.

(25)

Hence, Definition 1 is fulfilled for the closed loop system. If we consider that the initial state of
the auxiliary controller is zero, then

‖xp(t)‖ ≤ c̄eα(t)‖xp(0)‖, (26)

Thus, the process is globally exponentially stable with, at least, decay rate α and gain c̄ and the
proof is completed.

Remark 1. If we assume that the model matches with the actual system dynamics, i.e., if we assume that
Am = Ap, Bm = Bp and Cm = Cp, then c̄ = c(T, ..., T), where T = Ts/n (see Appendix A).

3.1. Extension for Time-Varying Delay Systems

In this section, the results from Section 3 are formalized for the case with time-varying delays.
Delays might affect to a control system in different ways. In our case, there are two main sources
of delays. On the one hand, the transmission of information through the network might cause
time-varying delays. On the other hand, the computation of the solutions of the optimization problem
also induces a delay τcom, which we can assume constant [34]. Let us denote the transmission delays
from the sensor to the controller and from the controller to the sensor as τsc, τca, respectively, and let
us assume that they are upper bounded as 0 ≤ τsc ≤ τM,net and 0 ≤ τca ≤ τM,net. Hence, the input
signals in a meta-period k reach the actuator with a total delay τ(k), which is bound such that
τcom ≤ τ(t) ≤ τcom + 2τM,net = τM. To simplify the stability analysis, let us consider a minimum unit
of delay τm such that τM = lτm for l ≥ 1. Taking this into account, we consider that the actuator waits
to apply the inputs signals until the next multiple of τm is larger than τ(k), i.e., the actual delay applied
to the plant is τ̂(k) = min{lτm|τ(k) ≤ lτm}.

Now, we follow the description in [5,35] to deal with delays in multi-rate systems. Let us assume
that during the delay, the last input signal of the previous output sampling period is held. Let us also
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consider a vector ψ(k) which corresponds to the last input signal in the previous metaperiod. Then,
we can define the following augmented state

ξ(t) =

(
x(t)
ψ(k)

)
, ∀t ∈ [kTs, (k + 1)Ts). (27)

As in Section 3, the auxiliary controller (13) is used to define a virtual closed loop

ξ̂ ((k + 1)Ts) = Πd ξ̂(kTs) =

[
Π11

d (T0, T̂1, ..., T̂n) Π12
d (T0, T̂1, ..., T̂n)

Π21
d (T0, T̂1, ..., T̂n) Π22

d (T0, T̂1, ..., T̂n)

]
ξ̂(k) (28)

where ξ̂>(k) =
(

x̂(k) ψ(k)
)

and

Πd
11(T0, T̂1, ..., T̂n) = eATs +

n

∑
i=1

e
A

(
Ts−

i
∑

j=1
T̂j

)
B(T̂i, A)Km

×
i

∏
j=1

(
eAm T̂i−j + Bm(T̂i−j, Am)Km

)
eAmT0

Πd
12(T0, T̂1, ..., T̂n) = eA(Ts−T0)B(T0, A) +

n

∑
i=1

e
A

(
Ts−

i
∑

j=1
T̂j

)
B(T̂i, A)Km

×
i

∏
j=1

(
eAm T̂i−j + Bm(T̂i−j, Am)Km

)
Bm(T0, Am)

Πd
21(T0, T̂1, ..., T̂n) = Km

eATs +
n−1

∑
i=1

e
A

(
Ts−

i
∑

j=1
T̂j

)
B(T̂i, A)Km

×
i

∏
j=1

(
eAm T̂i−j + Bm(T̂i−j, Am)Km

)
eAmT0

)

Πd
22(T0, T̂1, ..., T̂n) = Km

eA(Ts−T0)B(T0, A) +
n−1

∑
i=1

e
A

(
Ts−

i
∑

j=1
T̂j

)
B(T̂i, A)Km

×
i

∏
j=1

(
eAm T̂i−j + Bm(T̂i−j, Am)Km

)
Bm(T0, Am)

)
,

where T0 = τ̂(k). Then, we can use again Lemma 1 to guarantee the exponential stability of (28). Let us
recall and extend Assumption 1 for the augmented state ψ̂(k).

Assumption 4. Matrices Cc and Dc, a positive definite matrix P, and scalars τm, T̂1,l = τM − lτm,
T̂2, ..., T̂n ≥ 0 exist such that

lτm + T̂1,l +
n

∑
i=2

T̂n = Ts (29)

Π>d (lτm, T̂1,l , T̂2..., T̂n)PΠd(lτm, T̂1,l , T̂2..., T̂n)− e−2α̂Ts P ≤ 0, (30)

are satisfied for some α̂ > 0 and for all l ∈ N such that τm ≤ lτm ≤ τM.

The following Theorem is formulated.
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Theorem 3. Consider the auxiliary discretized closed loop system (28). Suppose that Assumption 1 holds.
Then, (28) is globally exponentially stable with, at least, a decay rate α̂ > 0 and gain

ĉ =

√
λmax(P)
λmin(P)

eα̂Ts (ĉ1 + ĉ2) , (31)

where ĉi = max
(
ci
(
lτm, T̂1,l , T̂2, ..., T̂n

))
for i = 1, 2, and

c1(T0, T̂1, ..., T̂n) = eATs +
n

∑
i=1

e
µ(A)

(
Ts−

i
∑

j=1
T̂j

)
Bµ(T̂i, A)‖Km‖

×
i

∏
j=1

(
eµ(Am)T̂i−j + Bmµ(T̂i−j, Am)‖Km‖

)
eµ(Am)T0

c2(T0, T̂1, ..., T̂n) = eµ(A)(Ts−T0)Bµ(T0, A) +
n

∑
i=1

e
µ(A)

(
Ts−

i
∑

j=1
T̂j

)
Bµ(T̂i, A)‖Km‖

×
i

∏
j=1

(
eµ(Am)T̂i−j + Bmµ(T̂i−j, Am)‖Km‖

)
Bmµ(T0, Am).

Proof of Theorem 3. The discretized augmented state ‖ξ̂(kTs)‖ can be exponentially bounded
such that

‖ξ(kTs)‖ ≤

√
λmax(P)
λmin(P)

e−α̂(kTs)‖ξ(0)‖

due to (30). In addition, if it holds that ‖ψ(0)‖ = 0 (in the initial conditions there is no previous input
signal), then

‖ξ(kTs)‖ ≤

√
λmax(P)
λmin(P)

e−α̂(kTs)‖x̂(0)‖. (32)

Furthermore, with the same arguments as in Theorem 1, we guarantee that at any time the global
exponential stability of the closed-loop system is as follows:

‖x̂(t)‖ ≤
(
‖Πd

11(lτm, T̂1,l , T̂2, ..., T̂n)‖+ ‖Πd
21(lτm, T̂1,l , T̂2, ..., T̂n))‖

)
‖ξ(kTs)‖(

c1(lτm, T̂1,l , T̂2, ..., T̂n)) + c2(lτm, T̂1,l , T̂2, ..., T̂n))
)
‖ξ(kTs)‖

Thus, computing the maximum value of c1 and c2, (31) is obtained.

Trivially, Theorem 2 is still valid for the delay case and the optimization can be carried out. Since
we now take into account the delay, we perform the optimization in a more realistic way, which helps
to maximize the decay rate in a real scenario.

3.2. Implementation of Optimization Algorithm in Real-Time Systems

The proliferation of board computers like Raspberry Pi or Beaglebone Black [36,37] together
with the emergence of communication networks to connect the elements in a control loop implies
that the available computation time might be reduced. For this reason, it is important to limit the
computational effort made by the controller in order to guarantee acceptable behavior. In our case, the
optimization algorithm can be relaxed in different ways.

A significant source of computations is the discretization of closed-loop system. Since (2) implies
solving a matrix integral and since one of the optimization variables is the upper limit of the integral,
the optimization algorithm has to execute a hard computation in real time to obtain the discretized
model for the corresponding times of application. However, we know the maximum and minimum
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possible times of application of each signal because they should satisfy (29). Then, we can consider a
sufficiently small sampling period h in the view of n and the sampling period of the plant Ts to carry
out an offline computation of a discretized matrices grid, i.e., we compute offline eA(mh) and B(mh, A)

for all m ∈ N such that 0 ≤ mh ≤ Ts. Hence, given the discretized matrices grid, the optimization
function should only access the required value instead of computing the corresponding discrete matrix.

The constraints in (23)–(24) might also be a source of delay in the computation. When the times of
application Ti are taken into account in the optimization, we should consider (23)–(24) as nonlinear
constraints of the optimization problem. If there is a large number of input signals, this might constitute
a hard computation effort. To avoid this, the optimization algorithm might be solved in two steps.
A first step provides the times of application that optimize the decay rate for the auxiliary controller.
With fixed times of application, Equations (23)–(24) are transformed in constant limits for the second
part of the optimization algorithm, which obtains the actual values of the input signals. Naturally,
this results in a suboptimal solution of the problem. In spite of that, the solution always improves the
performance of the auxiliary controller.

A final observation in order to minimize the computation time is the consideration of a variable
number of input signals to be optimized. Since we know the delay between the sensor and the
controller, we can make an estimation of the available computation time and then analyze if it is
preferable to reduce the number of input signals (and their corresponding times of application) which
are optimization variables, i.e., nopt(kTs) ≤ n, while the rest of the input signals n− nopt are computed
using the auxiliary controller, which typically requires fewer computation resources. We hope to study
in detail this possibility in future works in order to increase the algorithm’s applicability.

The implementation of these characteristics in the optimization problem is schematically described
in Algorithm 1.

Algorithm 1 Optimization algorithm with limited computation resources.

Offline Computation
Step 1off Synthesis of the auxiliary controller satisfying Assumption 4.
Step 2off Computation of the minimum decay rate α̂ and the maximum gain ĉ.
Step 3off Discretization of the closed-loop system for all times mh, m ∈ N, which satisfy 0 ≤ mh ≤ Ts.

Online Computation
Step 1on Reception of the output signal y(kTs) with a delay τsc(kTs).
Step 2on Estimation of the state of the plant from the output.
Step 3on Decision of the number of input signals nopt to be optimized as function of the available

computation.
Step 4on Optimization of the decay rate as function of the times of application of the input signals

maintaining the auxiliary controller.
Step 5on Computation of the maximum and minimum bounds to the actual input signals in

Assumption 3.
Step 6on Optimization of the decay rate as function of the values of the input signals maintaining

constant the times obtained in Step 4on.

4. Practical Case: Air Levitation System

In this section, we present the experimental results obtained with the optimization algorithm,
where we take into account the considerations explained in Section 3.2. We have used the air levitation
system proposed in [38] for the experimental validation. Next, a description of the hardware is given.
The model of the system and the experimental results are presented afterwards.

4.1. Hardware Description

The air levitation system experimentation platform, based on Arduino Nano, provides two
working modes: standalone, i.e., the controller is deployed into the Arduino board, and passthrough,
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in which the controller is implemented in the PC and the Arduino board acts mainly as a gateway
to interact with the hardware. The system architecture is depicted in Figure 2. The block diagram
represents the different functional subsystems: the controller is implemented in the system on a
chip (SoC) Arduino board, which also provides digital-to-analog (D/A) and analog-to-digital (A/D)
converters. Additional circuitry is required to condition the sensor readings, and to amplify the control
signal in order to provide enough energy for the actuators (fan and servo).

Figure 2. Schematic view of the air levitation control loop.

To measure the position of the ball, several possibilities were considered: visual recognition,
ultrasonic sensors, and infrared sensors. While it could be interesting to use a video cam to get
the ball position, and it may even be adequate for teaching with an image-processing subject, the
complexity and cost of the system would increase, so this was discarded as a possibility. With respect
to the ultrasonic distance sensors, they are a valid alternative to infrared ones, and are similar in
cost and complexity. However, the latter option was finally chosen. The position of the ball is
measured with an infrared beam sensor, specifically a Sharp GP2Y0A21YK0F Analog Distance Sensor
(Sharp Corporation), which can obtain measurements between 10 and 80 cm. There are other similar
models that are electrically compatible and have different ranges, such as the GP2Y0A21YK0F (4–30 cm)
and the GP2Y0A02YK0F (20–150 cm), and thus a choice can be made in order to adapt to different tube
lengths. All the aforementioned sensors are analog, yielding a signal roughly in the range of 0–5 V,
which is proportional to the inverse of the distance measured. The sensor is composed of two infrared
LEDs, an emitter which projects a light beam, and a receiver that measures the bounce in the detected
object. Since the sensor measures the light reflected by the object, it may be affected by the color, shape
and movement of the object. Also, it has an update period of approximately 40 ms. These aspects must
be taken into account to get reliable measures.

The fan speed control, as well as the servo position, are achieved through Pulse Width Modulation
(PWM). The fan speed, and consequently the air flow, can be controlled with a high frequency
PWM. Also, most digital interfaced servomotors admit a PWM signal, with a carrier frequency of
20 HZ, which codes the angular position into the duty cycle, though it is not the same for all models.
For example, many servos provide a mapping between (1 ms, 2 ms) 7→(0◦, 180◦). While Arduino
provides built-in PWM outputs, these provide limited current, so there is a need for additional
components, as mentioned before.
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The hardware interface subsystem is in charge of reading measures from the sensors and sending
values to the actuators. Though it is obviously platform-dependent, it is good practice to use standard
libraries and protocols. For example, the Arduino application programming interface (API) is widely
used for its simplicity and it has been exported to other hardware, like the Beaglebone boards or
Raspberry PI. The functionality to be covered can usually be reduced to read and write digital or
analog input and outputs. In the air levitation system, the hardware interface task is accomplished
using Javascript Object Notation (JSON), which is human-friendly (it can be easily read), and at the same
time can be processed by most programming languages.

There is a real-time loop implementing the time-critical actions: reading sensors, updating
the controller, and writing outputs. A lower priority loop is responsible for two tasks: sending
measurements and logs to the PC and receiving user commands (for example, to change the setpoint
or other parameters). Once the values have been acquired, it is important to store them in order to be
accessed whenever is required. The datalogging capabilities have been separated into a low priority
task that periodically dumps measures and control actions to a database, so the data is stored and can
be accessed to perform off-line processing of past sessions.

The control subsystem implements a proportional–integral–derivative PID controller for which
parameters can be modified and tuned. The control subsystem is prepared to be extended with more
sophisticated controllers without much development effort. Apart from this PID implementation and
template, a passthrough mode is provided that can be used to use the user PC as a controller. This is
convenient for research, for example to test a prototype developed in MATLAB, or when there are high
computation power needs.

4.2. System Model

The only forces acting over the levitating object are the upward effect of the air flow, and the
downwards effect of the gravity, as shown in Figure 3. According to this, Newton’s second law gives
the nonlinear model

m∆z̈(t) =
1
2

CdρA (vw − ż(t))2 −mg, (33)

where m is the mass of the object to levitate, z is the vertical position of the object in the tube, ρ is the
density of air, A is the object’s area exposed to the upwards air flow, vw is the velocity of the air inside
the tube, g is the gravitational acceleration, and Cd is the drag coefficient.

Following [38], a linearized system from (33) can be obtained with matrices

Ap =

−8.52 −2.97 0
4.00 0 0

0 1.00 0

 , Bp =

2.00
0
0

 , Cp =
(

0 0 3.36
)

, Dp = 0.

We use this model to solve the optimization problem. The consideration of the times of application
as variables of the optimization problem provides not only more degrees of freedom in the solutions
but also a better treatment of the delays, since T1 and hence the first imput signal u1, can be computed
accordingly. As auxiliary controller, we make use of a PI controller with gains Kp = 0.006 and
Kc = 0.002. We consider a sampling period of the output Ts = 300 ms. We assume that there
is a constant computation delay τcom = 50 ms and there is a time-varying delay because of the
communication through the network, which is bounded by τM,net = 25 ms. We consider n = 2, i.e., the
input signal is changed twice in each Ts. Applying Theorem 3, we obtain α̂ = 0.0017 and ĉ = 734.24.
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Figure 3. Balance of forces of the air levitation system used in the experiment. The red arrow shows
the gravitational force, while the green arrow shows the force applied by the air flow.

4.3. Experimental Results

Firstly, as a preliminary test of the validity of the developed theory, we carry out a simulation
of the linear model. In the simulation, we stabilize the state of the system in the origin. As shown in
Figure 4, the decay rate is considerably improved using the optimization algorithm with respect to the
auxiliary PI controller. In addition, we can further improve the results by performing the optimization
as function of the times of application. The novel algorithm allows the use of the knowledge of the
delays to appropriately choose the times of application. This can be observed in the histogram of
Figure 5.

Figure 4. Norm of the state vector (left) and output response (right) of the linear model of the air
levitation system. Solid black line: the proposed algorithm. Dot-dashed blue line: the algorithm in [30].
Dashed red line: auxiliary PI controller.
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Figure 5. Histogram of times of application of u1 in the linear model of the air levitation system.

Secondly, we perform two experiments in the real system. In Figure 6, we can observe the results
obtained with the proposed algorithm with respect to the auxiliary PI controller and with respect to
the optimization algorithm considering constant times of application. In the experiment, the signal
reference is set to 18 cm, and later two reference changes are made. At 60 s the reference is set to 28
cm, and at 100 s a disturbance is introduced into the servo. The input signals are shown in Figure 7.
The optimization of the decay rate implies a more aggressive input. In spite of the inherent limitations
(sensor sensitivity, disturbances, model errors, etc.) of the experimental system, which contribute to
complicate the optimization, the proposed algorithm provides improvements during the stabilization
in measure of the integral square error (ISE) of 31.77% and 5.35%, and in the settling time of 42.86%
and 20.00% with respect to the auxiliary controller and the algorithm in [30], respectively, as shown in
Table 1. In the histogram of Figure 8, we observe the distribution of times of application of input signal
u1. The times of application of u2 can be computed taking into account the delay.

In Figure 9, the response of the system is represented for the three different methods when different
disturbances are applied. Specifically, we apply a disturbance with form of sawtooth wave between 80
and 160 s. Later, we apply several impulse disturbances between 200 and 260 s, as shown in Figure 10.
Similarly to the first experiment, the optimization methods cause more changes in the input signal (see
Figure 11), which is the price to pay for maximizing the decay rate. Table 1 gathers the information
about the ISE during the different disturbances, obtaining improvements of 27.65% and 13.59% in the
sawtooth wave disturbance rejection with respect to the auxiliary controller and the algorithm in [30],
respectively, and of 33.01% and 27.37% in the impulse disturbance rejection, respectively.

Figure 6. Output response of the air levitation system in the stabilization experiment. Solid black line:
proposed algorithm. Dot-dashed blue line: algorithm in [30]. Dashed red line: auxiliary PI controller.
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Figure 7. Input voltage applied to the air levitation system in the stabilization experiment. From top to
bottom: the proposed algorithm, the algorithm in [30], and the auxiliary PI controller.

Figure 8. Histogram of times of application of u1 in the real system.

Figure 9. Output response of the air levitation system in the disturbance rejection experiment.
Solid black line: proposed algorithm. Dot-dashed blue line: algorithm in [30]. Dashed red line:
auxiliary PI controller.
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Figure 10. Disturbance applied to the system. Solid black line: proposed algorithm. Dot-dashed blue
line: algorithm in [30]. Dashed red line: auxiliary PI controller.

Figure 11. Input voltage applied to the air levitation system in the disturbance rejection experiment.
From top to bottom: the proposed algorithm, the algorithm in [30], and the auxiliary PI controller.

Table 1. Comparison of different controllers.

Controller Settling Time ISE (Stabilization) ISE (Sawtooth Wave) ISE (Impulse)

Auxiliary PI controller 4.2 s 421.39 291.01 172.43
Algorithm in [30] 3.0 s 303.78 243.64 159.03

Proposed algorithm 2.4 s 287.53 210.54 115.51

5. Discussion

In this paper, we propose an optimization algorithm for a multi-rate input control system.
The algorithm is designed to be implemented in real networked control systems. For this reason,
the algorithm is designed to take into account time-varying delays. The proposed method presents
some advantages with respect to to the existing literature. It takes into account the times of application
and the time-varying delays in the optimization problem as opposed to [19–24]. In addition, these
variable times of application cause irregular sampling, as considered in [3–5], but with the difference
that the irregular sampling in the proposed method is motivated by a theoretical criterion to maximize
the decay rate, and in [3–5] it is just a tuning parameter. In contrast, the computing time of the
algorithm might be considerably large depending on the number of control signals and time of
application to be optimized. Some solutions, such as precomputing the discretization of the matrices,
are provided to reduce the computational load of the algorithm in order to be implemented in
single-board computers. These solutions enable the implementation of the method in a larger number
of plants. As an example, we successfully apply the control scheme to an air levitation system, while
the algorithm implemented without these consideration, such as in [30], requires a larger computing
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time and the control objective cannot be achieved. Despite this, the proposed algorithm always induces
a larger delay than the associated auxiliary controller. Hence, its implementation in fast systems
should be carefully considered. Both the theoretical and experimental results show that the proposed
algorithm allows a faster response of the system while dealing with network delays.

The algorithm could be improved in several ways. A more accurate estimation of the delays, or
even some kind of disturbance estimation, would provide a better model for the optimization and,
naturally, an improvement in the system response. As aforementioned, the main issue of the algorithm
is the delay that it induces in the system due to the running time. For this reason, novel methods
to reduce the running time might be a way to improve the results of the algorithm. Finally, in this
paper we consider a dual-rate scheme with fast input, but future works might include other multi-rate
configurations.
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Appendix A

First of all, we observe that if the estimation model coincides with the actual plant, (15) can be
written as

Π =
n

∏
i=1

eAT̂i + B
(
T̂i, A

)
K.

Consequently,

c(T̂1, ..., T̂n) =

√
λmax(P)
λmin(P)

eα̂Ts
n

∏
i=1

(
eµ(A)T̂i + Bµ(T̂i, A)‖K‖

)
.

For simplicity, let us consider the two first control actions. They are applied to the plant during
periods T̂1 and T̂2, respectively, such that T̂1 + T̂2 = T̂12. We can search the maximum of

c12(T̂1) =
(

eµ(A)(T̂12−T̂1) + Bµ((T̂12 − T̂1), A)‖K‖
) (

eµ(A)T̂1 + Bµ(T̂1, A)‖K‖
)

,

which can be considered independently of the rest of the actuation periods. The derivative of
c12 results in

dc12(T̂1)

dT̂1
= (µ(A) + ‖B‖‖K‖) eµ(A)(T̂12−T̂1)

(
eµ(A)T̂1 + Bµ(T̂1, A)‖K‖

)
+
(

eµ(A)(T̂12−T̂1) + Bµ((T̂12 − T̂1), A)‖K‖
)
(µ(A) + ‖B‖‖K‖) eµ(A)(T̂1),

which has an unique critical point (the maximum) in T̂1 = T̂12/2 and, logically, T̂2 = T̂1. If we now
consider the period T̂1 + T̂2 + T̂3 = T̂13, we can use the above argument to write T̂1 = (T̂13 − T̂3)/2
and T̂3 = (T̂13 − T̂1)/2. Hence, T̂1 = T̂2 = T̂3 = T̂13/3. Finally, we can use the argument recursively to
prove that c(T̂1, ..., T̂n) ≤ c(Ts/n, ..., Ts/n).
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