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Abstract: To precisely obtain the polarimetric scattering matrix (PSM) of moving target,
a measurement model for the simultaneous fully polarimetric radar is formulated. The calibration
errors and isolation of the transmitted waveforms are considered. To address the decline in
performance of the traditional PSM estimation methods when the target moves, a novel method
with measurement selection is proposed. Numerical experiments are conducted to demonstrate and
validate the superiority of the proposed method, especially for the PSM estimation of the target with
non-uniform motion.

Keywords: polarization scattering matrix; moving target; simultaneous polarimetric radar;
non-uniform motion

1. Introduction

Advancements in radar technology and theory have provided a better understanding of the
polarimetric information contained in radar targets [1–4]. The polarimetric features, which can be
described by a second order polarimetric scattering matrix (PSM) have been widely used in various
fields, such as terrain observation, disaster surveillance and atmospheric remote sensing. To accurately
obtain the PSM, two fully polarimetric measurement schemes, called the alternately transmitting and
simultaneously receiving (ATSR) scheme and the simultaneously transmitting and simultaneously
receiving (STSR) scheme, have been widely investigated since the 1980s [5–7]. The ATSR radar
alternately transmits waveforms through horizontal (H) and vertical (V) polarizations while both
polarizations are received simultaneously on reception. At least two pulses are required in this mode
to obtain the four elements for the PSM. The ATSR in essence is a time-sharing polarimetric radar,
hence, the target decorrelation may influence the measurements results. In contrast, for STSR radar,
the two orthogonal polarization states are transmitted and received simultaneously. Thus, the PSM of
the targets can be retrieved within one pulse recurrent time (PRT). In this case, the limitation caused
due to the change of the transmitted polarization states in ATSR scheme can be overcome [8].

Estimation of the target scattering matrix is based on the measurements from the fully polarimetric
radar. For the static target, its echoes are coherent, and the pulse-integration (PI) method can be used to
estimate the target’s PSM. For moving targets, the Doppler velocity which refers to the radial velocity,
and the PSM of the target are coupled. It is unclear whether the change of the radar-echo phase is
caused by the target’s displacement or the PSM. Therefore, the true PSM of the moving target is usually
difficult to obtain [9–11]. Fortunately, in real radar applications, the PSM of a slow-moving target, such
as that for an unmanned aerial vehicle (UAV), is assumed to be deterministic over the observation
duration [12]. Under this assumption, provided that the target Doppler velocity is known, the phase
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changes in the radar echoes due to the target motion can be compensated by the estimated velocity.
After the compensation, the incoherent echoes become coherent, and the PSM of moving target can
be estimated by the pulse-compensation (PC) method. Obviously, the estimated accuracy of the PC
method is related to the accuracy of the estimated Doppler velocity. When the velocity cannot be
determined exactly, the estimated PSM becomes inaccurate [13].

To obtain the precise PSM of a moving target, a method of measurement selection (MS) is proposed
in this paper. Using the criterion based on the signal to noise ratio (SNR) of the integration echoes,
partial measurements are selected to estimate the PSM of the target. After the selection, the influences
of the target motion on the four polarization channels can be considered uniform, and the PSM with
relative amplitude and phase can be estimated. The advantage of this method is that the MS does not
require any prior information about the target velocity, and it can still be used even if the target exhibits
non-uniform motion. The rest of this paper is organized as follows: Section 2 presents the problem
formulation; in Section 3, three PSM estimation methods are introduced; the numerical simulations are
provided in Section 4 to verify the performance of the proposed method, followed by the conclusions
in Section 5.

Notation: In this paper, it is assumed that a lower-case letter (e.g., a) denotes a scalar; a boldface
lowercase letter (e.g., a) denotes a vector; and a boldface uppercase letter (e.g., A) indicates a matrix.
Additionally, AT and AH denote the transpose and the conjugate transpose of the matrix A, and the
symbol |·| denotes the modulus of a complex number.

2. Signal Model for Moving Target in STSR Radar

The simplified signal processing flow chart of the STSR radar is depicted in Figure 1 [8].
Suppose the STSR radar transmits a pair of opposite (up-going and down-going) slope of linear
frequency-modulation (LFM) waveforms, which can be expressed as

sH(t) = rect
(

t
Tr

)
exp

(
j2π f0t + jπγt2

)
sV(t) = rect

(
t

Tr

)
exp

(
j2π f0t− jπγt2

) ; t ∈
[
−Tr

2
,

Tr

2

]
(1)

where

rect
(

t
Tr

)
=

1, |t| ≤ Tr

2
0, else

(2)

and Tr is the pulse duration. f0 is the carrier frequency, γ is the modulation slope, and the radar
bandwidth is B = γTr. To facilitate the discussion, the transmitted waveforms can be given in vector
form as

s (t) = [sH(t), sV(t)]
T (3)

For a point target, the received signals are the time-delayed version of the transmitted signals.
Thus, for the kth pulse, the received signal is [14]

rk(t) =

[
rH,k(t)

rV,k(t)

]
= RT · Sk · T · s

(
t− 2dk

c

)
+ wk (t) ; k = 1, 2, . . . , N (4)

where N is the number of pulses in a coherent process interval (CPI), c is the speed of the light,
wk (t) = [wH,k(t), wV,k(t)]

T is the thermal noise of the receivers with variance σ2
w, dk is the radial

distance from the point target to the radar, and Sk is the PSM of the target that can be described as

Sk =

[
SHH,k SHV,k

SVH,k SVV,k

]
(5)
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where the corner marks HH, HV, VH and VV denote four polarization channels. R and T represent
the effect of channels and antennas on the PSM during the reception and transmission, respectively.
Here, the calibration errors of the STSR radar system, including the cross-polarization isolation of
the antennas, the amplitude and phase difference of the channels, are considered. Suppose the same
antennas and channels are used during the transmission and reception, then the R and T can be set
as follows

R = T =

[
1 αHV exp (jφHV)

αVH exp (jφVH) αVV exp (jφVV)

]
(6)
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Figure 1. The signal processing flow chart of the STSR radar.

Processed by the mixer and matched filters shown in Figure 1, the high-resolution range profile
(HRRP) can be obtained

Gk (t) = RTST

[
gHH,k (t) gHV,k (t)

gVH,k (t) gVV,k (t)

]
+

[
wHH,k (t) wHV,k (t)

wVH,k (t) wVV,k (t)

]
(7)

and

gHH,k (t) = A · sin c
(

πB
(

t− 2dk
c

))
· exp

(
−j

4πdk
λ

)
(8)

gVV,k (t) = A · sin c
(

πB
(

t− 2dk
c

))
· exp

(
−j

4πdk
λ

)
(9)

where A = BTr is the gain of the matched filtering (MF), λ is the wavelength, and sinc (·) is the Sinc
function. One thing should be pointed out is that, generally, the scattering matrix is related to the shape,
geometrical structure, reflectivity and orientation of the target. Meanwhile, the PSM may fluctuate
whether or not the target is in motion. Fortunately, this effect can be controlled by limiting the CPI
of the radar system. If the CPI is short enough, the PSM of the target can be assumed to be same for
different pulses. Thus, S is used to replace Sk in Equation (7). With t = 2dk/c, Equations (8) and (9)
can be written into

gHH,k = A · exp
(
−j

4πdk
λ

)
(10)

gVV,k = A · exp
(
−j

4πdk
λ

)
(11)
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Additionally, in [15], the author has pointed out that the isolation of opposite slope of LFM
waveforms, which is defined as

I = max
∀t

20log10

∣∣gHV,k (t)
∣∣

max
∀t′

∣∣gHH,k (t′)
∣∣
 (12)

is related to the time-bandwidth product of the waveforms and an approximate equation is given
as follows

I ≈ −10log10 (BTr) (13)

Obviously, when the time-bandwidth product is large enough, such as BTr = 104, the I is equal to
−40 dB approximately, which means for arbitrary t ∈ [−Tr, Tr], the modulus of gHV,k (t) and gVH,k (t)
are much less than that of gHH,k and gVV,k. Therefore, when t = 2dk/c, Equation (7) can be further
rewritten as

Gk =

[
GHH,k GHV,k

GVH,k GVV,k

]
= RTST

[
gHH,k I′

I′ gVV,k

]
+

[
wHH,k wHV,k

wVH,k wVV,k

]
(14)

where I′ = 10I/20. If the second order small quantities are ignored, it comes



GHH,k = gHH,k (SHH + αVH exp (jφVH) (SVH + SHV)) + I′ · αVVSHV exp (jφVV) + wHH,k

GVH,k = gHH,k (SHHαHV exp (jφHV) + αVV (SVH exp (jφVV) + SVVαVH exp (j (φVV + φVH))))

+ I′ · SVVα2
VV exp (2jφVV) + wVH,k

GHV,k = gVV,k (SHHαHV exp (jφHV) + αVV exp (jφVV) (SHV + αVHSVV exp (jφVH)))

+ I′ · SHH + wHV,k

GVV,k = gVV,kαVV (αHV exp (j (φVV + φHV)) (SVH + SHV) + SVVαVV exp (2jφVV))

+ I′ · SVHαVV exp (jφVV) + wVV,k

(15)

Our goal is to estimate the PSM of moving target from the Gk that includes the target echo and
thermal noise of the receivers. As mentioned before, the variance of the thermal noise is assumed to be
σ2

w. Furthermore, the thermal noise is supposed to follow the Gaussian distribution. In [16], it has been
proved that the noise components in the MF output, which are wHH,k, wVH,k, wHV,k and wVV,k, follow
the Gaussian distribution similarly and the variance is Trσ2

w. To obtain the real PSM of the target, three
estimation methods are analyzed in the next Section.

3. PSM Estimation for the Moving Target

Instead of estimating the real PSM of the target, the PSM with relative amplitude and phase is
estimated. With SHH as a reference, the relative PSM can be expressed as

S̄ =

 1
|SHV |
|SHH |

exp (jφHV)

|SVH |
|SHH |

exp (jφVH)
|SVV |
|SHH |

exp (jφVV)

 =

[
1 SHV/HH

SVH/HH SVV/HH

]
(16)
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where the φVH , φHV and φVV are the phases of different polarized channels, and the SVH/HH , SHV/HH
and SVV/HH are the normalized scattering matrix parameters. To facilitate the following discussion,
some notations are defined as follows

AHH = SHH + αVH exp (jφVH) (SVH+SHV)

AVH = SHHαHV exp (jφHV) + αVV (SVH exp (jφVV) + SVVαVH exp (j (φVV + φVH)))

AHV = SHHαHV exp (jφHV) + αVV exp (jφVV) (SHV + αVHSVV exp (jφVH))

AVV = αVV (αHV exp (j (φVV + φHV)) (SVH + SHV) + SVVαVV exp (2jφVV))

(17)

and
BHH = I′ · αVVSHV exp (jφVV)

BVH = I′ · SVVα2
VV exp (2jφVV)

BHV = I′ · SHH

BVV = I′ · SVHαVV exp (jφVV)

(18)

Moreover, introducing the notation,

xpq,k = Ac

(
Apq exp

(
j
4πv0kTPRT

λ

)
+

Bpq

A
exp

(
j
4πd0

λ

))
; p, q = H, V (19)

where Ac = A exp (−j4πd0/λ), d0 is the target initial distance, v0 is the radial velocity and TPRT is the
pulse repetition time. In the rest of the article, p, q are used to denoted H, V. Then Equation (15) can be
rewritten as

Gpq,k = xpq,k + wpq,k (20)

For a static target, xpq,1 = xpq,2 = . . . = xpq,N . Using the PI method, Spq can be estimated by

Ŝpq =
N
∑

k=1

(
Gpq,k/N

)
, and the estimation of the relative PSM becomes

Ŝpq/HH_PI =

N
∑

k=1
Gpq,k

N
∑

k=1
GHH,k

(21)

However, when the target moves, its echoes are incoherent. That means the motion of the target
has impact on the measurements of the PSM. Generally, the velocity of the target can be estimated by
the relative phase change of the echoes. In [17], the standard deviation of the estimation error is given
as follows

σv =
λ

2

√
6/
[
(2π)2χ(NTPRT)

2
]

(22)

where χ is the SNR of the input signal. With the estimated velocity v̂0, the PC method can be used to
estimate the parameters of the scattering matrix by

Ŝpq =
N

∑
k=1

(Gpq,k

AcN
· exp

(
−j

4πv̂0kTPRT

λ

))
(23)

Therefore, the estimation of the relative PSM is

Ŝpq/HH_PC =

N
∑

k=1
Gpq,k exp

(
−j 4πv̂0kTPRT

λ

)
N
∑

k=1
GHH,k exp

(
−j 4πv̂0kTPRT

λ

) (24)
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It can be observed from Equations (21) and (24) that the PI method is a special case of the
PC method. When the velocity of the target reduces to 0 m/s, PC has the same expression as PI.
Additionally, for the PC method, accurate estimation of the PSM requires that the velocity of the target
is estimated precisely. If the estimation error is large, the phase caused by the target’s motion cannot
be compensated, leading to the inaccurate estimation of the PSM. Compared with the PC method,
the estimation of the velocity is avoided in the MS method. The term mpq,k is added to indicate the
selection state of the measurements

mpq,k =

{
1, selected

0, unselected
, k = 1, 2, . . . , N (25)

The integration results for different channels in MS method are

Gpq = Xpq + Wq (26)

where

Gpq =
N

∑
k=1

mpq,kGpq,k

Xpq =
N

∑
k=1

mpq,kxpq,k

Wq =
N

∑
k=1

mpq,kwpq,k

(27)

For arbitrary channel, the SNR of the integration terms is defined as:

SNRintegration
pq =

E
(

XpqX∗pq

)
Trσ2

w
N
∑

k=1
mpq,k

=

E
(

N
∑

k=1
mpq,kxpq,k

N
∑

k=1
mpq,k

(
Gpq,k − wpq,k

)∗)
Trσ2

w
N
∑

k=1
mpq,k

(28)

where E (·) represents the mathematical expectation. Since the thermal noise is assumed to follow the
Gaussian distribution, and the mean and the variance are zero and Trσ2

w, respectively, Equation (28)
can be simplified to

SNRintegration
pq =

E
(

N
∑

k=1
mpq,kxpq,k

N
∑

k=1
mpq,kG∗pq,k

)
Trσ2

w
N
∑

k=1
mpq,k

=

E
(

N
∑

k=1
mpq,k

(
Gpq,k − wpq,k

) N
∑

k=1
mpq,kG∗pq,k

)
Trσ2

w
N
∑

k=1
mpq,k

=

E

(
N
∑

k=1
mpq,kGpq,k

N
∑

k=1
mpq,kG∗pq,k −

N
∑

k=1
mpq,kwpq,k

N
∑

k=1
mpq,k

(
xpq,k + wpq,k

)∗)

Trσ2
w

N
∑

k=1
mpq,k

(29)
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Since for N observations, the measurement results are certain. Equation (29) can be further
simplified to

SNRintegration
pq =

∣∣Gpq
∣∣2 − E

(
N
∑

k=1
mpq,kwpq,k

N
∑

k=1
mpq,kw∗pq,k

)
− E

(
N
∑

k=1
mpq,kwpq,k

N
∑

k=1
mpq,kx∗pq,k

)
Trσ2

w
N
∑

k=1
mpq,k

=

∣∣Gpq
∣∣2

Trσ2
w

N
∑

k=1
mpq,k

− 1

(30)

It is clear that to improve the estimation performance, the SNR of the integration terms should
be as high as possible. Besides, it should be pointed out that the term mpq,k cannot be all zero.
When mpq,1 = mpq,2 = . . . = mpq,N = 0, the term Gpq = 0, and the SNR in (30) becomes meaningless.
Another thing should be noticed is that to ensure the phase consistency of the selected measurements
from different channels, the terms mHH,k, mVH,k, mHV,k and mVV,k should be equal, which means
mHH,1 = mVH,1 = mHV,1 = mVV,1, . . . . . . , mHH,N = mVH,N = mHV,N = mVV,N . Then the target term
Xpq can be estimated by the observation term Gpq through minimizing the reciprocal of the first term
of the SNR in Equation (30), and the criterion of the measurements selection can be expressed as

X̂HH = GHH ; X̂VH = GVH ; X̂HV = GHV ; X̂VV = GVV

min
mHH,k


Trσ2

w
N
∑

k=1
mHH,k

|GHH |2
,

Trσ2
w

N
∑

k=1
mHH,k

|GVH |2
,

Trσ2
w

N
∑

k=1
mHH,k

|GHV |2
,

Trσ2
w

N
∑

k=1
mHH,k

|GVV |2


(31)

The sequence of mpq,1, mpq,2, . . . , mpq,N has 2N combinations. The combination, which makes the
SNR in Equation (30) maximum, can be obtained by enumerating. For instance, for N = 3, the value
space of the sequence mpq,1, mpq,2, . . . , mpq,N is

mpq,1

mpq,2

mpq,3

 ∈



1

0

0

 ,


0

1

0

 ,


0

0

1

 ,


1

1

0

 ,


0

1

1

 ,


1

0

1

 ,


1

1

1


 (32)

By substituting each element of the value space into Equation (30) and calculating the
SNRintegration

pq of each channel, then the combination which satisfies the criterion in Equation (31) can be
obtained. With xpq,k = Spq/HHxHH,k, the target integration results for the pq and HH channels satisfy

Xpq =
N

∑
k=1

mpq,kxpq,k =
N

∑
k=1

mpq,kSpq/HHxHH,k = Spq/HHXHH (33)

Thus, the estimation of Spq/HH is

Ŝpq/HH_MS =
X̂pq

X̂HH
=

Gpq

GHH
(34)

Based on Equation (34), the estimated target’s PSM is

ˆ̄S =

 1
GHV
GHH

GVH
GHH

GVV
GHH

 (35)
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As is shown in Equation (35), no prior information are required in the MS method. Therefore,
the PSM estimation of the target in non-uniform motion can also be solved. Performance of these three
methods are analyzed in the next section.

4. Simulation Results and Discussion

In this section, the proposed method is evaluated using simulations. Subsequently, some metrics
are defined herein. The polarized correlation coefficient (PCC) is selected to illustrate the performance
of different methods. It can be defined as [18,19]

PCC =

∣∣∣S′H · Ŝ′∣∣∣√
S′HS′Ŝ′

H
Ŝ′

(36)

where S′ is the vector form of the relative PSM which is

S′ = [1 SVH/HH SHV/HH SVV/HH ]
T (37)

and Ŝ′ is the vector form of the estimated target’s PSM ˆ̄S. PCC indicates the similarity between
two PSMs. In addition, based on Equations (19) and (20), the SNR of pq polarized channels can be
defined as

SNRpq =

∣∣Ac Apq
∣∣2

Trσ2
w

(38)

and the average SNR of the four polarized channels is

SNRav =
SNRHH + SNRVH + SNRHV + SNRVV

4
(39)

4.1. PSM Estimation without System Errors

In this subsection, the system errors, including the cross-polarization isolation of the antennas,
and the amplitude and phase difference of the channels, are supposed to be calibrated. Thus, the
matrices R and T can be set to

R = T =

[
1 0

0 1

]
(40)

Radar and target parameters are shown in Table 1. To analyze the performance of different
methods, a point target was simulated with a SNRav ranging from −10 dB to 30 dB. For each polarized
channel, the peak of the target’s HRRP is used to compose the measured PSM. The velocity of the
target can be obtained by adding a sinusoidal shift to the discrete time. The trajectories of the target in
this paper do not represent the real, while they can be used to investigate the robustness of the method.
The motion of the target in a particular Monte Carlo (MC) trial is

vu(k) = vu,0 + v2
u,0 sin

(
πkTPRT

P

)
(41)

where k is the pulse number, the radial velocity vu,0 is a uniform distribution on [100 m/s, 150 m/s],
which means the Doppler frequency belongs to [6.67 kHz, 10 kHz], u is the index of an arbitrary MC
trial, and the control factor P = 10. It can be observed from Equation (41) that when P � πkTPRT
(e.g., P = 500), the target’s motion becomes uniform. Besides, as this paper concentrates on the
PSM estimation of moving targets, target detection is not discussed. With the simulated trajectories,
measurements from a moving target can be obtained by the equations shown in Table 2, and the PSM
estimation methods are carried out.
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Table 1. Parameters for numerical experiments.

Component Value Component Value

Carrier frequency 10 GHz Target PSM

[
1 0.5j

0.5j 0.9

]
Mode STSR Control factor P = 500, 10

Bandwidth 1 GHz Initial position 5000 m
Pulse duration 100 µs SNRav −10 ∼ 30 dB

PRF 1000 Hz Noise Gaussian
Measurements 12 Trials of each SNR 500

Table 2. Methods for PSM Estimation.

PI PC MS

HH 1 1 1

VH

N
∑

k=1
GVH,k

N
∑

k=1
GHH,k

N
∑

k=1
GVH,k exp

(
−j 4πv̂0kTPRT

λ

)
N
∑

k=1
GHH,k exp

(
−j 4πv̂0kTPRT

λ

) GVH
GHH

HV

N
∑

k=1
GHV,k

N
∑

k=1
GHH,k

N
∑

k=1
GHV,k exp

(
−j 4πv̂0kTPRT

λ

)
N
∑

k=1
GHH,k exp

(
−j 4πv̂0kTPRT

λ

) GHV
GHH

VV

N
∑

k=1
GVV,k

N
∑

k=1
GHH,k

N
∑

k=1
GVV,k exp

(
−j 4πv̂0kTPRT

λ

)
N
∑

k=1
GHH,k exp

(
−j 4πv̂0kTPRT

λ

) GVV
GHH

Utilizing the parameters shown in Table 1, 500 MC trials have been done at each SNR. The means
and standard deviations (STD) of the PCC are plotted as curves and error bar, respectively. Figure 2
shows the performance of these three PSM estimation methods when the target experiences uniform
motion. Since the target is not static, the echoes are not incoherent. Thus, direct sum of the echoes
cannot obtain effective accumulation, leading to the worst performance of the PI method. For the PC
and MS method, the PCC means increase to 1 with the increase of the SNRav, and the STD decreases
owing to the same factor. As is mentioned before, the PC method uses the estimated velocity to
compensate the phases of the measurements. However, it can be observed from Equation (22) that the
accuracy of the velocity estimation is influenced by the SNR, and random errors in the estimation are
inevitable. With a potentially inaccurate estimation, the phase generated by the target motion cannot be
compensated completely, leading to the degradation in the PC results. By using partial measurements
selected, the MS method gets the best performance. The essential reason is that by measurements
selection, the echoes with similar phase are chosen, which means the selection coefficient mpq,k = 1. The
phases of these selected measurements are approximatively coherent, leading to the best performance
of the MS method.

Furthermore, PSM estimation for a non-uniformly moving target is also analyzed. Figure 3 clearly
demonstrates the performance of the PC method is highly affected by the target’s motion. For the
non-uniform case, it is difficult to estimate the target velocity accurately, causing the incomplete
compensation of the measurements. The performance of PC method significantly deteriorates
compared with the results shown in Figure 2. Compared with PC, the MS method does not require
any prior information about the target motion and thus it can be valid for the non-uniform motion.
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Besides, as mentioned in Section 2, in order to assure the constant target PSM, the CPI should be
limited. Thus, the analysis of the proposed method for different integrated pulses N is given as follows.
Here, the control factor is set to be P = 10 and other parameters are same as those in Table 1. It can be
observed from Figure 4 that the number of N has almost no influence on the properties of these three
methods for estimating the moving target PSM. The proposed method still performs better than the
other two methods when the CPI is short, and the performance of the MS method is not sensitive to
the number of N.
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Figure 2. Results of three PSM estimation methods where P = 500.
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Figure 3. Results of three PSM estimation methods where P = 10.
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Figure 4. Results of three PSM estimation methods for different integrated pulses. (a) Results of three
PSM estimation methods where N = 4; (b) Results of three PSM estimation methods where N = 6;
(c) Results of three PSM estimation methods where N = 8; (d) Results of three PSM estimation methods
where N = 10.

4.2. PSM Estimation with System Errors

In this subsection, the influence of the system errors on the PSM estimation is simulated.
With the system errors of the well-known PARSAX radar system as a reference, the matrices are
set as follows [20]

R = T =

 1 0.05 exp
(

j
π

180

)
0.05 exp

(
j

π

180

)
1.05 exp

(
j

π

180

)
 (42)

Other simulation parameters are same as those in Table 1. Similarly, the PSMs of targets with
different motion states are estimated and the results are shown in Figures 5 and 6. The performance of
the MS method is the best among these three PSM estimation methods under two kinds of motion
states, and the reason has been given in the last subsection. Here, the difference is that, compared with
the results shown in Figures 2 and 3, even if the SNR is high, the maximum value of the PCC mean is
lower than 1. The reason is that when the isolation I of the transmitted is ignored, the limitation of
Equation (34) is

lim
SNR_av→∞

Ŝpq/HH_MS = lim
SNR_av→∞

Gpq

GHH
=

Apq

AHH
(43)
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If the system errors do not exist, Apq is equal to Spq and the limitation of Equation (34) is Spq/HH .
However, in this subsection, the system errors are set as Equation (42), leading to the limitation is not
equal to Spq/HH . Therefore, the PCC mean is lower than 1.
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Figure 5. Results of three PSM estimation methods where P = 500.
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Figure 6. Results of three PSM estimation methods where P = 10.
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5. Conclusions

For moving target PSM estimation, the measurement selection (MS) method is proposed in this
paper. This method selects the measurements by the criterion based on the SNR of the integration
echoes. Several numerical simulations and comparative analysis are conducted to demonstrate
and validate the superior performance of the proposed method, especially when the target exhibits
non-uniform motion, compared with the traditional methods. Furthermore, the authors plan to
conduct research on the PSM estimation for the extended target.
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