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Abstract: This paper proposes a novel filtering design, from a viewpoint of identification instead of
the conventional nonlinear estimation schemes (NESs), to improve the performance of orbit state
estimation for a space target. First, a nonlinear perturbation is viewed or modeled as an unknown
input (UI) coupled with the orbit state, to avoid the intractable nonlinear perturbation integral (INPI)
required by NESs. Then, a simultaneous mean and covariance correction filter (SMCCF), based on a
two-stage expectation maximization (EM) framework, is proposed to simply and analytically fit or
identify the first two moments (FTM) of the perturbation (viewed as UI), instead of directly computing
such the INPI in NESs. Orbit estimation performance is greatly improved by utilizing the fit UI-FTM
to simultaneously correct the state estimation and its covariance. Third, depending on whether
enough information is mined, SMCCF should outperform existing NESs or the standard identification
algorithms (which view the UI as a constant independent of the state and only utilize the identified
UI-mean to correct the state estimation, regardless of its covariance), since it further incorporates the
useful covariance information in addition to the mean of the UI. Finally, our simulations demonstrate
the superior performance of SMCCF via an orbit estimation example.

Keywords: stochastic dynamic system; nonlinear filter; perturbation identification; simultaneous
correction; space target orbit estimation

1. Introduction

The orbit estimation problem is to obtain an accurate estimation of a space target’s (e.g., satellite)
position and velocity from noisy observations. The dynamic model of a space target is given below by
considering J2 perturbations [1]:

r̈ = − µ

R3 r + Fp + w,

where r = [x, y, z]T is the position of the space target in the inertial coordinate frame (I-J-K),
R =

√
x2 + y2 + z2, w is the white Gaussian noise process, and Fp is the instantaneous acceleration

due to the J2 perturbation [2]. J2 is the dimensionless second zonal harmonic that quantifies the major
oblateness effect of the Earth. Specially, the J2 perturbation may cause a noticeable precession of
low-earth orbit (LEO) satellites, and makes the orbital dynamics model to be a strongly nonlinear
function. Thus, solving the orbit estimation problem essentially depends on designing a kind of
nonlinear state estimation schemes.

At present, nonlinear estimation schemes (NESs) are generally developed from a Bayesian
inference framework (BIF) [3] and employed as the widely accepted methods for estimating the
space target orbital state. The BIF framework structure is given in Figure 1.
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Figure 1. Bayesian inference framework.

Obviously, to implement BIF in order to estimate the orbit state, NES requires one to compute the
strongly nonlinear integral of the perturbation. As an example for Gaussian filters [4]:∫

Fp p(rk−1|Zk−1)drk−1,

where p(rk−1|Zk−1) is assumed to be a Gaussian distribution, and Zk−1 denotes the sequence of
measurements. The numerical computation of such an integral is both complicated and intractable,
such that orbit estimation accuracy may be weak and cannot meet real-time performance requirements.
For orbit tracking of a space target, a data-starved and uncertain state evolution [5] requires that the
tracking algorithm should be rapid and high-precision.

1. Here, data-starved does not mean a lack of measurements. Rather, it implies that due to the large
number of space objectives, the collection, association, processing, and fusion of the measurements
needs a lot of time. Hence, the measurement update rate and period are relatively elongated.
This requires the tracking algorithm deals with data as efficiently and rapidly as possible.

2. Under a data-starved environment or long data update period, as a result of the consistent
long-term (usually several orbital periods) propagation of state uncertainties in high fidelity
physics models between measurement updates, a state which is initially Gaussian will inevitably
become significantly non-Gaussian or uncertain if propagated over a sufficiently long time span.
This requires that the tracking algorithm should be accurate when estimating the uncertain or
non-Gaussian state.

The traditional NES, based on BIF, does not meet the rapidity and high-precision requirements
due to the complicated and intractable nonlinear perturbation integral.

In order to avoid the nonlinear perturbation integral computation, a joint estimation and
identification scheme (JEIS) simply views Fp as an additional unknown input (UI) and analytically
identifies Fp to accurately correct the orbit state estimation [6]. Such analytical identification in JEIS
decreases the algorithm complexity while improving the orbit estimation accuracy to some degree
by feedback correction. In other words, this paper mainly aims to transfer the intractable nonlinear
perturbation integral issue into that of perturbation (viewed as UI) identification, to simplify the orbit
estimation algorithm complexity and improve its accuracy.

As a classical representative of JEIS, the expectation maximization (EM) algorithm has received
continuous attention and research. The EM framework fits in with the requirements of JESI, as shown in
Figure 2. However, the existing EM algorithms always model the UI as a constant variable, independent
of the state [6], and only identify the mean of the UI. In the J2 perturbation, Fp (viewed as UI in JEIS)
depends on the state, so it requires at least the first two moments (FTM), i.e., the mean and covariance.
To further improve the accuracy of orbit estimation, it is important to research the novel EM algorithm;
to identify the UI-FTM (i.e., perturbation-FTM) which simultaneously corrects the state estimation
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and its covariance. Unfortunately, the existing EM is incapable of dealing with the case when the UI is
associated with the state.

Figure 2. Schematic of the expectation maximization (EM) algorithm, where BIF refers to the Bayesian
inference framework.

Following this idea, that the original orbit estimation is transferred into JESI, we design a novel
two-stage EM algorithm (Figures 3 and 4) to deal with the key difficulty of how to simultaneously
fit or identify the FTM of UI associated with the state. The main contributions are that: (1) The
first EM executes joint orbit state estimation and pseudo measurement (PM) identification using
networked multi-sensor observations. PMs can be understood as the indirect reflection of UI from the
real observed measurements. (2) The second EM is designed for fitting the UI-FTM by UI-PMs from
different sensors, and then used to simultaneously correct the orbit state estimation and its covariance
in the first EM. Finally, (3) the identification and fitting computations in these two EMs are analytical,
which contributes to rapid and efficient implementation. The simultaneous correction of UI-FTM
to the state estimate, as shown in Figure 3, improves the orbit state estimation accuracy. By doing
this, a novel simultaneous mean and covariance correction filter (SMCCF) is proposed and achieved.
Indeed, vastly different from the standard EM-based filtering scheme, which only estimates the mean
characteristic of UI, the novel SMCCF scheme further determines the covariance characteristic of
UI. In other words, the joint properties (i.e., both mean and covariance) characterizing the UI in the
new scheme provide richer information compared to the single one (i.e., only mean) of the standard
approach, which contributes to improved state estimation.

In this paper, the first EM is called the EM-AM since from the signal input viewpoint it mines
the actual measurements (AMs) to characterize the UI, as shown in Figure 3. Similarly, we call the
second EM as the EM-PM since it utilizes the PM as input to further fit the UI-FTM. However, different
from Reference [7], the expanded contributions of this paper lie in that: (1) we specifically define
the pseudo measurement and explain its physical implication (see the test following Equation(19));
(2) initialization of EM-AM plays a key role on the SMCCF performance, so we refine initialization
of the EM-AM by using a relatively simple forward–backward smoother, instead of the previous
two-filters (see Figures 5 and 6, and Remarks 2 and 3); (3) we elaborate the relationship between
EM-AM and EM-PM (see Figures 7 and 8), and the algorithm execution program of SMCCF (see
Figure 9 in Section V-A), in order to facilitate application of SMCCF in practical engineering; and (4)
the performance of SMCCF is thoroughly demonstrated by a space target orbit estimation problem
and compared to the present classical methods (see Section VI-B). Also different from other EM-based
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UI identification issues, for example Reference [6], which are only concerned with the mean of UI,
this paper designs the novel SMCCF which simultaneously fits the UI-FTM.
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Figure 3. Two-stage EM algorithm.

This paper is organized as follows. Section 2 formulates the problem. Sections 3 and 4 design the
first and second EMs in the two-stage EM algorithm, respectively. Section 5 gives the fusion structure
for combining the two EMs and achieving SMCCF. Section 6 demonstrates the superiority of SMCCF
to the standard NES, including the extended Kalman filter (EKF) and the cubature Kalman filter (CKF),
by an elaborate simulation of a space target orbit estimation. Finally, some conclusions are drawn in
Section 7, including the future work.

Notations. The superscripts -1 and T represent the inverse and transpose operations of a matrix,
respectively. If X is a positive semi-definite or positive definite matrix, we simply write X ≥ 0 or
X > 0. N (x; µ, Σ) denotes the variable x obey a Gaussian distribution with mean µ and covariance Σ.
p(�) is the probability, for example p(A|B) describes the conditional probability of the variable A on
B. E(�) and E(�|�) represent the expectation or conditional expectation, respectively. We define two
operations D(x,P) =xTPx and C(x) = xxT . The symbols ˆ and ˜ on top of a random variable, represent
an estimate and its error, respectively. For example, x̂ denotes the estimate of variable x and its
estimation error is x̃ = x− x̂. Tr(�) denotes the trace of matrix.
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2. Problem Formulation

Consider a general discrete-time stochastic system with additive UIs in the dynamic and
measurement models: {

xk = f (xk−1) + wk−1 + Mk−1ak−1
yk = h(xk) + vk + Nkbk

(1)

where x ∈ Rn, y ∈ Rm represent the state and measurement vectors, and f (·), andh(·) are the known
dynamic and measurement functions, respectively. The matrices M ∈ Rn×p, and N ∈ Rn×q are
known. wk ∈ Rn and vk ∈ Rm are uncorrelated, zero-mean Gaussian white noise terms satisfying
E[wkwT

l ] = Qkδkl and E[vkvT
l ] = Rkδkl , where δkl is the Kronecker delta function. The initial state x0

is a Gaussian vector with mean x̂0 and covariance P0. Here, wk, vk, and x0 are mutually independent.
The parameters ak ∈ Rp, and bk ∈ Rq are unknown UIs which are associated with the state. Also,
we set θk = {ak, bk} .

Remark 1. The model in Equation (1) is common in practical engineering. Consider the example of space object
tracking, whose dynamic model is formulated as follows:

 ẍ
ÿ
z̈

 =− µ

r3

 x
y
z

 +
µ

r3J2

(
Re

r

)2


x
(

7.5 z2

r2 − 1.5
)

y
(

7.5 z2

r2 − 1.5
)

z
(

7.5 z2

r2 − 4.5
)
. (2)

The last term in Equation (2) is known as the J2 perturbation, Fp, which is obviously associated with the state.
If we regard the perturbation as UI, space object tracking can be modeled by Equation (1). Another example
is tracking a maneuvering non-cooperative target, whose dynamic model, due to the modeling error, can be
represented by:

xk = (F + ∆F)xk−1 + wk−1. (3)

If ∆Fxk−1 is considered as the UI, which is obviously coupled with the state, we can also formulate maneuvering
target tracking in terms of the model in Equation (1).

Due to the characteristic that the UI θk is highly coupled with the system state, θk possesses the
FTM. In this case, if we only consider the UI’s mean to correct the state, the estimation accuracy may be
undesirable. A feasible method to improve the accuracy is to correct the state by using both the UI-FTM
simultaneously. Hence, our objective is to not only identify the mean but also to fit the covariance of
the UI. Unfortunately, the existing methods, such as JESI or the standard EM, always regard the UI as a
constant. So they all ignore the covariance property of UI, which limits to solving the state estimation
problem corresponding to Equation (1).

Combining Equations (1) and (2), we view the perturbation in space target orbit estimation or
in tracking as a UI associated with the state. Our aim is to explore the novel EM algorithm for fitting
the UI-FTM based on the actual measurements (AMs) Yi

k−l:k ={y
i
k−l , · · · , yi

k} (i = 1, 2, · · · , N) from
multi-sensors, where l represents the sliding window length. Furthermore, the orbit state estimation is
simultaneously corrected by using the fitted UI-FTM.

Different from the classical EM algorithm in Reference [6], a two-stage EM scheme is proposed, as
shown in Figure 4 which is a further refinement of Figure 3. In the first stage, for each sensor with Yi

k−l:k,
EM carries out joint state estimation and UI-PM identification, where PM refers to pseudo measurement.
N sensors need N EMs, which run in parallel. All EMs output two groups; the state estimation{

x̂1
k , x̂2

k , · · · , x̂N
k
}

and the UI-PM identification {θ̂1
k , θ̂2

k , · · · , θ̂N
k }, where {x̂i

k, θ̂i
k} corresponds to the

i-th sensor or the i-th EM. Indeed, the EM in the first stage reflects or characterizes UI by the output PM
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from the input AM. Thus, we also call the first EM as EM-AM, from a signal input viewpoint. The state
estimation x̂i

k in EM-AM running process is only corrected by the PM θ̂i
k. In the second stage, we further

fit the UI-PM by a Gaussian mixture distribution with mean µθ
k and covariance Pθ

k , which can be fed
back into the first EM to jointly correct the state estimation and its covariance. Similarly, we name the
second EM as EM-PM. By linking these two EMs, the SMCCF is proposed by designing the fusion
structure. From a sense of whether enough information is mined or utilized, the x̂S

k by SMCCF should
be superior to the x̂F

k by the existing nonlinear filters or algorithms in accuracy, since the former further
mines covariance information in addition to the mean of UI.

Figure 4. The basic building blocks of the simultaneous mean and covariance correction filter (SMCCF).

Following Figure 4, Sections 3 and 4 derive the EM-AM and EM-PM, respectively. Section 5
further links these two kinds of EMs, and clarifies the single input-output relationship between them,
by designing a new fusion structure. By doing this, the SMCCF is achieved.

3. EM-AM

The EM algorithm was introduced by Dempster et al. [8] to solve maximum likelihood (ML)
estimation with incomplete or missing data. If we consider the state in Equation (1) as the missing
data and θk as the parameters which need to be identified, then the EM framework [9] is suitable for
joint state estimation and UI-PM identification precisely.

To implement the EM-AM algorithm in each sensor in Figure 4, we first need to compute the
conditional expectation, Q(θ, θ̂r), of the complete data log-likelihood function Lθ(Xk

k−l , Yk
k−l) in the

E-step. Before addressing this, by first using Bayes’ rule and the Markov property of the model in
Equation (1), we have:

Lθ(Xk
k−l−1, Yk

k−l) = log pθ(Xk
k−l−1, Yk

k−l) = log pθ(xk−l−1) +
k
∑

i=k−l
log pθ(xi|xi−1) +

k
∑

i=k−l
log pθ(yi|xi) . (4)

Then, applying the following Gaussian approximation:

pθ(xi|xi−1) = N (xi − f (xi−1)−Mi−1ai−1; 0, Qi−1) (5)
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pθ(yi|xi) = N (yi − h(xi)− Nibi; 0, Ri), (6)

Equation (4) can be rearranged to yield:

Lθ(Xk
k−l−1, Yk

k−l) = L0 + L1 + L2 + L3 (7)

where L0 is a constant independent of θk, and is thus omitted, and:

L1 = log pθ(xk−l−1) (8)

L2 = −1
2

k

∑
i=k−l

D(xi− f (xi−1)−Mi−1ai−1, Qi−1) (9)

L3 = −1
2

k

∑
i=k−l

D(yi − h(xi)− Nibi, Ri). (10)

The following subsections outline the steps to achieve EM-AM according to Figure 2; the E-step and
M-step.

3.1. E-Step in EM-AM

Taking the expectation of Equation (7) with respect to the probability density function
pθ̂r

(Xk
k−l−1|Y

k
k−l), we can obtain:

Q(θ, θ̂r) = Eθ̂r

[
Lθ(Xk

k−l , Yk
k−l)|Y

k
k−l

]
=
∫

Lθ(Xk
k−l−1, Yk

k−l) · pθ̂r
(Xk

k−l−1|Y
k
k−l)dXk

k−l−1 = I0 + I1 + I2 + I3, (11)

where I0 is a constant corresponding to L0. Note that this posterior probability, pθ̂r
(Xk

k−l−1|Y
k
k−l),

corresponds to the state estimation on knowing the identification value θ̂r at the r-th iteration of
EM-AM. It can be computed by Kalman-based estimators, such as Gaussian filters including EKF,
and CKF, among others. Thus, we have:

I1 = Eθ̂r
[L1|Yk

k−l ] =
∫

log pθ(xk−l−1)·pθ̂r
(xk−l−1|Yk

k−l)dxk−l−1 (12)

I2 = Eθ̂r
[L2|Yk

k−l ] = −
1
2

Tr

{
ξk

I2
−

k

∑
i=k−l

Q−1
i−1Pi,i|k−l:k

}
(13)

ξk
I2
=

k

∑
i=k−l

Q−1
i−1

∫
C
[

x̂i|k−l:k − f (xi−1)−Mi−1ai−1)
]

pθ̂r
(Xk

k−l |Y
k
k−l)dxi−1

I3 = Eθ̂r
[L3|Yk

k−l ] = −
1
2

Tr
{

ξk
I3

}
(14)

ξk
I3
=

k

∑
i=k−l

R−1
i

∫
C [yi − h(xi)− Nibi]pθ̂r

(Xk
k−l |Y

k
k−l)dxi,

where the computations of Equations (13) and (14) refer to:

Eθ̂r

[
x̃i,i|k−l:k( f (xi−1) + Mi−1ai−1)

T |Yk
k−l

]
= Eθ̂r

[
( f (xi−1) + Mi−1ai−1) x̃T

i,i|k−l:k|Y
k
k−l

]
= Eθ̂r

[
x̃i,i|k−l:k(xi − wi−1)

T |Yk
k−l

]
= Pi,i|k−l:k
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ξBk =
k

∑
i=k−l

Q−1
i−1Eθ̂r

[
C (xi − f (xi−1)−Mi−1ai−1) |Yk

k−l

]
=

k

∑
i=k−l

Q−1
i−1Eθ̂r

[
C ((x̂i + x̃i)− f (xi−1)−Mi−1ai−1) |Yk

k−l

]
=

k

∑
i=k−l

Q−1
i−1Eθ̂r

[
C (x̂i − f (xi−1)−Mi−1ai−1) |Yk

k−l

]
−

k

∑
i=k−l

Q−1
i−1Pi,i|k−l:k

ξCk =
k

∑
i=k−l

R−1
i Eθ̂r

[
C (yi − h (xi)− Nibi) |Yk

k−l

]
=

k

∑
i=k−l

R−1
i ∫ C (yi − h (xi)− Nibi) pθ̂r

(
xi|Yk

k−l

)
dxi,

and x̂i|k−l:k and Pi,i|k−l:k are the posterior estimates of the state xi under the measurements Yk
k−l from

the interval [k− l, k] with the minimum mean square error (MMSE) criterion:

x̂i|k−l:k = Eθ̂r

[
xi|Yk

k−l

]
=
∫

xi pθ̂r
(xi|Yk

k−l)dxi (15)

Pi,i|k−l:k = Eθ̂r

[
x̃i|k−l:k x̃T

i|k−l:k|Y
k
k−l

]
=
∫

xixT
i pθ̂r

(xi|Yk
k−l)dxi − x̂i|k−l:k x̂T

i|k−l:k. (16)

In Equations (8) and (12), the terms L1 and I1 are associated with the UI θ, but θ is hidden in
the probability pθ(xk−l−1). Hence, we can not obtain the dominant expressions of L1 and I1 like we
can for L2, L3, I2, and I3. In order to compute the dominant derivative of Q(θ, θ̂r) with respect to
θ, we have to ignore L1 and I1. But ignoring L1 and I1 is reasonable in some sense, because: (1) if
l = k− 1, then L1 equals log pθ(x0), which is independent of θ, and (2) since the UI is associated with
the state in our problem, θ is time-varying. In order to quickly reflect or sketch this time-varying UI,
it should gradually forget the previous information while preserving the current information in a
sliding window of length l. This means that the previous measurements in interval [1, k− l − 1] are
given up.

In order to computeQ(θ, θ̂r), the state estimation x̂i|k−l:k and its covariance Pi,i|k−l:k in the interval
[k−l, k] must be computed first, which is known as a smooth problem and can be implemented by
using a fixed interval smoother. One example is the two-filter smoother [10], which is formulated
as follows: {

x̂i|k−l:k = Pi,i|k−l:k[(Pi,i|k−l:i)
−1x̂i|k−l:i + (Pi,i|i+1:k)

−1x̂i|i+1:k]

Pi,i|k−l:k = [(Pi,i|k−l:i)
−1 + (Pi,i|i+1:k)

−1]
−1 (17)

where, as shown in Figure 5 the first filter (i.e., x̂i|k−l:i, Pi,i|k−l:i) is computed by Kalman-based filtering
under the model in Equation (1) and the second filter (i.e., x̂i|i+1:k, Pi,i|i+1:k) is also computed with a
similar Kalman-based filter but under the inverse form of Equation (1), which runs backwards in time.
The unscented Kalman filter (UKS) presented in Reference [11] can be understood as an approximate
implementation of this form of smoother in nonlinear systems.
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Figure 5. The two-filter smoother and its initialization in EM-AM.

Another type of smoother is the forward-backward smoother [12], names as Rauch-Tung-Striebel
(RTS) Smoother: 

x̂i|k−l:k = x̂i|k−l:i + Ai[x̂i+1|k−l:k − x̂i+1|k−l:i]

Pi,i|k−l:k = Pi,i|k−l:i + Ai[Pi+1,i+1|k−l:k − Pi+1,i+1|k−l:i]AT
i

Ai = Pi,i+1|k−l:iP
−1
i+1,i+1|k−l:i.

(18)

Here, the forward pass applies Kalman-based filters to compute the filtering estimates x̂i|k−l:i, Pi,i|k−l:i
and the predictive estimates x̂i+1|k−l:i, Pi+1,i+1|k−l:i, which are same as those in two-filter smoother.
But in the backward pass, the smoothing recursion starts from last time step k and proceeds backwards
in time. That is, to compute the smoothing estimation from x̂i+1|k−l:k, Pi+1,i+1|k−l:k to x̂i|k−l:k, Pi,i|k−l:k,
which is different from the second filter in the two-filter smoother. A derivation of the structure in
Equation (18), can be found in References [13–15], and its computation program is shown in Figure 6.

| :ˆk l k l k l  x | :ˆi k l ix | :ˆk k l kx

Equation (18)

| :ˆi k l kx

F
orw

ard 
P

ass
B

ackw
ard 

P
ass

Kalman-based Filter

RTS Smoother

1| :ˆk k l k x1| :ˆk l k l k  x| :ˆk l k l k x

1| : 1ˆk l k l k l    x

Figure 6. The forward-backward smoother.

Remark 2. A key point of implementing Equation (17) is initialization. If we regard the interval
[k − l, k] as [1, l + 1] (where the initial value is x̂0 ), the first filter in Equation (17) should be initialized
by x̂k−l−1|k−l−1:k−l−1, which is obtained in the proposed SMCCF by knowing the identified UI-FTM in the
interval [k− l − 1, k− 1]. In more detail, the first filter is easily initialized by a standard Kalman-based filter
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with the initial state value x̂k−l−1|k−l−1:k−l−1. The initialization of the second filter depends on that of the first
filter. In other words, the second filter also operates a standard Kalman-based filter but under the inverse form of
Equation (1) with the initial value x̂k|k−l:k, which is obtained by the first filter. The details of the second filter
are elaborated in Reference [11]. The inverse computation of Equation (1) complicates the two-filter smoother.
Specifically for nonlinear systems, it is intractable and even infeasible to obtain the model’s inverse form.

Remark 3. In the forward-backward smoother, only the forward filter needs to be initialized, which is similar to
the initialization of the first filter in the two-filter smoother. While the backward smoothing computation in
Equation (18) proceeds backwards in time, i.e., from x̂k|k−l:k to x̂k−l|k−l:k. Note that x̂k|k−l:k is obtained by the
forward filter. Hence, from the viewpoint of a simpler initialization, the forward-backward smoother outperforms
the two-filter one in operation. More importantly, the former contributes to simply achieving the following
M-step in EM-AM, without computing the inverse form of the nonlinear model. Due to the above two reasons,
this paper implements the forward-backward smoother for the state estimation in EM-AM.

3.2. M-Step in EM-AM

So far, we have completed the computation of the expectation Q(θ, θ̂r) with respect to θ by the
E-step. Before maximizing Q(θ, θ̂r), the pseudo measurement (PM) of UI is defined as follows:

θ̂PM=
∫

θpθ̂r
(Xk

k−l |Y
k
k−l)dXk

k−l , (19)

where θ is coupled to the state, but the inherent coupling characteristic is unknown. Equation (19)
indeed implies the posterior identification of UI under actual measurements, i.e., that Yk

k−l affects the
state estimation pθ̂r

(Xk
k−l |Y

k
k−l) and further acts on the UI identification (θ̂PM). Hence PM’s definition

concretely links estimation and identification in EM-AM.
The M-step requires a maximization ofQ(θ, θ̂r) with respect to θ. Here, we let the first derivatives

of Q(θ, θ̂r) with respect to θ to be zero directly:

∂Q(θ, θ̂r)

∂a
=

k

∑
i=k−l

MT
i−1Q−1

i−1[x̂i|k−l:k −
∫

f (xi−1) ·pθ̂r
(xi−1|Yk

k−l)dxi−1 −Mi−1

∫
apθ̂r

(Xk
k−l |Y

k
k−l)dXk

k−l ] = 0 (20)

∂Q(θ, θk)

∂b
=

k

∑
i=k−l

NT
i R−1

i [yi −
∫

h (xi) pθ̂r
(xi|Yk

k−l)dxi − Ni

∫
bpθ̂r

(Xk
k−l |Y

k
k−l)dXk

k−l ] = 0. (21)

Thus, we have:

âPM = Ak ×
[

k

∑
i=k−l

MT
i−1Q−1

i−1

(
x̂i|k−l:k −

∫
f (xi−1) ·pθ̂r

(
xi−1|Yk

k−l

)
dxi−1

)]
(22)

b̂PM = Bk

[
k

∑
i=k−l

NT
i R−1

i

(
yi −

∫
h (xi) pθ̂r

(
xi|Yk

k−l

)
dxi

)
,

]
(23)

where:

Ak =

(
k

∑
i=k−l

MT
i−1Q−1

i−1Mi−1

)−1

Bk =

(
k

∑
i=k−l

NT
i R−1

i Ni

)−1

.

In other words, from Equation (20) to (23), PM can be understood as an average and indirect
measurement of UIs by allowing actual observations to further influence UI-PM identification.
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The derivatives in Equations (20) and (21) essentially treat UIs (a and b) as kinds of average values
in the interval [k− l, k]. Thus UI-PM identification in Equations (22) and (23) indeed determines the
estimated values âr+1 and b̂r+1 at the r + 1-th iteration:

âr+1 = âPM, b̂r+1 = b̂PM.

Further, the second derivatives of Q(θ, θ̂r) with respect to θ:

∂2Q(θ, θ̂r)

∂a2 = −
k

∑
i=k−l

MT
i−1Q−1

i−1Mi−1 < 0 (24)

∂2Q(θ, θ̂r)

∂b2 = −
k

∑
i=k−l

NT
i R−1

i Ni < 0, (25)

are strictly negative-definite only if Qi > 0 and Ri > 0, which can be always guaranteed in
practice. This implies that Equations (22) and (23) uniquely maximize the convex Q(θ, θ̂r). However,
Equations (22) and (23) are only formally analytical and optimal since they need to approximately
compute the following general integrals:

I =
∫

g(x)ω(x)dx, (26)

where g(x) generalizes the functions f (xi−1) and h(xi), while ω(x) describes pθ̂r

(
xi−1|Yk

k−l

)
or

pθ̂r

(
xi|Yk

k−l

)
. As mentioned in Remark 3, if we use Kalman-based filters to compute such integrals,

for example the Gaussian filter, ω(x) denotes the corresponding Gaussian distribution. So numerical
approximations such as EKF, and CKF can implement this integral computation (see References [16,17]).
To avoid repetition, the process is omitted.

After identifying the UI-PM, how to further fit the UI-FTM with the PM will be dealt with in
designing the EM-PM. According to Figure 4, every sensor runs one EM-AM to output a group of
{x̂i

k, θ̂i
k}. In fact, only x̂i

k is directly corrected by UI-PM θ̂i
k in the EM-AM. The following section designs

the EM-PM for fitting the covariance of UI-PM to correct the estimation covariance Pi
k.

Remark 4. At each recursion, the PM parameter is initialized with the previous PM identification, i.e., θ̂k with
θ̂k−1. At the beginning time, θ̂0 can be initialized by prior information. For example, θ̂0 is computed from x̂0 and
P0 by performing one recursion of the conventional nonlinear filtering, i.e., through the perturbation nonlinear
integral to compute θ̂0:

θ̂0 =
∫

Fp p(x0)dx0, (27)

whose implementation is similar to that in Equation (26).

4. EM-PM

This section will fit the UI-FTM from the identified UI-PM in the probability domain, not the
time-domain, by the EM algorithm. The UI-FTM fitting issue is to find the available probability density
p(θ̂k) for describing the stochastic property of UI-PM, θ̂k={θ̂i

k}
N
i=1, where p(θ̂i

k) corresponds to the i-th
sensor. It has been proven that a Gaussian mixture (GM) form can approximate any probability density
function as closely as desired [16]. In order to determine the underlying probability distribution p(θ̂k)

of the identified UI-PM set, θ̂k={θ̂i
k}

N
i=1 at time k, we assume that the stochastic property of UI-PM is

generated using M probability distributions where each is a Gaussian function with weight αj, mean µj,
and covariance Σj:

p
(
θ̂k|ρ

)
=

M

∑
j=1

αj pj
(
θ̂k|µj, Σj

)
(28)
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where ρ =
{

αj, µj, Σj
}M

j=1 are the associated parameters with UI-FTM fitting,
M
∑

j=1
αj = 1, M is the

number of Gaussian components in the GM, and pj
(
θ̂k|µj, Σj

)
= N

(
θ̂k; µj, Σj

)
is a multi-dimensional

Gaussian probability density. The UI-FTM fitting is further transferred into the parameter identification
of ρ.

A detailed discussion for GM fitting based on the EM framework has been proposed in
Reference [19]. Here, we only give a brief derivation about how to apply EM for fitting UI-FTM.
First, the log-likelihood function of p(θ̂k) can be written as:

Lρ(θ̂k) = ln p(θ̂k|ρ) = ln
N

∏
i=1

p(θ̂i
k|ρ) =

N

∑
i=1

ln p(θ̂i
k|ρ) =

N

∑
i=1

ln
M

∑
j=1

αj pj(θ̂
i
k|ϑj), (29)

where ϑj = {µj, Σj}. Direct maximization of Equation (29) can not be achieved since we don’t know
which Gaussian component in the GM is the most suitable for expressing or fitting the probability p(θ̂i

k)

of the j-th UI-PM . For dealing with this key point, a missing variable z = {zi}N
i=1 is introduced,

which establishes a simple relation between the UI-PM and Gaussian components. Elaborately,
zi = {1, 2, · · · , M} , Γ and zi = j denotes that the i-th PM, θ̂i

k, is probably characterized by the
j-th Gaussian component, i.e., pj

(
θ̂i

k|µj, Σj
)
. By doing this,

{
θ̂k, z

}
constructs the complete-data set for

further establishing the complete-data likelihood function:

ln p
(
θ̂k, z|ρ

)
= ln

N

∏
i=1

p
(

θ̂i
k, zi|ρ

)
=

N

∑
i=1

ln p
(

θ̂i
k, zi|ρ

)
=

N

∑
i=1

ln αzi pzi

(
θ̂i

k|µzi , Σzi

)
, (30)

where the subscript zi denotes all of the Gaussian components which the i-th PM, θ̂i
k, may correspond

to. Indeed:
αzi = αzi=j

pzi

(
θ̂i

k|µzi , Σzi

)
= pzi=j

(
θ̂i

k|µzi=j, Σzi=j

)
with j ∈ {1, 2, · · · , M}. It should be emphasized that θ̂i

k and zi have a one-to-one correspondence,
which well explains Equation (30).

Then, the E-step needs to evaluate the conditional expectation of ln p
(
θ̂k, z|ρ

)
under p

(
z|θ̂i

k, ρ̂m
)
:

Q(ρ|ρ̂m) = Ez|θ̂k,ρ̂m
ln p

(
θ̂k, z|ρ

)
, (31)

where ρ̂m is the fitting result of ρ in the m-th iteration.
Application of the following equation:

p
(
z|θ̂k, ρ̂m

)
=

N

∏
i=1

p
(

zi|θ̂i
k, ρ̂m

)
to further arrange Equation (31) obtains:

Q(ρ|ρ̂m) = Ez|θ̂k,ρ̂m
ln p

(
θ̂k, z|ρ

)
= ∑

z∈Γ

[
ln p

(
θ̂k, z|ρ

)]
p
(
z|θ̂k, ρ̂m

)
=

M
∑

j=1

[
N
∑

i=1
ln αjpj

(
θ̂i

k|µj, Σj
)]

p
(
j|θ̂i

k, ρ̂m
)

=
M
∑

j=1

N
∑

i=1
ln
(
αj
)

p
(
j|θ̂i

k, ρ̂m
)
+

M
∑

j=1

N
∑

i=1

[
ln pj

(
θ̂i

k|µj, Σj
)]

p
(
j|θ̂i

k, ρ̂m
)
,

(32)
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with:

pj

(
θ̂i

k|ϑj

)
=

1

(2π)d/2|Σj|1/2
exp

{
−1

2

(
θ̂i

k − µj

)T
Σ−1

j

(
θ̂i

k − µj

)}
(33)

p
(

j|θ̂i
k, ρ̂m

)
= p

(
zi = j|θ̂i

k, ρ̂m

)
=

p
(
θ̂i

k, zi = j|ρ̂m
)

p
(
θ̂i

k|ρ̂m
) =

α̂j,mpj(θ̂
i
k|ϑ̂j,m)

M
∑

s=1
α̂s,mps(θ̂i

k|ϑ̂s,m)
(34)

pj(θ̂
i
k|ϑ̂j,m) =

1

(2π)d/2|Σ̂j,m|1/2
exp

{
−1

2

(
θ̂i

k − µ̂j,m

)T
Σ̂−1

j,m

(
θ̂i

k − µ̂j,m

)}
, (35)

where d is the dimension of θ, p
(
zi = j|θ̂i

k, ρ̂m
)

denotes the estimated probability that the j-th Gaussian
component matches the i-th PM, θ̂i

k, under knowing ρ̂m, and α̂j,m and ϑ̂j,m are the m-th identification
values of weight and mean/covariance corresponding to the j-th Gaussian component.

In the M-step, by making the following first derivatives as zero:

∂Q(ρ|ρ̂m)
∂µj

= ∂
∂µj

M
∑

j=1

N
∑

i=1

[
ln pj

(
θ̂i

k|µj, Σj
)]

p
(
j|θ̂i

k, ρ̂m
)

=
N
∑

i=1
p
(
j|θ̂i

k, ρ̂m
)

∂
∂µj

ln pj
(
θ̂i

k|µj, Σj
)

=
N
∑

i=1
p
(
j|θ̂i

k, ρ̂m
)(

θ̂i
k − µj

)T
Σ−1

j = 0

(36)

∂Q(ρ|ρ̂m)

∂Σ−1
j

= ∂
∂Σ−1

j

M
∑

j=1

N
∑

i=1

[
ln pj

(
θ̂i

k|µj, Σj
)]

p
(
j|θ̂i

k, ρ̂m
)

=
N
∑

i=1
p
(
j|θ̂i

k, ρ̂m
)

∂
∂Σ−1

j
ln pj

(
θ̂i

k|µj, Σj
)

=
N
∑

i=1
p
(
j|θ̂i

k, ρ̂m
) [ 1

2 Σj − 1
2
(
θ̂i

k − µj
) (

θ̂i
k − µj

)T
]
= 0,

(37)

the parameters of ϑ are re-estimated with the updated probabilities:

µ̂j,m+1 =

N
∑

i=1
p(j|θ̂i

k, ρ̂m)θ̂i
k

N
∑

i=1
p(j|θ̂i

k, ρ̂m)

(38)

Σ̂j,m+1 =

N
∑

i=1
p(j|θ̂i

k, ρ̂m)(θ̂i
k − µ̂j,m+1)(θ̂

i
k − µ̂j,m+1)

T

N
∑

i=1
p(j|θ̂i

k, ρ̂m)

. (39)

Identifying α requires optimization of the following term of Equation (32):

M

∑
j=1

N

∑
i=1

p
(

j|θ̂i
k, ρ̂m

)
ln
(
αj
)

,

with the constraint
M
∑

j=1
αj = 1. However, direct optimization with respect to α is difficult. For simplicity,

we equivalently construct:

`(α) =
M

∑
j=1

N

∑
i=1

p
(

j|θ̂i
k, ρ̂m

)
ln
(
αj
)
+ β(

M

∑
j=1

αj − 1). (40)
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Thus, making the first derivative of Equation (40) with respect to α zero, one obtains:

αj =

N
∑

i=1
p
(
j|θ̂i

k, ρ̂m
)

−β
. (41)

Finally, applying the following equation:

M

∑
j=1

αj =

M
∑

j=1

N
∑

i=1
p
(
j|θ̂i

k, ρ̂m
)

−β
=

N
−β

= 1,

to rearrange Equation (41), gives the weight update:

α̂j,m+1 =
1
N

N

∑
i=1

p
(

j|θ̂i
k, ρ̂m

)
. (42)

Summarizing the above, the fit mean, µθ
k, and covariance, Pθ

k , of the UI-PM set, θ̂k, are obtained
as follows:

µθ
k =

M

∑
j=1

α̂j,kµ̂j,k (43)

Pθ
k =

M

∑
j=1

α̂j(Σj,k + µ̂j,kµ̂T
j,k)−(

M

∑
j=1

α̂j,kµ̂j,k)(
M

∑
j=1

α̂j,kµ̂j,k)
T, (44)

which corresponds to the output of the EM-PM in Figure 4. Here, α̂j,k, µ̂j,k, and Σ̂j,k are the terminatively
optimized parameters serving for the j-th Gaussian component at time k.

Remark 5. EM-PM is initialized by directly computing the stochastic characteristics (average and variance)
of θ̂k from multi-sensors in time-domain. Although it may be simple and obvious, such the initialization is in
line with the stochastic essence. Moreover, the initialization has no effect on the terminative convergence of the
EM-PM, since the convex optimization of Equations (36) and (37) uniquely maximize the expectation.

5. SMCCF

After achieving EM-AM and EM-PM, this section aims to link them and further clarify
their input-output relationship with each other. Before doing this, as a comparison, we first
show the execution program of directly using the state estimation from the EM-AM output in
Figure 7 (as a refinement of the first EM in Figure 4). By using EKF to implement the state estimation
computation in the EM-AM, we have:

1. Prediction {
x̂i

k|k−1 = Fk−1x̂i
k−1 + Mk−1âi

k

Pi
k|k−1 = Fk−1Pi

k−1FT
k−1 + Qk−1

(45)

2. Update 
Ki

k = Pi
k|k−1HT

k

(
HkPi

k|k−1HT
k + Ri

k

)−1

x̂i
k = x̂i

k|k−1 + Ki
k

(
yi

k − Hk x̂i
k|k−1− Nkb̂i

k

)
Pi

k =
(

I−Ki
kHk

)
Pi

k|k−1

, (46)

where θ̂i
k = {âi

k, b̂i
k} denotes the identified UI-PM by the EM-AM corresponding to the i-th sensor,

Fk−1 and Hk are the Jacobian matrices of the dynamic and measurement models. Obviously, in each
EM-AM, only the state estimation is corrected by the UI-PM while its covariance computation is
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the same as that in standard Kalman-based filter. Besides EKF, one has a freedom to select other
Kalman-based filters for implementing the state estimation in EM-AM, such as the above-mentioned
nonlinear Gaussian filters including UKF, and CKF, among others.

After obtaining N groups of {x̂i
k, P̂i

k}, we use the well-known Federal structure to directly fuse
{x̂i

k, P̂i
k} as follows:  x̂F

k = PF
k

[(
P1

k
)−1x̂1

k + · · ·+
(
PN

k
)−1x̂N

k

]
PF

k =
[(

P1
k
)−1

+ · · ·+
(
PN

k
)−1
]−1 , (47)

where corresponding to Figure 7, the filter weight βi = PF
k (P

i
k)
−1. Of course, there also exist other

estimation fusion structures, which have been well studied at present. However, this paper mainly
wishes to focus on demonstrating the feasibility and superiority of the simultaneous correction
forms in the following (Equation (48)), as compared to the standard mean-based correction form in
Equations (45) and (46). Thus, we choose the relatively simple Federal structure for trying to
best eliminate the possible influence or interference of fusion on the proposed simultaneous
correction here.

Figure 7. Direct estimation fusion from EM-AM.

The following continues to combine the EM-AM and EM-PM as shown in Figure 8 (which is a
refinement of Figure 4). Different from Figure 7, the SMCCF adds the EM-PM between the EM-AM
and Federal fusion structures to fit the UI-FTM. Before carrying out fusion, the state estimation
and its covariance are simultaneously corrected by the UI-FTM. This means that if the EM-PM fits
µθ

k =
{

µa
k, µb

k

}
and Pθ

k =
{

Pa
k , Pb

k

}
as given in Equations (43) and (44), then employing EKF again as an

example, we have:

x̂i
k|k−1 = Fk−1x̂i

k−1 + Mk−1µa
k

Pi
k|k−1 = Fk−1Pi

k−1FT
k−1 + Mk−1Pa

k MT
k−1 + Qi

k−1

Ki
k = Pi

k|k−1HT
k

(
HkPi

k|k−1HT
k + NkPb

k NT
k + Ri

k

)−1

x̂i
k = x̂i

k|k−1 + Ki
k

(
yi

k − Nkµb
k − Hk x̂i

k|k−1

)
Pi

k =
(

I−Ki
kHk

)
Pi

k|k−1

(
I−Ki

kHk

)T
+
(

Ki
kNk

)
Pb

k

(
Ki

kNk

)T
+ Ki

kRk(Ki
k)

T.

(48)
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Figure 8. SMCCF.

Again the above-mentioned Federal structure in Equation (47) is used to fuse the state estimation
and achieve the SMCCF, denoted as x̂S

k and P̂S
k . In fact, Figure 7 is based on the standard filter

structure in Equations (45) and (46), where the UI-PM identification values θ̂i
k = {âi

k, b̂i
k} are

directly used for correcting the state prediction and the measurement prediction, regardless of their
covariances. But Figure 8 is based on the SMCCF structure in Equation (48), where {µ̂θ

k, Pθ
k } are

further mined from θ̂i
k by adding the second EM part to simultaneously correct the predictions and the

corresponding covariances.

Remark 6. Of course, there are other execution programs which link the EM-AM and EM-PM to achieve
SMCCF. For example, at each iteration of the EM-AM, the output PM identifications by multi-sensors are fit
by EM-PM, and fed back to simultaneously correct the state estimation and its covariance. But, this paper
mainly aims to demonstrate the superiority of the novel JESI to the standard NES, and SMCCF to the standard
nonlinear filters, including EKF, and UKF, among others. The performance analysis or comparison of different
fusion structures will be explored in the future work.
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Remark 7. Maybe, one can find that the state estimation forms between Equations (17), (18), (45), (46), and
(48), are slightly different from each other. At each time-recursion, the former is located in the EM-AM by applying
these measurements in a sliding window interval [k− l, k] for identifying UI-PM, and further for fitting UI-FTM.
Similarly, the latter is located in the fusion center by applying Kalman-based filters for recursively updating
the state estimation, which is simultaneously corrected by UI-FTM. Thus, the former needs to be continuously
initialized at each recursion as discussed in Remarks 2 and 3, while the latter is only initialized once by x̂0 at the
beginning time.

Final Algorithm of SMCCF

Referring to Figures 8 and 9, the final implementation algorithm of SMCCF is as follows.

Algorithm 1:

Step 1: Initialization—x̂0, P0 and θ̂0 in Equation (27).
Step 2: The first-stage EM: Joint state estimation and UI-PM identification.

1. Re-initialization—as discussed in Remarks 2 and 3.
2. Parallel EM-AM of multi-sensors for identifying UI-PMs. Given the measurements Yi

k−l:k,
iteratively compute the analytical UI-PM identification in Equations (22) and (23) until
EM-AM terminates (r > rmax), to finally output a group of UI-PM identification values
θ̂k = {θ̂i

k}
N
i=1.

3. Parallel state estimation of multi-sensors. Given the full measurements Yi
1:k, implement

Kalman-based filters for Equation (1) to recursively output N groups of {x̂i
k, Pi

k}. As an
example the EKF of Equations (45) and (46) (if only corrected by the corresponding UI-PMs
θ̂k = {θ̂i

k}
N
i=1). Note that Yk

k−l and Equation (26) only service for UI-PM identification.

Step 3: UI-FTM fitting.

1. Re-initialization—average and variance of {θ̂i
k}

N
i=1 as analyzed in Remark 5.

2. EM-PM: Given a group of {θ̂i
k}

N
i=1, iteratively compute the fit UI-FTM as shown

in Equations (38), (39), and (42) until EM-PM terminates (m > mmax), to finally
output µθ

k , Pθ
k of Equation (43).

3. SMCCF: Apply {µθ
k , Pθ

k } to simultaneously correct the Kalman-based state
estimation {x̂i

k, Pi
k}, for example, the EKF of Reference (48).

Step 4: Fuse {x̂i
k, Pi

k} by the Federal structure, as given in Equation (47), or other fusion
schemes.
Step 5: Repeat Step 2 to Step 4 with time proceeding.

Remark 8. Compared with the standard NESs, the main factor, affecting the complexity of the SMCCF
scheme, Figure 8, lies in the EM-AM iteration times. Owing to the analytical characteristics and to the
convex optimization of identifying UI-PM, a direct method of improving EM-AM execution efficiency is
to let rmax ≡ 1; at each time-recursion, EM-AM is executed only once. However, to guarantee accuracy,
the measurement may be extended to many samples. On the other hand, compared with the standard EM which
only use the UI-mean to correct the orbit state estimation, the SMCCF scheme is slightly more computational
complex because it needs EM-PM to further fit the UI-FTM. Besides the above-mentioned differences, the
involved fusion structure and orbit state filtering computation in various algorithms are set to be consistent.
This allows us to highlight the superiority of the SMCCF design as compared with the standard NES and EM
algorithms, and further facilitates the following demonstrations of the different algorithms under a uniform
benchmark by eliminating the interference of other factors.
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Figure 9. SMCCF execution program.

6. Simulation

This section considers the space target orbit estimation with the J2 perturbation. Let the target’s

position and velocity characterize the system’s state, i.e., x =
[

λ ϕ h vλ vϕ vh

]T
, then the

dynamic equation is:
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λ̇ = vλ

ϕ̇ = vϕ

ḣ = vh

v̇λ = − µ

r3 λ + µ

r3 J2

(
Re
r

)2
λ
(

7.5 h2

r2 − 1.5
)

v̇ϕ = − µ

r3 ϕ + µ

r3 J2

(
Re
r

)2
ϕ
(

7.5 h2

r2 − 1.5
)

v̇h = − µ
r3 h + µ

r3 J2

(
Re
r

)2
h
(

7.5 h2

r2 − 4.5
)

(49)

where the target velocity is directly disturbed by the J2 perturbation, which further and indirectly
affects the target position. If we view the orbit perturbation as a UI coupled with the target state,
then the above dynamic equations can be further simplified and rearranged as:

ẋ (t) = F (t) x (t) + Mθ (t) + w (t) (50)

where F (t) =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
− µ

r3 0 0 0 0 0
0 − µ

r3 0 0 0 0
0 0 − µ

r3 0 0 0


M =



0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1


θ (t) =

[
a (x) b (x) c (x)

]T

with 
a (x) = µ

r3 J2

(
Re
r

)2
λ
(

7.5 h2

r2 − 1.5
)

b (x) = µ

r3 J2

(
Re
r

)2
ϕ
(

7.5 h2

r2 − 1.5
)

c (x) = µ

r3 J2

(
Re
r

)2
h
(

7.5 h2

r2 − 4.5
) .

In Equation (50), F(t) is the transfer matrix of the orbit state, θ denotes the orbit perturbation
which can be understood as an unknown input coupled with the state, and M is the multiplicative
matrix serving for θ. Indeed, Equation (50) is equivalently derived from Equation (49) and the
derivation process is relatively simple so we omit it and only give the result. The reason of deriving
Equation (50) from Equation (49) lies in that Equation (50) has the same functional structure as
Equation (1), which facilitates application of the SMCCF algorithm for dealing with the practical orbit
state estimation issue.

Discretizing Equation (50) by the fourth-order Runge-Kutta yields:

xk+1 =

(
I + TFk +

T2

2
F2

k +
T3

6
F3

k +
T4

24
F4

k

)
xk + Mθk + wk, (51)

where T is the sampling interval. The measurement equation to observe the space target is:

yk =

√
(λk − λ0)

2 + (ϕk − ϕ0)
2 + (hk − h0)

2 + vk = h (xk) + vk, (52)

where (λ0, ϕ0, h0) denote the sensor location. By setting different (λ0, ϕ0, h0), multi-sensors observation
system can be established.

The model parameters are set as follows:

• T = 1 s
• Earth’s mass, M = 5.965× 1024 (kg)
• Gravitational constant, G = 6.67259 × 10−11(N ·m2/kg2)
• Earth’s gravitational constant, µ = GM
• Earth’s radius, Re = 6,874,140 (m), J2 = 1.0826269× 10−3

• The simulation sampling length, K = 5000 s
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• The true and initial orbit state,
x0 = [4.590× 106 4.388× 106 3.228× 106 −4.612× 103 5.014× 102 5.876× 103 ]T

• The covariances of wk and vk,
Qk = diag( (10−2)

2
(10−2)

2
(10−2)

2
(6× 10−3)

2
(6× 10−3)

2
(6× 10−3)

2 ), Rk = 102

The simulated tracking parameters are set as follows: the window length l = 2, five iterations
are employed for EM-AM, and 30 for EM-PM, and the number of sensors and GM models are 10 and
5, respectively. Finally, our simulation results are obtained by running ten independent Monte Carlo
runs. The initial orbit state estimation is:

x̂0 = x0 + [ 400 400 400 0.8 0.8 0.8 ]T

P0 = diag( 4002 4002 4002 0.82 0.82 0.82 ).
For spatial scales, define the root mean square errors (RMSE)s of position and velocity at time k as:

RMSEpos (k) =

√√√√ 1
N

N

∑
mc=1

((
λmc

k − λ̂mc
k
)2

+
(

ϕmc
k − ϕ̂mc

k
)2

+
(

hmc
k − ĥmc

k

)2
)

(53)

RMSEvel (k) =

√√√√ 1
N

N

∑
mc=1

((
vmc

λ,k − v̂mc
λ,k

)2
+
(

vmc
ϕ,k − v̂mc

ϕ,k

)2
+
(

vmc
h,k − v̂mc

h,k

)2
)

. (54)

For the time scale, define the RMSEs as:

¯RMSEpos =

√√√√ 1
K

K

∑
k=1

RMSEpos (k) (55)

¯RMSEvel =

√√√√ 1
K

K

∑
k=1

RMSEvel (k), (56)

where N is the independent Monte Carlo running times and K is the simulation sampling length.
Figure 10 gives the space target trajectory. In Figures 11–16, all the involved algorithms are obtained by

fusing the state estimation results from multiple sensors under the Federal fusion structure. The proposed
SMCCF obviously outperforms the other methods, which demonstrates the feasibility and effectiveness
of the two-stage EM design scheme in SMCCF, as compared to the standard EM and NES schemes.
The J2 perturbation directly affects and acts on the orbit velocity. Wonderfully, the velocity estimation
performance is well improved throughout the entire sampling interval, which just demonstrates the
superiority of the novel SMCCF in coping with the perturbation. The above results can also be verified
by Table 1, which computes the RMSEpos and RMSEvel. The velocity estimation accuracy performance
is improved by 23.4%, as compared to the standard EM, and the position performance is improved
by 19.4%.
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Figure 12. The position RMSE in the y-direction.
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Figure 13. The position RMSE in the z-direction.
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Figure 14. The velocity RMSE in the x-direction.
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Figure 15. The velocity RMSE in the y-direction.
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Table 1. RMSE comparison.

Algorithms EKF CKF Standard EM SMCCF

RMSEpos 856.0445 329.0306 310.5345 250.2542
RMSEvel 4.7096 0.3743 0.3584 0.2745

7. Conclusions

In the case that a UI is associated with the system state, UI estimation requires the FTM at least.
For these dynamic systems with the above-considered UI forms, this paper proposes a novel SMCCF
based on a two-stage EM framework, which further improves the state estimation performance by
fitting the UI-FTM and using it to simultaneously correct the state estimation and its covariance.
Through a space target orbit tracking example, the superiority of SMCCF, as compared to the standard
NESs or EM algorithms, is demonstrated.
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