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Abstract: Wi-Fi radio-map construction is an important phase in indoor fingerprint localization
systems. Traditional methods for Wi-Fi radio-map construction have the problems of being time-
consuming and labor-intensive. In this paper, an indoor Wi-Fi radio-map construction method is
proposed which utilizes crowdsourcing data contributed by smartphone users. We draw indoor
pathway map and construct Wi-Fi radio-map without requiring manual site survey, exact floor
layout and extra infrastructure support. The key novelty is that it recognizes road segments from
crowdsourcing traces by a cluster based on magnetism sequence similarity and constructs an
indoor pathway map with Wi-Fi signal strengths annotated on. Through experiments in real world
indoor areas, the method is proved to have good performance on magnetism similarity calculation,
road segment clustering and pathway map construction. The Wi-Fi radio maps constructed by
crowdsourcing data are validated to provide competitive indoor localization accuracy.

Keywords: indoor localization; Wi-Fi fingerprint; crowdsourcing data; magnetic field; radio-map
construction

1. Introduction

Location-based service (LBS) is some of the most important content that provides convenient and
precise services for users, such as navigation for pedestrians or cars, mobile payment, taxi finding,
bicycle sharing, intelligent guiding, loss prevention and so on. The global navigation satellite system
(GNSS) can provide positioning services in most outdoor environments, however in the indoor
environment, such as a big shopping mall, underground parking and museums, other positioning
techniques should be considered due to the signal occlusion problem of GNSS. Currently, the indoor
positioning techniques commonly used in consumer applications mainly include Wi-Fi signal strength
fingerprint methods [1,2], range measurement methods using wireless signal [3,4], geomagnetic field
matching methods [5,6], dead reckoning (DR) methods based on smartphone-mounted micro electro
mechanical system (MEMS) [7,8] and localization using context recognition and landmarks [9,10].
All the mentioned localization methods have their own advantages and disadvantages, but the Wi-Fi
fingerprint method usually plays the main role in indoor localization, for the reason that Wi-Fi has
been deployed in almost all public places and its received signal strength (RSS) has good ability in
location differentiation within a floor or between distinct floors.

Fingerprint-based Wi-Fi indoor localization system always consist of two phases: offline radio
map construction and online localization by fingerprint matching. In the offline phase, RSS from
Wi-Fi access points (APs) are labeled using the location coordinates of each reference point (RP),
and all the RP data are stored together as a fingerprint database. In the online phase, user’s real time
RSS measurements are matched to the fingerprint database using an algorithm, and the position
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with most similar RSS measurements is given as final position solution. To realize the offline phase,
it is ideal that the RSS of all the detected APs be carefully calibrated to a location grid which completely
covers the indoor map, and then the Wi-Fi radio map can be constructed exactly. However, this method
is time-consuming and labor-intensive, as it needs repeated measurements on each RP to obtain
statistical value of RSS and professional work to realize exact calibration of the indoor coordinates.
Another challenge is that the constructed radio map would lose stability and even become invalid in
some situations like fluctuating air humidity and indoor architecture changes [11]. In order to solve
the above problems, some new kind Wi-Fi fingerprint construction techniques have been proposed,
including data collection with the help of volunteers [12], simultaneous localization and mapping
(SLAM) using Wi-Fi signal strength [13], RSS prediction based on exist fingerprints [14], and fingerprint
construction using passive crowdsourcing data [15].

Redpin [16] and OIL [12] are previously proposed fingerprint-based indoor localization systems
that omit the time-consuming training phase, in which the volunteer users report their current locations
with room-level accuracy and corresponding Wi-Fi signal-strength. The more users that are uploading
fingerprints at different locations, the more areas the database can cover. Aiming for a more flexible
and scalable point in the design space of user-generated Wi-Fi localization system, Molé [17] arranges
places in a hierarchy instead of an accurate map for floor plan and labels users fingerprints by semantic
locations. These solutions depend on the active participation of users that results in inconveniences for
the user experience and unknown measurement noises [18].

Ferris et al. [13] and Huang et al. [19] proposed signal-strength-based SLAM techniques.
Reference [13] uses a Gaussian Process Latent Variable Model (GPLVM) to determine the latent-space
locations of unlabeled signal strength data. Reference [19] presents a GraphSLAM-like algorithm for
signal strength SLAM, which is viable for a broader range of environments due to its lack of special
constraints and reduction of runtime complexity. WiFi-SLAM serves a promising solution for the
problem of collection and maintenance of WiFi sensor models for large-scale localization, but it needs
user trajectories with some closed loops and requires more calculation.

HIWL [20] uses K-means to produce discrete signal observation sequences, and train Hidden
Markov Model (HMM) parameters by limited topology information of indoor environments. Through
HMM training, the system learns the mapping relationship in geographical and signal distribution,
and then matches the unlabeled fingerprints to the corresponding physical locations based on the
mapping model. UMLI [21] proposes using nonparametric clustering methods to classify the unlabeled
signal observations through two classification layers. By utilizing the clustering method, unlabeled
signal data are classified into locations or rooms having similar RSS, achieving less site survey
and labeling work. Chang et al. [14] developed a Minimum Inverse Distance (MID) algorithm to
build a virtual database with uniformly distributed virtual RPs. The Local Gaussian Process (LGP)
is then applied to estimate the virtual RPs’ RSSI values based on the crowdsourcing surveyed
data. These methods need a set of surveyed fingerprints for model training and RSS prediction,
so the quantity and quality of labeled data will seriously impact their accuracy.

With the popularization of smartphones and the increasing number of location-based service
(LBS) users, research on passive methods of Wi-Fi radio map construction based on crowdsourcing
has become a research hot spot currently. Its greatest advantage is that the crowdsourcing data can be
obtained passively through user’s common behaviors when they use smartphone applications (APP).
Meanwhile, the Wi-Fi radio map can be formed automatically and is easy to update thanks to the
continuous uploading of user data.

WILL [22] is proposed as a wireless indoor logical localization approach that achieves room
level location accuracy without site surveys. By exploiting user motions from mobile phones,
independent radio signatures are previously connected following certain semantic rules to make
a logical floor plan, and finally mapping it with a physical floor plan. Wang et al. [23] proposed an
indoor subarea localization scheme which first constructs subarea fingerprints from crowdsourced
RSS measurements using RL-clustering and then matches them to indoor layouts. They also proposed
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an online localization algorithm to deal with the device diversity issue. Both the WILL and Wang
proposed methods divide user data into some clusters by RSS similarity and match them to subareas
in a floor plan map. They can only provide room level localization rather than continuous positioning
when a user walks in the indoor environment. Other systems use DR to compute user trajectories and
furthermore label fingerprints in the indoor map pathway, which can provide a continuous localization
in the indoor corridors (roads). Zee [24] use the inertial sensors present in the mobile phone to track
them by a motion estimator (e.g., step counter, heading offset and stride length estimator) in an
indoor environment, and implements an augmented particle filter both using floor map showing
the pathways (e.g., hallways) and barriers (e.g., walls) and Wi-Fi scans to acquire crowdsourcing
users’ position. RACC [25] identifies the indoor anchors (doors) as reference positions of the whole
radio-map, in which doors’ RSS fingerprints can be identified according to motion detection when users
walk through doors annotated with their corresponding physical locations by an adjacent recursive
matching method. RCILS [26] detects people’s activities and trajectories in the indoor environment
and matches them to a semantic graph of the indoor map using HMM. Then RSS collected along the
trajectories can be labeled with location information. The air pressure detected by the barometer is used
for elevator/stairs detection. RCILS also propose a trajectory fingerprint-based method in the online
localization phase, which performs better when longer trajectory window is used in the sequence
matching. Zee, RACC and RCILS can provide an accurate location solution in about 1~2 m, but they
need an exact floor layout. PiLoc [15] divides a user’s single trajectory into disjoint path segments
(turns and long straight lines) by detecting steps and turns, and utilized movement displacement
(distance and direction) as well as the associated Wi-Fi signal to match path segments. Then PiLoc
merges the clustered path segments annotated with displacement and signal strength information to
derive a floor plan of walking paths annotated with radio signal strengths. It does not require manual
calibration, prior knowledge and infrastructure support. A comparison of fingerprint localization
methods without site survey via passive crowdsourcing data is shown in Table 1.

Table 1. Comparison of fingerprint localization methods without site surveys via passive crowdsourcing data.

Method Floor Plan Assistant Sensors Reported Accuracy

WILL [22] with Acc. Average 86% (room-level)
Wang [23] with None 95% (subarea-level)
Zee [24] with Acc., gyro., comp. 1.2 m (50%), 2.3 m (80%)

RACC [25] with Acc., gyro., comp. 1.7 m (50%), 2.2 m (80%) (fingerprint density: 1 m)
2.9 m (50%), 4.3 m (80%) (fingerprint density: 2 m)

RCILS [26] with Acc., gyro., mag., bar. Median error ~1.6 m
PiLoc [15] without Acc., gyro., comp. Average 1.5 m

In addition, localization based on geomagnetic field has attracted attention in the indoor
localization area for the fact it does not need infrastructure support and its stability compared to
Wi-Fi signals. GROPING [27] utilizes magnetic fingerprinting collected by crowdsensing users and
construct a floor map from an arbitrary set of walking trajectories. Map explorer records magnetic
fields using smartphones and tags road junctions manually to help GROPING partition trajectories into
segments. The similarity of magnetic intensity sequences is used to infer the overlapping segments
among trajectories and stick them together. Reference [28] presents a SLAM algorithm based on
measurements of the ambient magnetic field strength (MagSLAM) for pedestrians with foot-mounted
sensors. Reference [29] considers magnetic field SLAM exploration using a mobile robot with a
magnetometer and wheel encoders.

Different from the above methods, we propose in this paper a geomagnetism-aided indoor
radio-map construction method via passive smartphone crowdsourcing. The proposed method don’t
need exact floor layouts, but rather utilizes crowdsourcing traces to form the pathway map of a floor
plan with merged Wi-Fi radio signal strengths annotated on it. It recognizes road segments from
crowdsourcing traces by a cluster based on magnetism sequence similarity, which can be calculated



Sensors 2018, 18, 1462 4 of 36

exactly by a proposed feature matching algorithm even though the walking speeds may be different
for each user.

The rest of the paper is organized as follows: Section 2 describes the opportunity and challenge
in this problem and gives an algorithm overview. The algorithm details and experimental results are
respectively given in Sections 3 and 4. Finally, conclusions are presented in Section 5.

2. Problem and Algorithm Overview

2.1. Opportunity and Challenge

Currently, sensors mounted in smartphones are abundant, and their performance is better.
The sensors mainly utilized in indoor localization are accelerometers, gyroscopes, magnetometers,
electronic compasses, barometers and Wi-Fi, which provide acceleration, angular velocity, magnetic
field, orientation, barometric pressure and Wi-Fi RSS. Most of the sensors measurements can be
uploaded by users via smartphone APPs that provide payment, navigation, map or shop information
services in indoor environments, called crowdsourcing data. Based on these data, the Wi-Fi radio
map of the indoor environment can be constructed. The main components for indoor radio map
construction via crowdsourcing data are users’ trajectory tracking and Wi-Fi fingerprint labeling to
accurate locations. In the following content, we discuss the opportunities and challenges on the
resources and techniques available in our problem. It mainly covers pedestrian dead reckoning (PDR)
and fingerprint localization.

2.1.1. Pedestrian Dead Reckoning

PDR is a technique which estimates relative locations and follow the tracks of a pedestrian
via step detection, stride length estimation and heading determination. It is widely used in indoor
localization systems with or without crowdsourcing, for its autonomy in pedestrian localization.
In a smartphone-based PDR system, the accelerometer, gyroscope and magnetometer embedded with
the smartphone are generally utilized to realize the PDR algorithm. 3-axis acceleration can be used to
detect walking steps and estimate stride length. Besides, 3-axis angular velocity and magnetic field
data are usually fused to determine the heading of pedestrians. There are some key challenges in this
technique, which are addressed as follows [8,30]:

• The unconstrained human motions and smartphone postures make it complex to capture user’s
motion modes, detect steps and estimate accurate walking orientation.

• Long/short term drift of accelerometer and gyroscope, which perform worse due to the low-cost
IMU sensors embedded in smartphones, as well as magnetic disturbances result in inaccurate
stride length estimation and heading determination.

• As a result of the above-mentioned two issues, the PDR localization output calculated by
Equation (1) would not converge since its lacks an efficacious reference source:{

xt+1 = xt + Lt+1 · sin φt+1

yt+1 = yt + Lt+1 · cos φt+1
(1)

Consequently, it is hard to use PDR directly for users’ trajectory tracking by crowdsourcing data.
However, it still can benefit for distance estimation approximately in a limited area.

2.1.2. Fingerprint

The Wi-Fi fingerprint on a location point is a vector of the RSS from all the scanned Wi-Fi
APs at a same time. For different locations in indoor areas, the detected Wi-Fi RSS vectors are
correspondingly different, due to the diversity of signal attenuation caused by different ranges,
wall blocks and multipath from each APs to the smartphone. Meanwhile, the Wi-Fi RSS vectors are
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similar for adjacent locations. The location correlation of Wi-Fi fingerprint makes it available in indoor
positioning. Similarly, the Bluetooth fingerprint and magnetic field fingerprint can also be used in
the indoor localization based on the same principle as Wi-Fi fingerprints, and they are all available in
crowdsourcing, so we will talk about them together and compare their advantages and disadvantages.
For the reasons that the Bluetooth fingerprint has almost same features as the Wi-Fi fingerprint as
they are all based on the wireless electromagnetic signal of similar frequency (2.4 GHz), and Bluetooth
launchers are always few in most public indoor environments for their lack of internet access functions
compared with Wi-Fi, so in this section we will focus on discussion of Wi-Fi fingerprints and magnetic
fields, and furthermore show the opportunities and challenges of using them for indoor localization.

(1) Fingerprint Stability

Stability comparisons between Wi-Fi and magnetic fingerprints have been given in some works.
Here we adopt the stability index proposed in [27] to judge the stability between Wi-Fi RSS and magnetic
field intensity. Stability index is the mean-to-standard deviation ratio of intensity, like Signal-to-Noise
Radio (SNR). The Wi-Fi RSS of a settled AP and the magnitude of magnetic field are detected at a
same location point and compared using the stability index. We detect six location points in an office
room and corridor (staying for 5 min on each point), and calculate the stability index of the Wi-Fi and
magnetic field signals. Figure 1 shows the result. It is seen that the magnetic field is obviously more
stable than the Wi-Fi RSS.
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Figure 1. Comparison of stability between Wi-Fi and magnetic field at a simple location: (a) Time
sequences for magnitude of magnetic field and Wi-Fi RSS of one AP measured on location 1 at the
same time; (b) Stability index comparison between Wi-Fi and magnetic field for six test locations.

In addition, it is known that the 2.4 GHz Wi-Fi signal is easily absorbed by the human body,
which leads to obvious changes of RSS with or without ambient crowds. Figure 2 shows the comparison
of Wi-Fi RSS and magnetic field when a pedestrian walks along a corridor in two opposite directions.
The magnetic field shows good consistence with the corridor in different directions, but on the contrary,
the Wi-Fi RSS is changing.

(2) Location Differentiation Ability

The measured magnetic field is the 3-axis magnetic intensity, and the intensity on each axis
is dependent on the pose of the smartphone, so the resultant intensity is usually used to indicate
the magnetic fingerprint. Therefore, for a single location point the magnetic fingerprint is a scalar,
but the Wi-Fi fingerprint is a RSS vector whose dimensions will increase with the number of ambient
APs. As shown in Figure 3a, the magnetic intensity is the same in some location points of one corridor
(the resultant magnetic field intensities are all 50 µT at location points 1, 2, 3 and 4), but the Wi-Fi RSS
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vectors (seven APs are detected in the corridor) ate these location points are different, as shown in
Figure 3b.
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Figure 2. Comparison of the stability between Wi-Fi and magnetic field in a corridor: (a) Time sequences
for the magnitude of the magnetic field generated in a same corridor using forward and opposite
directions; (b) Time sequences for Wi-Fi RSS of one AP generated in the same corridor using forward
and opposite directions. The sequences generated in opposite directions have been reversed in these
two figures.
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Figure 3. Comparison of the ability of location differentiation between magnetic field and Wi-Fi
RSS: (a) Sequence of resultant magnetic field intensity in a corridor, at location points 1, 2, 3 and 4,
where the intensities are same; (b) Difference RSS vectors at location points 1, 2, 3 and 4.

On the other hand, the magnetic fingerprint performs better in differentiation among corridors
(or roads in indoor parking) than Wi-Fi, even when measured in the opposite direction (shown in
Figure 2). Figure 4 shows the comparison of magnetism sequences measured in the same corridor and
different corridors. It is obvious that magnetism sequences show highly similar shapes in the same
corridor and low similarity in different corridors, so it is useful for crowdsourcing data to be divided
into different corridors or clustered into same one. This is the principle for our proposed method.
Since the similar shape of magnetic sequences in same corridor is based on the location correlation of
the magnetic field; when the magnetic field time sequences are obtained by crowdsourcing users with
different walking speeds (most of the time, users’ walking speeds are different, and hard to estimate
accurately using crowdsourcing data), magnetism sequences would show an uncertain zooming state
compared with the true space scale between two sample points.
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In summary, the Wi-Fi fingerprint has a better performance in single location differentiation while
the magnetic field shows better stability and ability in corridor division when used in sequence. Thus,
a geomagnetism-aided method is designed to construct the indoor Wi-Fi radio-map via smartphone
crowdsourcing in this paper.Sensors 2018, 18, x FOR PEER REVIEW 7 of 38 
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Figure 4. Comparison of magnetism sequences measured in the same corridor and different corridors:
(a) Smoothed magnetism sequences generated in the same corridor; (b) Smoothed magnetism sequences
generated in different corridors.

2.2. Problem Setting

In this paper, we only concentrate on the 2D indoor localization problem. The crowdsourcing
data collected by smartphone users are utilized to construct a Wi-Fi radio map automatically.
Crowdsourcing data mentioned here generally include acceleration, angular velocity, magnetic field,
orientation and Wi-Fi RSS provided respectively by the accelerometer, gyroscope, magnetometer,
electronic compass and Wi-Fi connector mounted on a user’s smartphone. These data are generated
and uploaded by crowdsourcing users when they are walking around the indoor environment,
and meanwhile, recorded by the time identification stamp. Assuming that these data are continuous in
time for each user, and we call them the moving traces of users, which are denoted as T. Each moving
trace T is recorded as:

T = {Ori, Acc, Gyro, Mag, F, t} (2)

Ori is the user’s moving orientation valued in [0◦, 360◦) which is the reading from the electronic
compass. However, due to magnetic field anomalies in indoor environments and the unconstrained
smartphone poses of crowdsourcing users, it is essential to estimate the user’s heading using
acceleration, angular velocity and magnetic field by some better algorithm rather than using readings
directly from the electronic compass. The heading estimation method raised in [30] is a kind of solution
for the orientation problem. Acc is the 3-axis acceleration, denoted as (Accx, Accy, Accz). Gyro is the
3-axis angular velocity, denoted as (Gyrox, Gyroy, Gyroz). Mag is the 3-axis magnetic field intensity,
denoted as (Magx, Magy, Magz). F is the Wi-Fi fingerprint, include of AP Mac and RSS, denoted as
{(Macm, RSSm), m = 1, 2, . . . , M}, here M is the total number of Wi-Fi APs scanned by the smartphone
and t is the time identification.

Since indoor localization generally happens in corridors (or roads in indoor parking) which lead to
rooms (or function sections) and entries of a floor (like stairs and elevators); in our method, the indoor
map is handled as a pathway graph and indicated by topology. As shown in Figure 5, in a pathway
graph of the indoor plan, the edges represent all the pathways that users can walk from one place
to another; and the vertexes represent the turning corners and the endings of pathways. The indoor
graph is denoted as Map in this paper, which is described as:

Map = {V, E} (3)
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V is a set of coordinates of all the vertexes in the graph, denoted as {(Coorm), m = 1, 2, . . . , M}.
In this paper, we use 2D coordinates to describe V, so, the vector V can also be denoted as
{(xm, ym), m = 1, 2, . . . , M}. Here M is the total number of vertexes. E is a matrix to represent the length
of each edge between two vertexes, denoted as

{
(dp,q), p = 1, 2, . . . , M, q = 1, 2, . . . , M

}
, here dp,q is

Euclidean distance between p-th and q-th vertex.
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and the vertexes represent connections between roads.

In order to construct an indoor pathway graph by crowdsourcing user’s moving traces in our
algorithm, the user’s trace will be broken down into some distinct road segments like the edges in a
map. A road segment trace is a continuous trace with the turning connection or pathway ending only
on its start or end points. The road segment R is denoted as:

R = {Rori, Ori, Acc, Gyro, Mag, F, t} (4)

Rori is the mean value of Ori in the road segment trace, and it is a scalar identifying the
displacement orientation of the road segment, valued in [0◦, 360◦). And other elements in R are
defined as same as T. The connection between two road segments is denoted as I, which is recorded as:

I =
{

Ri, Rj, Type, Angle
}

(5)

It represents the connection between road segment Ri and Rj. Type is the connection type including
four kinds as shown in Figure 6, which is defined as:

Type =


1, Ri start connect to Rj start
2, Ri start connect to Rj end
3, Ri end connect to Rj start
4, Ri end connect to Rj end

(6)
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Angle is the rotation angle between two road segments Ri and Rj in connection I, defined as
the angle rotated from vector Ri to vector Rj. The value of Angle is in (−180◦, 180◦), negative for
clockwise rotation and positive for anticlockwise rotation. Figure 7 shows an example of connection
between road segments. It’s obvious that there are four road segments (R1, R2, R3 and R4) and three
connections (I1, I2 and I3) in this moving trace. The connections will be denoted respectively as
I1 = {R1, R2, 3,−90◦}, I2 = {R2, R3, 3, 90◦} and I3 = {R3, R4, 3,−90◦}.
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parking. R and I are respectively the road segments and connections in this trace.

Finally, it is expected that through the proposed method the topology of the indoor map (pathway
graph) is acquired by crowdsourcing user traces, and Wi-Fi fingerprints are labeled on the map.
The constructed Wi-Fi fingerprint database is represented as:

FD =


(x1, y1), F1

(x2, y2), F2

. . .
(xN , yN), FN


Fn = (RSSAP1

n , RSSAP2
n , . . . , RSSAPM

n )

(7)

where N is the total number of RPs. M is the number of available Wi-Fi APs in the area.

2.3. Algorithm Overview

Through the discussion on the opportunities and challenges of smartphone-based indoor localization,
a method of geomagnetism-aided indoor radio-map construction via smartphone crowdsourcing is
proposed in this paper. In this method, the acceleration, angular velocity, orientation, Wi-Fi RSS and
magnetic field from crowdsourcing data are utilized to realize the algorithm. The architecture of our
method is shown in Figure 8, which includes five parts: trace segmentation, geomagnetism-based similarity
calculation, road segment clustering, topology construction and final radio map construction.

First of all, the turning detection using angular velocity is implemented for the users traces,
and the long traces will be segmented into some short ones which are generated in distinct corridors
(or roads), called road segment traces.
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Since there are usually more than one user trace generated in a corridor (road) in crowdsourcing
data, we design a clustering method here to make these road segment traces from different users
match together and cluster them into some distinct corridors. In order to realize clustering, a kind
of matching method for road segment traces is designed by calculating the similarity of magnetism
sequences of these, based on the stable shape of the magnetic field in one corridor (road). As discussed
in Section 2.1, to deal with the uncertain zooming of magnetism sequences for different user traces,
the magnetism features are extracted firstly, and then based on them one sequence is zoomed to a
same distance scale as another one and consequently, the similarity of two road segment traces is
calculated exactly.
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Figure 8. Overview of the geomagnetism-aided indoor Wi-Fi radio map construction method via
smartphone crowdsourcing.

Supported by the magnetism similarity, road segment traces are clustered to some collections
with highly magnetic similarity. The clustering algorithm is designed based on the Density-Based
Spatial Clustering of Application with Noise (DBSCAN) algorithm, using a kind of magnetism
similarity neighborhood. In addition, a preprocessing step is implemented before clustering to make
the magnetism sequences be generated based on the same orientation.

Furthermore, the length of road segments and connections between them are estimated, and then
the topology map is constructed. To deal with the topology mistakes caused by inaccurate connection
angles and road lengths, the topology modification is carried out to get a final pathway graph. Finally,
the crowdsourcing Wi-Fi RSSs are carefully labeled by location coordinates, and merged together
on the generated Wi-Fi RPs along the constructed pathway graph. Thus, the final Wi-Fi radio map
(fingerprint database) is constructed on the floor.
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3. Algorithm Details

3.1. Trace Segmentation

In this paper, only the 2D indoor localization problem is considered. Considering the features of
the pathway graph, we segment a user’s trace through turn detection. The variation of orientations can
obviously show the turning behavior of the user, but considering the heading errors caused by magnetic
field anomalies in indoor environments and unconstrained smartphone poses, the reading changes of
the gyroscope are used to detect user’s turning instead. Figure 9 shows a user’s walking trace and the
vertical component of the angular velocity. When the pedestrian walks straight, the values of angular
velocity oscillate up and down around zero. On the contrary, when the pedestrian turns left or right,
the absolute value of angular velocities will rise to a peak and then decline to normal, corresponding
with the turn start and finish. The change would be obvious for quickly turning and gentle for a slow
turn. Moreover, it shows that the angular velocities will go negative for clockwise turning and positive
for anticlockwise turning.
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• The start of turn 1n  is settled as the first point ascending from zero to the peak, and the end of 
turn 2n  is settled as the last declining point from the peak to zero. 

• The user trace is segmented by detected peaks to some road segments, denoted as 
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Figure 9. User’s walking trace and the angular velocities measured by a smartphone gyroscope:
(a) walking trace in an underground parking with three turns; (b) angular velocities (vertical component)
of the smartphone measured with the walking trace.

As discussed above, in this paper, we use angular velocity readings from the gyroscope to
detect turns, calculate turning angles and finally segment user’s traces. Before turn detection,
the vertical component of the angular velocity is calculated by gravitational acceleration and coordinate
transformation. For dealing with the measurement noise, the angular velocity will be smoothed using a
moving average filter before turn detection. Three rules are made as follows to realize turning detection
and turning angle estimation:

• The peaks of angular velocities are detected when the following conditions are satisfied.
Here ThTurn is a positive constant. The position of each peak is recorded using the sample
count n:

P =

 n,
Gyro(n) > ThTurn, Gyro(n) > Gyro(n− 1), Gyro(n) > Gyro(n + 1)
or Gyro(n) < −ThTurn, Gyro(n) < Gyro(n− 1), Gyro(n) < Gyro(n + 1)

null, else
(8)

• The start of turn n1 is settled as the first point ascending from zero to the peak, and the end of
turn n2 is settled as the last declining point from the peak to zero.
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• The user trace is segmented by detected peaks to some road segments, denoted as
{Ri}, i = 1, 2, . . . , num(P) + 1. num(P) is the number of peaks detected. The orientation of each
road segment Rori is the mean value of data Ori in this road; and the rotation angle of the turning
Angle is the integration from Gyro(n1) to Gyro(n2), shown in the following equations:

RoriRi =
P(i)

∑
n=P(i−1)

Ori(n) (9)

Angle =
∫ n2

n1

Gyro dn (10)

Figure 10 shows the turn detection result when setting ThTurn = 40◦. There are three turns
detected in this trace T. Then, we segment the user trace T into four road segment traces R1,
R2, R3 and R4, and three connections, which are denoted respectively by I1 = {R1, R2, 3,−79.2◦},
I2 = {R2, R3, 3, 95.5◦} and I3 = {R3, R4, 3,−80.4◦}. To deal with smartphone pose changes (false
detection) and gentle turns (undetected) of the user, the turn detection result would be checked again
by the user headings. If the offset of Rori between two separate road segment traces are close to the
detected turning angle, it is proved that there is a real turn. If the orientation change happens inside
one road segment trace, the truing detection algorithm will be re-implement using an angular velocity
with a lower ThTurn. Of course, the erroneous road segments can also be eliminated by failing magnetic
field matching in the following process.
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Figure 10. Turn detection results using angular velocity: (a) vertical component of the angular velocities
(smoothed) of the test trace and the detected start point, peak and end point of each turn; (b) four
segmented road traces and the three connections between them.

3.2. Geomagnetism-Based Similarity Calculation

As discussed in Section 2.1, the geomagnetism sequence in the road segment obtained in the
above process will be utilized to calculate the similarity between two road segment traces in our
proposed method. To deal with the different scales of sequences, [6] used a Dynamic Time Warping
(DTW) algorithm for sequence similarity computation, but DTW algorithms need a large amount of
calculation, so in this section, we propose a novel method for similarity calculation using geomagnetism
features. The details of geomagnetism-based similarity calculation will be described below, consisting
of magnetism feature extraction, sequence zooming based on matched feature points, and final
similarity calculation.
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3.2.1. Feature Extraction

The geomagnetism measurements from a smartphone are 3-axis magnetism intensities (one
reading for each axis). Considering the uncertain pose of smartphones, which causes measuring
coordinate system changes, before we extract magnetism features from a data sequence, the vector
module of the magnetic field is calculated firstly as the resultant magnetism intensity. The resultant
magnetism intensity is acquired by the following equation, and only related to the position of
the smartphone:

Mag =
√

Mag2
x + Mag2

y + Mag2
z (11)

We define peaks and troughs from the sequence of resultant magnetism intensities Mag which
satisfy the settled constraints as the magnetism features of the user trace. To remove the noise in
magnetism sequence and extract its main shape, we smooth the magnetism vector using a moving
average filter before feature extraction. The magnetism features are identified by the following criteria:

• All the peaks and troughs are detected from sequence Mag by the following equation, and MP
and MT are respectively peak candidates and trough candidates:{

MP = n,

MT = n,

Mag(n) > Mag(n− 1) and Mag(n) > Mag(n + 1)

Mag(n) < Mag(n− 1) and Mag(n) < Mag(n + 1)
(12)

• The candidates (both peaks and troughs together), whose magnetism intensity difference with
one of the two interfacing candidates is below the defined threshold thMagDi f f , are removed
from candidates.

• Peaks and troughs that satisfy the above constraint are the final magnetism features which are
marked by P and T, respectively. At the same time, peaks and troughs would be ensured to
appear alternately.
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Figure 11. Example for magnetism feature extraction: (a) sequence of resultant magnetism intensity
generated with a user trace; (b) feature extraction result.

Figure 11 shows an example of a magnetism feature extraction result. Points A, C and E marked
in the figure are detected peaks, and B and D are detected troughs. When we set thMagDi f f as
1 µT, the difference between B and A exceeds thMagDi f f , but the difference between B and C doesn’t
exceed thMagDi f f , so trough point B is not a feature point we need. On the contrary, peak D is a
feature point, as the difference between D and A as well as D and E both exceed the thMagDi f f .
Consequently, as shown in Figure 11, the trough B and the peak C would be removed since they don’t
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satisfy the constraint, but the trough D and the peaks A and E are the extracted magnetism features,
so though the abovementioned method, all the peaks and troughs are extracted as the magnetism
features that can describe the fluctuation of the resultant magnetism intensity in the user’s trace.

3.2.2. Sequence Zooming

In this part, we propose a method to zoom the distance scale of one magnetism sequence to
another through magnetism features in order to match them together. It includes four key steps:

• Step 1: First of all, we estimate the movement distance from the start point of the user trace to
each magnetic field sampling time using an empirical stride length. Then two pairs of magnetism
features from the two sequences are selected randomly as the initial assumed matching feature
points, if the ratio of two estimated distances between features in each sequence is within a
reasonable range of pedestrian stride length.

• Step 2: Secondly, using the distance ratio calculated by the initial matching feature pairs,
the remaining part of the second sequence is zoomed to the same stride length as the first one.

• Step 3: Thirdly, to deal with the common case of uneven walking speed in one trace, the rest of the
feature points from two sequences are matched together based on the initial matched features.

• Step 4: Finally, the number of matched feature points is counted, and if the proportion of matched
features is greater than the settled threshold, one time of Sequence Zooming is finished.

The details of the above steps will be respectively depicted in the following paragraphs.

(1) Initial Feature Matching

We use detected steps and stride length to estimate the trace length. The acceleration is utilized
for step detection. The algorithm for step detection is the same as the Feature Extraction algorithm
presented in 3.2.1. The detected peaks of resultant acceleration which satisfy the settled constraint are
user steps, and the amount of steps is marked as Nstep. Other algorithms can also be used to realize
step detection, like the one described in [31]. Stride length Lstep is set as an empirical value like 0.6 m,
so the length of the user trace is estimated by:

L = Nstep·Lstep (13)

The trace length L do not need to be exact, as it is only used to provide a rough distance between
each magnetism feature, and the similarity of the queues of magnetism features is the main criterion
to estimate whether two traces are generated on the same road segment. The procedures of features
alignment and similarity calculation will be proposed in the following context.

When we get the length of the trace, the distances from start point of the trace to each magnetism
sampling time, denoted as Dis = {Dis1, Dis2, Dis3, . . . , DisM}, can be estimated by:

Disi = L· i
M

, i = 1, 2, 3, . . . , M (14)

Here i is the i-th count of magnetic field readings, M is the total number of the field data on a
road segment trace. We use a linear model here to estimate distance each time, for it is hard to get the
exact walking speed of users, and the linear moving model will simplify the procedures to acquire a
rough distance sequence. In case of the uneven walking speed in one trace, the magnetism features
alignment will be implemented in Step 3.

Considering two road segment data of different users, denoted by R1 and R2. The magnetism
sequences of them are Mag1 and Mag2, denoted as Mag1 =

{
Mag1

1, Mag1
2, Mag1

3 . . . Mag1
M
}

and Mag2 ={
Mag2

1, Mag2
2, Mag2

3 . . . Mag2
N
}

. The data length of each sequences are respectively M and N. Though
the above mentioned method, the distance sequences corresponding to Mag1 and Mag2 are obtained,
denoted as Dis1 =

{
Dis1

1, Dis1
2, Dis1

3, . . . , Dis1
M
}

and Dis2 =
{

Dis2
1, Dis2

2, Dis2
3, . . . , Dis2

N
}

.
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Then the magnetism features are extracted from Mag1 and Mag2, recorded by P1, T1, P2 and T2:

P1 =
{

P1
1 , P1

2 , P1
3 , . . . , P1

MP

}
T1 =

{
T1

1 , T1
2 , T1

3 , . . . , T1
MT

}
P2 =

{
P2

1 , P2
2 , P2

3 , . . . , P2
NP

}
T2 =

{
T2

1 , T2
2 , T2

3 , . . . , T2
NT

} (15)

MP and MT are respectively the total numbers of peaks and troughs in Mag1. Similarly, NP and NT
are respectively the total numbers of peaks and troughs in Mag2.

At the beginning of Sequence Zooming, we pick up two couples of magnetism features
respectively from Mag1 and Mag2 randomly. They are recorded by FP1

1 , FP1
2 (a feature point pair from

Mag1) and FP2
1 , FP2

2 (a feature point pair from Mag2). The following constraint should be satisfied in
selection of feature point pairs:

(FP1
1 , FP1

2 ) = (P1
a , P1

b ) or (T1
a , T1

b ) or (P1
a , T1

b ) or (T1
a , P1

b ), a < b
(FP2

1 , FP2
2 ) = (P2

c , P2
d ) or (T2

c , T2
d ) or (P2

c , T2
d ) or (T2

c , P2
d ), c < d

(16)

The above equation means that the feature point pairs from Mag1 and Mag2 should have the
same pattern and same order in their queues. For example, when we choose (P1

a , T1
b ) as feature point

couple in Mag1, we should use (P2
c , T2

d ) in Mag2 to match with them. The subscripts a, b, c and d
should meet the conditions a < b and c < d.

If FP1
1 and FP2

1 are generated at a same location point A, and at the same time, FP1
2 and FP2

2 are at
a same location point B, the trace distances between FP1

1 and FP1
2 , as well as FP2

1 and FP2
2 would be

equal, assuming that the walking paths on the road segment are unique for users, so we can obtain the
following equality:

N1
step·L1

step = N2
step·L2

step = LAB (17)

in which, N1
step and N2

step are respectively the number of detected steps from location A to B on road
segment traces R1 and R2. L1

step and L2
step are the real stride length of users on R1 and R2. LAB is the

actual trace length between location A and B. Stride length Lstep is the empirical value that we use
to estimate the distances from the start point to each magnetic field sampling point, so it can also be
obtained that:

N1
step·Lstep = Dis1(FP1

2 )− Dis1(FP1
1 ) (18)

N2
step·Lstep = Dis2(FP2

2 )− Dis2(FP2
1 ) (19)

Then the stride length ratio is reckoned as:

ratioL =
L2

step

L1
step

=
N1

step

N2
step

=
N1

step·Lstep

N2
step·Lstep

=
Dis1(FP1

2 )− Dis1(FP1
1 )

Dis2(FP2
2 )− Dis2(FP2

1 )
(20)

The normal range of pedestrian stride lengths is about 0.4 m to 0.8 m, so the stride length ratio
ratioL should be on the range of [0.5, 2]. When the calculated ratioL is in this range, the feature
points (FP1

1 ,FP2
1 ) and (FP1

2 ,FP2
2 ) can be assumed as the initial matched feature points of R1 and R2.

On the contrary, if ratioL is out of this range, this procedure will be implemented again for another
pair of feature points, until the initial matched points are found.
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(2) Rough Zooming

Based on the initial matched feature points (FP1
1 ,FP2

1 ), the data on Dis2 will be zoomed using
ratioL, and Dis2(FP2

1 ) will be translated to Dis1(FP1
1 ) . The new distance sequence is calculated by the

following equation:

Dis2
Z(n) = (Dis2(n)− Dis2(FP2

1 ))·ratioL + Dis1(FP1
1 ) (21)

here n = 1, 2, 3, . . . , N. Then we get a new distance sequence Dis2
Z for R2. Dis2

Z may have some
negative data, for its start point would not be the same as for R1.

After rough zooming in the above procedure, the magnetism feature points on R2 are basically
matched together with those on R1 if the initial matching points (FP1

1 ,FP2
1 ) are correct. Because of the

rough zooming is an even zooming only based on the scalar ratioL, if users’ walking speeds are uneven,
which is a very common situation, the feature points will not match well only by rough zooming.
The following step is designed to deal with this issue.

(3) Features Alignment

In this step, the feature points in R2 are aligned based on the current initial matched feature
points ((FP1

1 ,FP2
1 ) and (FP1

2 ,FP2
2 )) and matched with other feature points in R1 using the principle of

proximity. Therefore, when the initial matched feature points are really sampled on the same location
point, the Features Alignment would make other feature points on R2 and R1 match exactly, so that the
magnetism similarity of R1 and R2 can be calculated accurately. When the initial assumed matching
feature points are not matched correctly, this procedure will also be carried out and the final matching
result will be judged by the result of Similarity Calculation in the following step.

We denote the assemblage of aligned feature points as AF. Based on the initial matched feature
points, the initial of the assemblage AF is shown in the following:

AF = {AF1, AF2}, AF1 = (FP1
1 , FP2

1 ), AF2 = (FP1
2 , FP2

2 ) (22)

For the peak P2
i , the candidate matching area in R1 is settled at first, which is indicated by

(IndexL, IndexR). The edge of matching area is the feature points of R1 in AF, whose matched feature
points in R2 are the closest ones respectively to left and right side of P2

i . This can be expressed as:
IndexL = FP1(arg min

k
{P2

i − FP2
k }), FP2

k < P2
i

IndexR = FP1(arg min
k

{FP2
k − P2

i }), FP2
k > P2

i
(23)

When P2
i only has one side neighbor with aligned feature points, then the matching area will be

settled as (1, IndexR) or (IndexL, M). M is the data length of Mag1.
Then all the peaks of R1 in the range of (IndexL, IndexR) are traversed to find the matching point

of P2
i . The matching point match(P2

i ) would satisfy two requirements, including:

• The difference between Dis2
Z(P2

i ) and Dis1(P1
k ) is minimum compared with other candidate

peaks. For the Dis2
Z have been accorded with Dis1, the difference between them indicates

the probable location distance between P2
i and P1

k , and the closest pair may have the biggest
probability to be sampled on a same location.

• In case of some feature points are undetected, and R1 and R2 have different trace lengths,
we set a distance threshold thAlign to restrict the difference of distance between matching points.
The thAlign in this paper is settled as an empirical value.
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The matching qualification is expressed by the following equation:

match(P2
i ) = P1

k ,


k = arg min

k
{
∣∣Dis2

Z(P2
i )− Dis1(P1

k )
∣∣}∣∣Dis2

Z(P2
i )− Dis1(P1

k )
∣∣ < thAlign

P1
k ∈ [IndexL, IndexR]

(24)

The matched peak couples would be added into AF as a new element AFj = (FP1
j , FP2

j ) = (P1
k , P2

i ),

and further used for matching area choosing of the new P2
i prepared for alignment.

For the troughs T2
i , the same method is implemented to find the matching troughs T1

k in R1.
At the same time, the matched trough couples will also be added into AF as a new element, recorded
by AFj = (FP1

j , FP2
j ) = (T1

k , T2
i ).

For the matched feature couples should be apparent in same order both in R1 and R2, and peaks
and troughs should appear alternately, the element in AF (all the matched peaks and troughs) will be
resolved by the data order of feature points in Mag1 (or feature points in Mag2). Finally, we obtained
all the matched feature couples in AF:

AF =
{

AFj
}

, AFj = (FP1
j , FP2

j ), j = 1, 2, . . . , J (25)

J is the total number of matched feature couples between R1 and R2.
Then, based on the matched feature pairs in AF, the Dis2

Z would be updated using the
following equation:

Dis2
A(n) =


(Dis2

Z(n)− Dis2
Z(FP2

j ))·
Dis1(FP1

j+1)−Dis1(FP1
j )

Dis2Z(FP2
j+1)−Dis2Z(FP2

j )
+ Dis1(FP1

j ), n ∈ [FP2
j , FP2

j+1], j ∈ [1, J − 1]

Dis2
Z(n)− Dis2

Z(FP2
1 ) + Dis1(FP1

1 ), n ∈ [1, FP2
1 )

Dis2
Z(n)− Dis2

Z(FP2
J ) + Dis1(FP1

J ), n ∈ (FP2
J , N]

(26)

It means that all the matched feature points FP2
j in R2 will be aligned to the same distance of FP1

j
in R1 and the distance of other sample points will be zoomed using the local ratio, estimated by the
closest two feature point couples. In the start or end part of the R2, only translation is implemented to
the Dis2

Z(n), since the zooming ratio cannot be estimated only by one pair of matched feature point.
Finally, we get the updated distance sequence Dis2

A for R2.

(4) Matched Features Amount Judgment

In this step we count the amount of matched feature couples in AF, and calculate the matching
proportion PFP using the following equation:

PFP =
J

min(MP + MT , NP + NT)
(27)

MP and MT are respectively total numbers of peaks and troughs in Mag1. NP and NT are respectively
the total numbers of peaks and troughs in Mag2. J is the total number of matched feature pairs between
Mag1 and Mag2. When PFP is greater than the settled threshold thFP, one time of Sequence Zooming
is finished.

3.2.3. Similarity Calculation

Through the method of Sequence Zooming provided in the above section, the distance scales
of Mag1 and Mag2 are basically uniform. If the feature points are matched correctly, the similarity
between Mag1 and Mag2 can be calculated accurately. In this paper, the correlation coefficient of two
magnetism sequences is identified as the similarity of two road segment traces R1 and R2.

Before correlation coefficient calculation, the data length of Mag1 and Mag2 would be made to
be equal using original magnetism data and zoomed distance data, based on linear interpolation.
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The equation to calculate the new magnetism sequence Mag2
new, which has the same data length with

Mag1, is shown in the following:

Mag2
new(m) =


Mag2(n + 1)− Dis2

A(n+1)−Dis1(m)
Dis2

A(n+1)−Dis2
A(n)
·(Mag2(n + 1)−Mag2(n)),

Dis1(m) ∈ [Dis2
A(n), Dis2

A(n + 1)],
n ∈ [1, N − 1]

Null
Dis1(m) < Dis2

A(1),
or Dis1(m) > Dis2

A(N)

(28)

Symbol “Null” in the equation means that it is a null element in sequence Mag2
new, and there

isn’t a valid mathematical result in this element.
Then we find the index of valid element in Mag2

new, and calculate the correlation coefficient
between Mag1 and Mag2

new. The indexes of the start and end point of valid element are respectively
denoted as mstart and mend. cc is the correlation coefficient between Mag1 and Mag2

new. They are
obtained by:

mstart = min(m
∣∣Mag2

new(m) 6= Null)
mend = max(m

∣∣Mag2
new(m) 6= Null)

(29)

cc =

mend
∑

m=mstart
(Mag1(m)−Mag1)(Mag2

new(m)−Mag2new)√
mend
∑

m=mstart
(Mag1(m)−Mag1)

2 ·
mend
∑

m=mstart
(Mag2new(m)−Mag2new)

2
(30)

For each time of Sequence Zooming, the correlation coefficient cc would be calculated, until all
the probable initial matched features in R1 and R2 are tested. Afterwards, the maximum of all the
calculated cc between R1 and R2 is selected as the road segment similarity between R1 and R2, denoted
as RS(R1, R2). Correspondingly, the final zooming ratio of R2 based on R1 (denoted as Ratio(R2, R1))
is calculated and given by:

Ratio(R2, R1) =
Dis2

A(N)− Dis2
A(1)

Dis2(N)
(31)

The matching position between R1 and R2 is settled as [(mstart, nstart), (mend, nend)]. mstart and
mend is obtained by Equation (29). nstart and nend are ascertained by:

nstart = (n
∣∣Dis2

A(n) = Dis1(mstart))

nend = (n
∣∣Dis2

A(n) = Dis1(mend))
(32)

3.2.4. Similarity Calculation Result

In this section, we show magnetism matching and similarity calculation results for some typical
situations, including two traces generated on the same road segment and on different road segments.
These results are shown in Figures 12–14.

Figure 12 shows the magnetism matching and similarity calculation result for two traces generated
on a same road segment. Figure 12a shows the smoothed magnetism sequences from road segment
trace 1 and road segment trace 2, in which the distances from start point to each magnetic field
sampling point are estimated by detected step and empirical stride length (Lstep = 0.6 m). We can see
that the magnetism sequences of the two traces have highly similar shape and different distance scales.
Figure 12b shows the features matching result and similarity (correlation coefficient) of these two
magnetism sequences. The distance threshold used in features alignment is settled as thAlign = 2 m,
and the minimum threshold of the proportion between matched feature couples in AF and the total
number of features is settled as thFP = 70%. It shows that through features matching and sequence
zooming, the matched features are translated to a same distance point, and two magnetism sequences
are overlapped to the highest extent. The calculated correlation coefficient (valued in [−1, 1]) is 0.98,
which shows a high similarity between this two traces, and the result agrees with the real situation.
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Figure 12. Magnetism matching and similarity calculation results for two traces generated on the same
road segment: (a) smoothed magnetism sequences and detected features marked by the initial estimated
distance; (b) magnetism sequences after feature matching and sequence zooming, and the their
calculated similarity.

Figures 13 and 14 show another two situations using the same parameters as those in Figure 12.
In Figure 13, trace 2 is partly generated on the road segment that trace 1 was generated on. Through feature
matching and sequence zooming, trace 2 is matched closely to the right part of trace 1, and the correlation
coefficient (=0.91) shows a high similarity between them. Furthermore, it also shows that the intensity
offset between the magnetism sequences of these two traces didn’t impact the similarity calculation result,
since the correlation is mainly dependent on the shape of the two sequences. In Figure 14, traces on
different road segments are processed using our algorithm, some peaks and troughs are matched together,
but the similarity is at a low level of 0.46.
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Figure 13. Magnetism matching and similarity calculation results when trace 2 is partly generated on
the same road segment that trace 1 was generated on: (a) smoothed magnetism sequences and detected
features marked by the initial estimated distance; (b) magnetism sequences after feature matching and
sequence zooming, and the calculated similarity between them.
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Figure 14. Magnetism matching and similarity calculation results for two traces generated on different
road segments: (a) smoothed magnetism sequences and detected features marked by the initial estimated
distance; (b) magnetism sequences after feature matching and sequence zooming, and the calculated
similarity between them.

As the results above show, the proposed geomagnetism-based similarity calculation algorithm is
proved to have a good performance for judging the similarity between two road segment traces.

3.3. Road Segment Clustering

3.3.1. Preprocessing Before Clustering

For one road segment, there are two possible walking directions for users, identified as the
positive and the opposite direction. Due to this fact, a preprocessing step is implemented for the users’
road segment traces obtained by trace segmentation (shown in Section 3.1) before clustering to make
the magnetism sequence be generated on a generally similar direction. Consequently the correlation
coefficient between two magnetism sequences can be calculated correctly.

We use Rori in the user’s road segment trace R for walking direction judgment of two road
segment traces (in the same direction or opposite direction). Rori is the mean value of all the Ori data
in R (the details can be found in Section 3.1).

For two user’s road segment traces R1 and R2, the road orientations are denoted as Rori1 and
Rori2. The difference between Rori1 and Rori2 is denoted as ∆Rori. Considering the uniqueness of
∆Rori, we use value between 0◦ and 180◦ to indicate it, and the value of ∆Rori can be calculated by:

∆Rori =

{
|Rori1 − Rori2|, |Rori1 − Rori2| ∈ [0◦, 180◦]
360◦ − |Rori1 − Rori2|, |Rori1 − Rori2| ∈ (180◦, 360◦)

(33)

Considering the orientation offset between Rori and the real orientation, we set ±45◦ as the
uncertainty of road orientation Rori, as shown in Figure 15, so the true orientation of the road segment
can be indicated by:

Roritrue = Rori± 45◦ (34)

Here Roritrue is the true orientation and Rori is the measured value. Thus, the difference between
measured orientations (Rori1 and Rori2) can also be indicated by:

∆Rori = |Rori1 − Rori2| =
∣∣(Roritrue

1 ± 45◦)− (Roritrue
2 ± 45◦)

∣∣ (35)
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If R1 and R2 are generated on the same walking direction (Roritrue
1 = Roritrue

2 ), the orientation
difference ∆Rori would fall in [0◦, 90◦]. If R1 and R2 are generated on the opposite walking direction
(Roritrue

1 = Roritrue
2 + 180◦), the orientation difference ∆Rori would be in [90◦, 180◦].
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As discussed above, we calculate the orientation difference ∆Rori between R1 and R2,
and implement data processing shown as following:

• When ∆Rori ∈ [0◦, 90◦], it is estimated that R1 and R2 are generated in the same direction,
and the similarity calculation will be implemented directly between Mag1 and Mag2 using the
algorithm shown in Section 3.2. Here Mag1 and Mag2 are the resultant magnetism sequences
from R1 and R2, respectively.

• When ∆Rori ∈ [90◦, 180◦], it is estimated that R1 and R2 are generated in the opposite direction,
so before similarity calculation, sequence Mag2 would be reversed firstly, denoted as Mag2′,
and then the similarity with Mag1 calculated.

• If ∆Rori = 90◦, as shown in the above two bullets, the similarity would be calculated twice using
both Mag2 and Mag2′, and the higher one is settled as the final similarity between R1 and R2.

In actual cases, the probability that R1 is perpendicular to R2 exists when ∆Rori ∈ [45◦, 135◦],
but in this step, only whether R1 and R2 are in the same direction or the opposite direction is it generally
detected to decide whether Mag2 or Mag2′ would be used for similarity calculation. Whether R1 and
R2 are generated on a same road segment or not will be judged mainly by the magnetism similarity in
the following procedures.

3.3.2. Road Trace Clustering

In this step, the preprocessed road segment traces are clustered into some separate road segment
clusters based on the DBSCAN algorithm. A road segment cluster is defined as a collection of users’
road segment traces whose magnetism sequences are similar to other ones in the same cluster and are
dissimilar to those in other clusters. DBSCAN is a kind of density-based spatial clustering method
which is commonly used in many fields [32]. In the DBSCAN algorithm, a centre-based density is
defined using a distance metric, and the number of points within the settled distance metric is the
density of the central point. If the density of the central point reaches a settled threshold, then it will
be defined as a core point.

(1) C-neighborhood DBSCAN Clustering

For the database of user road segment traces, denoted as D; the elements in it are road segment
traces to be clustered, denoted as Ri; the road segment cluster is a collection of road segment traces
which are generated in a same road segment, denoted as Ck. To implement the DBSCAN algorithm to
get road segment cluster Ck from database D, the notion of Eps-neighborhood and values of Eps and
MinPts are defined firstly.
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As discussed in the above sections, we use magnetism similarity between two road segment traces
to indicate the distance between two points. Since the correlation coefficient was utilized for similarity
calculation between two road segments, we define a kind of correlation coefficient neighborhood
(CC-neighborhood) for clustering.

CC-neighborhood of a road segment trace Ri is defined as the road segment traces Rj whose
magnetism similarity (correlation coefficient of magnetism sequence) is within the settled range
(ccRange) is termed as CC-neighborhood of road segment Ri represented as NCC(Ri). It is defined as
following equation:

NCC(Ri) =
{

Rj ∈ D
∣∣cc(Ri, Rj) ∈ ccRange

}
(36)

cc(Ri, Rj) means the magnetism sequence correlation coefficient between Ri and Rj using the method
in Section 3.2. The ccRange is settled as [0.9, 1] in this paper. Then the core road segment Ri is defined
as the one whose CC-neighborhoods are not littler than MinPts, and Rj is directly density-reachable
from Ri respect to Eps and MinPts when Rj ∈ NCC(Ri), defined as:

Rj ∈ NCC(Ri)

|NCC(Ri)| ≥ MinPts
(37)

In the DBSCAN algorithm, if Rj is directly density-reachable from Ri, and Rk is directly
density-reachable from Rj, then accordingly Rk is density-reachable from Ri, and consequently Ri,
Rj and Rk will be collected into the same cluster. Considering the case that Rj and Rk are both generated
in road segment RS1 and Ri is from road segment RS2; assuming that the magnetism from Rj are
interfered with by noise which lead to a high similarity (respect to ccRange) between Ri and Rj; then,
when we carry out CC-neighborhood DBSCAN clustering, all the traces from road segment RS1 and RS2
would be judged to belong to the same cluster. However, if we assume that magnetism interference
happens occasionally, NCC(Ri) and NCC(Rj) would intersect in a few of elements. On the contrary,
when NCC(Ri) and NCC(Rj) intersect in a large amount of elements, it is probable that Ri and Rj are
generated on the same road segment.

As discussed above, we define notion of C-neighborhood based on CC-neighborhood via adding the
requirement of coincidence between NCC(Ri) and NCC(Rj).

C-neighborhood of a road segment trace Ri is defined as: the road segment traces Rj, which is
a CC-neighborhood of Ri and whose CC-neighborhood (denoted as NCC(Rj)) coincide with NCC(Ri)

respect to a settled proportion, is termed as C-neighborhood of road segment Ri represented as NC(Ri).
It is defined as following equation:

NC(Ri) =
{

Rj ∈ NCC(Ri)
∣∣P(Ri, Rj) ≥ thC

}
P(Ri, Rj) =

|NCC(Ri)∩NCC(Rj)|
|NCC(Rj)|

(38)

P(Ri, Rj) is coincidence proportion between NCC(Ri) and NCC(Rj). thC is the accepted minimum of
P(Ri, Rj). We set thC = 80% in this paper.

Consequently, for the database of user road segment traces D = {Ri}, the road segment clusters
{Ci} are obtained using C-neighborhood DBSCAN Clustering by the following steps:

• All the core traces {Rc} are found using C-neighborhood with respect to ccRange, thC and MinPts,
represented by:

Rc ∈ D
|NC(Rc)| ≥ MinPts

(39)
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• Road segment traces directly density-reachable and density-reachable from one core trace Rc
k

(denoted as
{

Rr
k
}

) are found from database D, and a cluster Ck is settled by:

Ck =
{

Rc
k, Rr

k
}

Ck ⊂ D
(40)

• Other clusters are found by repeating the second step, and the collection of road segment clusters
are obtained finally, represented by:

C = {Ck}, k = 1, 2, . . . , K
Ck ⊂ D

∀k1, k2(k1 6= k2, k1 = 1, 2, . . . , K, k2 = 1, 2, . . . , K), Ck1 ∩ Ck2 = ∅
(41)

where K is the total number of clusters. Traces that couldn’t be collected to any clusters will be
treated as noise and don’t participate in the following process.

Finally, the number of road segments in a floor (the number of clusters) and clusters of user traces
from each road segments are obtained from the crowdsourcing database, represented by:

C = {C1, C2, . . . , CK}
Ck =

{
Rk

1, Rk
2, . . . , Rk

Ck

}
, k = 1, 2, . . . , K

(42)

Rk
i is the i-th road segment trace in the k-th cluster, and Ck is the total number of traces in the k-th cluster.

(2) Clustering Result
We collect one hundred test traces from five different corridors (road segments) using different

type smartphones to test the performance of the proposed clustering algorithm. Table 2 shows the
cluster result after applying C-neighborhood DBSCAN. The correct clustering trace is the one which is
collected in the cluster in which most traces are generated in the same corridors with it. The incorrect
clustering trace is the one which is collected in a cluster in which most traces are not generated in the
same corridors with it.

Table 2. Road segment clustering result using C-neighborhood DBSCAN.

Number of
Test Traces

Number of
Corridors

Number of
Obtained Clusters

Number of Correct
Clustering Traces

Number of Incorrect
Clustering Traces Correct Ratio Incorrect Ratio

100 5 9 100 0 100% 0

As shown in Table 2, the correct clustering ratio is 100%, but the number of obtained clusters
is more than that of corridors. Through data analysis, we found that the data in the overdetected
four clusters are all acquired from one same smartphone. This result proves the good classification
performance of proposed C-neighborhood DBSCAN algorism, and the overdetected clusters will be
merged in the following procedure by connection estimation between different road segment clusters.

3.4. Topology Construction

In this section, traces in each cluster are merged, while connections between clusters are estimated
using turns detected from the original user traces in Section 3.1, and finally, the topology map of
all the road segments obtained from user traces is constructed. Moreover, topology modification is
implemented to deal with errors resulting from the angle and road length estimation.
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3.4.1. Road Length Estimating

For road segment cluster Ck =
{

Rk
i

}
, i = 1, 2, . . . , Ck, Ck is the total number of traces in cluster Ck.

The trace with most magnetism features is chosen as the basic trace (denoted as Rk
base), and other traces

in it are matched with Rk
base using the method proposed in Section 3.2. Then we can get the zooming

radio Ratio(Rk
i , Rk

base) and distance sequence Disi
A after features alignment. Finally, all the elements

Rk
i (except Rk

base) are zoomed to the same distance scale and translated to same start point (Dis = 0)
with Rk

base.
In Section 3.1, the original user trace is segmented into some straight sub-traces corresponding

with different road segments, and turns connecting each sub-trace are detected and denoted as:

I =
{

Ri, Rj, Type, Angle
}

(43)

In the above procedures, Ri and Rj will be clustered to different road segment clusters, denoted as
Rk1

i and Rk2
j . Assuming that, for one original trace, the user’s walking state would be basically stable,

then the distance scales would be same of them, represented as:

Scale(Rk1
i ) = Scale(Rk2

j ) (44)

Then it can be reckoned that:

Scale(Rk1
base)·Ratio(Rk1

i , Rk1
base) = Scale(Rk2

base)·Ratio(Rk2
j , Rk2

base) (45)

Scale(Rk2
base) =

Ratio(Rk1
i , Rk1

base)

Ratio(Rk2
j , Rk2

base)
·Scale(Rk1

base) (46)

where Scale(∗) represents the distance scale of a road segment trace. Then based on Equation (46),
the distance scale of other Rk

base from different road segment clusters can be set identically to Rk1
base in

cluster Ck1 (called the base road segment) by connected sub-traces. Furthermore, the distance sequence
in each Ck (except base road segment) would be updated to the new distance scale, denoted as Disi

B

for Rk
i in Ck. The process is represented as Figure 16.Sensors 2018, 18, x FOR PEER REVIEW 25 of 38 
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After that, the length of each road segment is estimated based on the same distance scale, using
the following equation:

LCk = max(Disi1
B (n))−min(Disi2

B (n)), i1, i2 = 1, 2, . . . , Ck (47)

where Ck is the total number of traces in cluster Ck. LCk is the length of the road segment cluster Ck.

3.4.2. Connection Estimating Between Clusters

Utilizing turning connections I between Ri and Rj clustering in different clusters, the connections
between different road segment clusters are found by:

T =
{

Ci, Cj, Pi, Pj, Anglei,j
}

Anglei,j = angle(Rx, Ry) , Rx ∈ Ci, Ry ∈ Cj
(48)

T is the connection between Ci and Cj. Pi and Pj are respectively the distance identification of this
connection in Ci and Cj. Anglei,j is the connection angle defined as the same with connection between
two different road segments trace, and valued by the mean of all the detected turning angles between
Ci and Cj. This is shown in Figure 17.
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Figure 17. The process for estimating connection angle between clusters Ci and Cj.

3.4.3. Topology Modification and Map Construction

After estimation of road segment length and connection angle of all the clusters, the topology
of the road segments can be constructed. Setting the start point of base road segment (minimum
of distance sequence from base road segment cluster) as (0, 0) in a 2D plan, and then all the road
segments can be displayed in the plan by geometry calculation. Since there should be measurement
and calculation errors for lengths and angles, topology modification will be implemented to revise
topology errors. The topology error is typically shown in Figure 18.
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Figure 18. A kind of topology error caused by inaccurate angles: (a) a rectangle and four calculated
inner angles; (b) the topology result of the rectangle using inaccurate inner angles. C’ and C
don’t overlap.

The sum of all the inner angles in a loop road is a fixed value, represented by:

sum(angle) = 180◦·(n− 2), n ≥ 3 (49)

Here n is the number of road segments forming the loop. In most cases, the road loop is shaped as
a quadrilateral, and the sum of the inner angles is 360◦. Therefore we modify the topology map using
loop angle correction. As shown in Figure 19, starting with point C, the position of points D, A, B, C’ are
calculated using geometry by the road segment lengths and connection angles (respectively denoted as
li and αi, i = 1, 2, . . . , n, n is the total number of road segments in this loop). In fact, for a loop, point C’
should be overlapped with C, so the angles {αi}, i = 1, 2, . . . , n will be revised to {αi

′}, i = 1, 2, . . . , n,
until they can satisfy:

C′ = f (li, α′ i, C), i = 1, 2, . . . , n
αnew

i = α′ i|{C′ = C, min[∑
i
(α′ i − αi)

2], ∑
i

α′ i = 180◦·(n− 2)}, i = 1, 2, . . . , n (50)

f (∗) indicates the geometry calculation for lengths and angles.
{

αnew
i
}

, i = 1, 2, . . . , n are the modified
angles that satisfied the requirement shown in Equation (50). To keep the main shape of the loop,
the angle modification will be carried out in range of ±10◦ for each angle. Finally, the topology of the
map will be modified using new angles, represented by:

Map = {V, E}
V = {(xm, ym), m = 1, 2, . . . , M}
E = {(dm1,m2), m1 = 1, 2, . . . , M, m2 = 1, 2, . . . , M}

(51)

V is a vector of coordinates of all the vertexes in the graph, and E is a matrix to represent the length of
each edge. M is the total number of vertexes.

In addition, the map can be adjusted further, if we get the real length and orientation of one road
segment in the constructed map.

What needs to be explained here is that we have adopted a simpler method for the topological
modification of the map. It can reduce the complexity of the algorithm and is suitable for the layout of
most indoor corridors. However, this method is only applicable to straight road segments (corridors).
For curved corridors and non-channel open areas, the desired results may not be obtained. Of course,
for more complex indoor scenes, we can use more indoor map information and implement detection
for curved corridors to achieve better result.

3.5. Radio Map Construction

After final topology Map is constructed by the user traces, the 2D position coordinates of the
magnetism sample points will be estimated using vertexes coordinates V and distance sequence
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{
Disi

B
}

for each road segment Rk
i in cluster Ck, denoted as Posi

Mag. Because of Wi-Fi fingerprint F
in the user’s road segment trace Rk

i has a different sample frequency form magnetism intensity Mag,
the 2D position coordinates will be interpolated linearly on each fingerprint sample time, denoted as
Posi

F. So far, the Wi-Fi fingerprint collected by crowdsourcing users have been labeled by position
coordinates. Since there is more than one user trace in road segment cluster Ck, in this step, we will
merge RSSs collected from different crowdsourcing traces in the same road segment to generate Wi-Fi
RPs which form the radio map.

3.5.1. RP Generation

Considering one of the edges in the constructed map Map = {V, E}, the vertexes connected by
this edge are Vm1 = (xm1 , ym1) and Vm2 = (xm2 , ym2). The Wi-Fi RPs will be generated along this edge
to make a grid with even distance ∆d. The coordinates of RPs are calculated by: xp = xm1 + p · ∆d · xm2−xm1

dm1,m2

yp = ym1 + p · ∆d · ym2−ym1
dm1,m2

p = 1, 2, . . . ,
⌊ dm1,m2

∆d

⌋ (52)

bc means getting a round number downward. Then all the vertexes and calculated grid points (xp, yp)

for each road segment cluster constitute the RP location points in our map.

3.5.2. RSS Merging on RP

For each RP generated above, we use Gaussian interpolation weights to merge Wi-Fi RSS from
different user traces to the RPs locations. On RP location (xp, yp), the RSS for one of the detected Wi-Fi
APs is calculated by:

RSSAPm
p = ∑

n
vp(n) · RSSAPm(n)

vp(n) = 1√
2πσ
· exp(− 1

2σ2 · [(xn − xp)
2 + (yn − yp)

2])
(53)

(xn, yn) are the coordinates of the labeled fingerprint in one road segment cluster, and RSSAPm(n) is
the corresponding RSS value for the m-th Wi-Fi AP.

Then for the road segment cluster Ck =
{

Rk
i

}
, i = 1, 2, . . . , Ck, the fingerprint database is acquired

and represented by:
FDk =

{
(Posk, Fk)

}
, i = 1, 2, . . . , Ck

Posk =
{
(xp, yp)

}
, Fk =

{
f pp
}

, p = 1, 2, . . . , P
f pp = (RSSAP1

p , RSSAP2
p , . . . , RSSAPM

p )

(54)

FDk is the fingerprint database for road segment cluster Ck. (xp, yp) are the RP coordinates for
fingerprint f pp. P is the number of RPs. RSSAPm

p is the Wi-Fi RSS received from APm. M is the total
number of APs which can be scanned in Ck. Finally, the fingerprint database for the whole topology
Map is constructed by:

FD = {FDk}, k = 1, 2, . . . , K (55)

where FD is the whole fingerprint database for Map. K is the number of road segment clusters.

4. Results and Discussion

In this section we show the radio map construction result and validate its localization performance.
The experiment took place in an underground parking garage of the Beijing New Technology Park of
Chinese Academy of Sciences, which is covered with Wi-Fi signals (2.4 GHz). Figure 19 shows the
floor plan of the underground parking and some test traces (imitating crowdsourcing user traces)
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used in our experiment. The crowdsourcing data are only collected in the parking area except for the
entry and exit paths of the car. The size of the parking area is about 60 m × 100 m. In Figure 19b,
we show the floor plan of the parking area and high light the pathway (road) in this area using blue.
In order to imitate the crowdsourcing data, they are collected by four different persons, whose height
and weight are shown in Table 3. Pedestrians walk along the road optionally in the experimental
area and meanwhile record orientation, acceleration, angular velocity, magnetic field and Wi-Fi RSS
of smartphone. The sensors data are collected using AndroSensor APP, and Wi-Fi RSSs are collected
using self-developed RSSCollection APP.

Table 3. Different pedestrians who collected crowdsourcing data in our experiment.

Height/cm Weight/kg

Pedestrian 1 172 68
Pedestrian 2 168 75
Pedestrian 3 155 55
Pedestrian 4 180 75

Using test crowdsourcing data, the road segments are picked out and the topology map of the
pathway in the experimental area is constructed through the proposed method mentioned in Section 3.
Furthermore the Wi-Fi fingerprint map is constructed along each pathway. In the following content,
we give the topology map construction result and Wi-Fi fingerprint localization result using the
constructed Wi-Fi radio map. In addition, discussion and test result are given about the road width
influence during the geomagnetism based similarity calculation of road segment.
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Figure 19. Experimental area plan and examples for crowdsourcing traces: (a) the floor plan of the
underground parking; (b) parts of test traces collected by crowdsourcing users in our experiment.

4.1. Topology Map Construction Result

Figure 20 shows the pathway map constructed by the crowdsourcing traces. Figure 20a is the
rough result of the topology map after road length estimation and connection estimation between
road segment clusters. The blue lines represent road segments and red points represent connections
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between them. Some obvious topology mistakes are shown in this result because of measurement and
calculation errors for lengths and angles. Figure 20b is the pathway map after topology modification.
We can get that inner angle revising makes each road segments displayed on right connection points
which is alike to the real pathway in the experimental area. Figure 20c is the result after orientation
and length correction of the left road segment using 0◦ and real road length.
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Figure 20. Topology map construction results: (a) rough result after road length and connection estimations;
(b) pathway map after topology modification; (c) final pathway map after orientation correction.

In the experiment, we collected a total of 35 sets of data, and 85 sets of road segment traces are
segmented from them. After calculating the magnetic field similarity and implementing the clustering
algorithm, we obtained seven road clusters, which are labeled as C1~C7 in Figure 20a. It can be seen
that there are topology errors in Figure 20a and the path cannot form a loop like a real road. Therefore,
we then used the loop angle correction algorithm proposed in this paper to correct the topology.
Because there are mainly quadrilateral roads in this testing area, we only modified the angle using
quadrilateral loop in order to improve the computational efficiency. There are eight loops that used in
this process, and they are [C1,C2,C3,C4], [C1,C2,C5,C4], [C1,C2,C6,C4], [C2,C3,C4,C5], [C2,C3,C4,C6],
[C2,C3,C7,C5], [C2,C5,C4,C6] and [C3,C4,C5,C7].

We measure the accurate 2D coordinates of each connection points in the experiment area,
and calculate the distance error of the connection points in the constructed map. Table 4 shows the
distance error of each connection points (the vertex ID is shown in Figure 20c). The average distance
error of the map vertex is 1.52 m. The minimum error is about 0.05 m and maximum one is 4.69 m.
And the standard uncertainty is 1.4 m.

Table 4. Distance errors of vertex points in the constructed pathway map.

Vertex ID Error/m Vertex ID Error/m

1 1.0982 6 0.8173
2 0.7739 7 0.3158
3 1.4769 8 0.8829
4 0.0548 9 2.2865
5 2.8184 10 4.6869

Based on the calculation result of the corner position error, we find that the position error of
Vertex10 is the largest, reaching 4.68 m. In addition, the Vertex5 and Vertex9 errors also exceed 2 m.
Others are below 2 m. Compared with the real indoor map, it can be seen that the error of the
Vertex10 is mainly from the length estimation error of C2. Because there is no floor plan information,
the road segment length is difficult to correct. Therefore, when the topology correction is performed,
we only correct the connection angle so that the error of the length estimation is not eliminated.
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At the same time, in the loop correction, in order to obtain the final connection path, road segment
length optimization is performed at the same time as the angle correction. However, in the simulation
software algorithm, we extract the loop according to the list number of the detected road segment
cluster. Therefore, C1 and C2 are always located at the beginning of the loop. And in loop optimization,
their length is not adjusted. Then after the calibration using true length and direction of C1, the length
error of C2 becomes more obvious. In addition, the test area is an underground parking, with a wide
road width (more than 6 m) and a large area at each corners, which may also cause deviations in
length estimations. Our algorithm does not rely on accurate indoor floor plan, but if more accurate
map information can be introduced, this error can be further eliminated.

4.2. Radio Map Construction and Positioning Result

The Wi-Fi radio map are finally acquired using the constructed pathway map that is shown in
Figure 21. Each point in the figure indicates RP points in the fingerprint. The distance ∆d in RP grid is
settled as 2 m. The parameter σ for RSS merging is 2 m.

In order to validate localization performance of the constructed Wi-Fi radio map, we pick 25
position points as test locations in the experiment area and at each test location we measure Wi-Fi RSS
twice and calculate the fingerprint positioning result using the KNN algorithm (K = 3). The localization
error is statistically 1.8 m (50%) and 5 m (70%), which is competitive compared with other systems
based on crowdsourcing data.
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Figure 21. Wi-Fi RPs generated in the constructed map.

Table 5. Results comparison with method proposed by other researchers.

Method Floor Plan Assistant Sensors Reported Accuracy

Zee [24] with Acc., gyro., comp. 1.2 m (50%), 2.3 m (80%)
RACC [25] with Acc., gyro., comp. 2.9 m (50%), 4.3 m (80%)
PiLoc [15] without Acc., gyro., comp. Average 1.5 m
This paper without Acc., gyro., comp., mag. 1.8 m (50%) and 5 m (70%)

Table 5 shows the comparison of our algorithm with other similar methods. These algorithms all
use passive crowdsourcing user data and can provide continuous corridor localization. Zee’s reported
positioning accuracy is superior to ours, but it uses a floor plan. The positioning result of RACC is
similar to ours, and a floor plan is also used in this method. Our algorithm does not depend on an
accurate floor plan, which makes it perform better in an unknown indoor area. PiLoc does not require a
floor plan, and the authors report higher positioning accuracy than our algorithm, however, the authors’
experimental scenario is an office floor, in which the isolation of the Wi-Fi signal is better compared with
the underground parking garage we used for our test. This helps the PiLoc system to form a Wi-Fi intensity
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distribution map with obvious features and obtain better positioning results. In addition, the PiLoc also
used an optimized positioning algorithm instead of the basic KNN algorithm.

Figure 22 shows another set of test results. The test site is a floor of an office building. There is
one major corridor in this area and some smaller corridors leading to the stairs, elevators and toilets.
The office rooms are on two sides of the corridor. Figure 22a shows a floor plan of the experimental
area, and the red lines show a part of the typical user traces in our test. Through our clustering
algorithm, the major corridor in the map is identified. Because traces in small hallways or office rooms
are often shorter in distance and have few magnetic features, they are not clustered into corridors
in our algorithm, but they are still accurately drawn out in the constructed pathway map through
their connections with the major corridor. Figure 22b shows the final pathway map after orientation
correction of the major corridor. Figure 22c shows the labeled Wi-Fi sample points using coordinates
of constructed map. The average positioning error in this test area is 1.7 m.
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4.3. Road Width Influence

When we use magnetism sequences to calculate road segment similarity, the road (or corridor) is
abstracted as a line. However the road has a certain width in space, and when users walk along the road
(corridor), these exact positions on the transverse of the road may be different from each other. To check
out the influence of different transverse positions of users’ traces on the road segment similarity
calculation, we collected sensor data five times on one road segment using different transverse
positions and likely traces on the other road segments beside it two times, and calculated the magnetism
similarity between them. Figure 23a shows the test traces (red lines, numbered from 1 to 7), and the
magnetism sequence collected by the seven test traces are compared together in Figure 23b. The road
width is 6 m, and the transverse interval between each trace from 1 to 5 is 1 m. It is seen in Figure 23b
that the magnetism sequences have similar shape on the same road but different shapes on other roads.

Table 6 shows the similarity calculation results between each test trace. Trace 1, 2, 3, 4 and 5 show
higher similarities with each other, especially with adjacent ones. On the contrary, trace 6 and 7 show
lower similarity with all the other ones. We apply the C-neighborhood DBSCAN clustering proposed
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in this paper using the parameters as ccRange = [0.9, 1], MinPts = 3 and thC = 50%. The algorithm
obtains one cluster of {1,2,3,4,5}, and two noise traces of 6 and 7, which matches the real situation.
Consequently, when we have collected abundant user data on one road segment, the road width would
not impact the road segment clustering. Even if the traces on one road segment are divided into more
than one cluster, these traces still have the chance to be merged together in the graph construction
phase by same connections.
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Figure 23. Data comparison for road width influence. (a) seven test traces (red lines); (b) the measured
magnetism sequence of them.

Table 6. Calculated similarities between seven test traces.

Trace 1 Trace 2 Trace 3 Trace 4 Trace 5 Trace 6 Trace 7

Trace 1 1 0.9577 0.8982 0.8610 0.7445 0.6791 0.6979
Trace 2 0.9577 1 0.9517 0.9162 0.8502 0.6595 0.7100
Trace 3 0.8809 0.9517 1 0.9690 0.9205 0.5916 0.7929
Trace 4 0.8603 0.9162 0.9690 1 0.9603 0.6744 0.6795
Trace 5 0.7445 0.8502 0.9205 0.9603 1 0.6261 0.6002
Trace 6 0.6941 0.6595 0.7118 0.6744 0.7339 1 0.6751
Trace 7 0.7191 0.7100 0.7829 0.7839 0.7614 0.6751 1
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4.4. Unconstrained Smartphone Influence

In the real scenario, it would happen that a pedestrian uses his/her smartphone in different
postures while walking, like messaging, calling or just holding it in the hands. The unconstrained
smartphone attitude mainly affects on two factors of the proposed algorithm: one is the user’s heading
and the other is the magnitude of the magnetic field, so when we using crowdsourcing user data for
radio map construction in our method, these two factors would be considered:

4.4.1. User heading

In order to obtain more accurate user headings, especially in the situation of unconstrained
smartphone poses, it is better to use some complex algorithms to calculate the user heading, rather than
use readings directly from the electronic compass. Some researchers have published relevant research
results on this issue, like [30,33,34], but it is maybe still hard to estimate the exact user heading for
crowdsourcing data, so during the algorithm design, we made great efforts to minimize the reliance
on heading, mainly including:

(1) The proposed method uses angular velocity changes for turning detection and road segmentation,
which makes it free from magnetic interference.

(2) We use the mean value of detected user headings to indicate the road segment orientation,
which can partly eliminate heading errors due to local magnetic field anomalies and other short
duration errors.

(3) When constructing the spatial magnetic sequence of a trace, the magnetic sampling distances are
estimated only by the step count and stride length. During this period, the heading interference
will not affect it, and therefore the headings will not affect the magnetic sequence similarity
calculation result. In addition, the magnetic field disturbance in the indoor building would enrich
the magnetic features of corridors, which is conducive to good matching and separation for
indoor corridors.

(4) When constructing a pathway map, starting from the base road segment, we use the estimated
lengths of the road segments and the connection angles between road segments to calculate the
plane coordinates of each vertex in the map. The whole map can be further corrected if the actual
orientation and length of the base road segment are known.

4.4.2. Magnitude of the magnetic field

In our method, the location differentiation ability of the geomagnetic field is utilized for corridor
differentiation. This means that the magnitude of the magnetic field is correspondingly different at
different locations in an indoor area, but similar for adjacent locations. We use the magnitude of the
magnetic field (the resultant magnetism intensity) in our method to evaluate the similarity of the user’s
trajectory. The magnitude of the magnetic field is only related to the position of the smartphone rather
than any rotation of the smartphone axis. When the user uses or carries the smartphone in different
postures, the smartphones are in close proximity around the user body. Therefore, we speculate that
under different smartphone postures, the magnitudes of magnetic field that users get are similar,
and we can still use it for magnetic sequence similarity calculation.

Below, we collected the data of smartphone sensors in the same corridor using three typical
smartphone poses, including messaging, calling and swing in-hand. We compared the magnitude of
the magnetic field, and calculated the magnetic sequence similarity between each two of the three
sets of data using our algorithm. Figure 24 shows magnetism sequences comparison for the three test
traces. The calculated similarities between them are listed in Table 7.
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Figure 24. Data comparison for different smartphone attitudes. (a) three type of postures when a
pedestrian uses smartphone; (b) the measured magnetism sequence of them.

Table 7. Calculated similarities between three test traces collected using different poses.

Trace 1 Trace 2 Trace 3

Trace 1 1 0.9531 0.9537
Trace 2 0.9531 1 0.8632
Trace 3 0.9537 0.8632 1

Through the comparison result, we find that magnetic sequences of the three test traces show
similar shape, especially when they are smoothed using a moving average filter. Most of the similarities
show high values (>0.9) between them. Among them, the similarity between trace 2 (calling) and
trace 3 (swing in-hand) is a bit lower (0.8632). The result proves that under different smartphone
postures, we can still use the proposed algorithm for magnetic sequence similarity calculation. If a user
trace can’t be clustered into any of the road segment clusters with other traces, owing to user pose
complexity, it will be handled as noise and not be used for map construction.

5. Conclusions

In this paper, we focus on the problem of automatic Wi-Fi radio map construction using
crowdsourcing data in indoor fingerprint localization systems. Based on the comparison of current
systems and our analysis of the opportunities and challenges of smartphone-based indoor localization
methods, we propose a geomagnetism-aided indoor radio-map construction method via passive
smartphone crowdsourcing. The proposed method utilizes magnetism sequence similarity and a
novel C-neighborhood DBSCAN clustering algorithm to form the pathway graph of a floor plan
from crowdsourcing traces without needing an exact floor layout, and generates RPs by merging
crowdsourcing Wi-Fi signal strengths to construct the radio map. The main contribution of our method
include: (1) it recognizes corridors from user traces using magnetic field similarity which is relatively
stable in the scenario of unconstrained smartphone use for crowdsourcing data, and also solves the
problem of calculating the exact similarity between magnetism sequences when they are sampled
using different walking speeds; (2) it forms the pathway graph of indoor environments using clustered
road segments, and merges crowdsourcing Wi-Fi signal strengths on reference points generated
along the pathway to construct the radio-map. In the designed experiments, the proposed method is
proved to show good ability to construct the indoor pathway graph and Wi-Fi radio map using
passive crowdsourcing data. The constructed Wi-Fi radio map can provide competitive indoor
localization accuracy.

Our method is only applicable in indoor environments with obvious corridors (or roads),
and a hypothesis of straight corridors (road segments) is needed in the topology modification phases.
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For curved corridors and non-channel open areas the desired results may not be obtained. In more
complex indoor scenes, more indoor map information can be used to recognize bent corridors or open
areas and they should be constructed using other suitable ways in the pathway map. That will be a
focus in our future work.
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