Next Article in Journal
Double-Group Particle Swarm Optimization and Its Application in Remote Sensing Image Segmentation
Next Article in Special Issue
Feature Extraction and Selection for Myoelectric Control Based on Wearable EMG Sensors
Previous Article in Journal
Robust Pedestrian Dead Reckoning Based on MEMS-IMU for Smartphones
Previous Article in Special Issue
Using Sleep Time Data from Wearable Sensors for Early Detection of Migraine Attacks
Article

Heart Rate Estimated from Body Movements at Six Degrees of Freedom by Convolutional Neural Networks

1
Department of Emotion Engineering, University of Sangmyung, Seoul 03016, Korea
2
Department of Intelligence Informatics Engineering, University of Sangmyung, Seoul 03016, Korea
*
Author to whom correspondence should be addressed.
Sensors 2018, 18(5), 1392; https://doi.org/10.3390/s18051392
Received: 9 March 2018 / Revised: 26 April 2018 / Accepted: 30 April 2018 / Published: 1 May 2018
Cardiac activity has been monitored continuously in daily life by virtue of advanced medical instruments with microelectromechanical system (MEMS) technology. Seismocardiography (SCG) has been considered to be free from the burden of measurement for cardiac activity, but it has been limited in its application in daily life. The most important issues regarding SCG are to overcome the limitations of motion artifacts due to the sensitivity of motion sensor. Although novel adaptive filters for noise cancellation have been developed, they depend on the researcher’s subjective decision. Convolutional neural networks (CNNs) can extract significant features from data automatically without a researcher’s subjective decision, so that signal processing has been recently replaced as CNNs. Thus, this study aimed to develop a novel method to enhance heart rate estimation from thoracic movement by CNNs. Thoracic movement was measured by six-axis accelerometer and gyroscope signals using a wearable sensor that can be worn by simply clipping on clothes. The dataset was collected from 30 participants (15 males, 15 females) using 12 measurement conditions according to two physical conditions (i.e., relaxed and aroused conditions), three body postures (i.e., sitting, standing, and supine), and six movement speeds (i.e., 3.2, 4.5, 5.8, 6.4, 8.5, and 10.3 km/h). The motion data (i.e., six-axis accelerometer and gyroscope) and heart rate (i.e., electrocardiogram (ECG)) were determined as the input data and labels in the dataset, respectively. The CNN model was developed based on VGG Net and optimized by testing according to network depth and data augmentation. The ensemble network of the VGG-16 without data augmentation and the VGG-19 with data augmentation was determined as optimal architecture for generalization. As a result, the proposed method showed higher accuracy than the previous SCG method using signal processing in most measurement conditions. The three main contributions are as follows: (1) the CNN model enhanced heart rate estimation with the benefits of automatic feature extraction from the data; (2) the proposed method was compared with the previous SCG method using signal processing; (3) the method was tested in 12 measurement conditions related to daily motion for a more practical application. View Full-Text
Keywords: accelerometer; gyroscope; heart rate measurement; seismocardiography (SCG); wearable device; convolutional neural networks (CNNs) accelerometer; gyroscope; heart rate measurement; seismocardiography (SCG); wearable device; convolutional neural networks (CNNs)
Show Figures

Figure 1

MDPI and ACS Style

Lee, H.; Whang, M. Heart Rate Estimated from Body Movements at Six Degrees of Freedom by Convolutional Neural Networks. Sensors 2018, 18, 1392. https://doi.org/10.3390/s18051392

AMA Style

Lee H, Whang M. Heart Rate Estimated from Body Movements at Six Degrees of Freedom by Convolutional Neural Networks. Sensors. 2018; 18(5):1392. https://doi.org/10.3390/s18051392

Chicago/Turabian Style

Lee, Hyunwoo, and Mincheol Whang. 2018. "Heart Rate Estimated from Body Movements at Six Degrees of Freedom by Convolutional Neural Networks" Sensors 18, no. 5: 1392. https://doi.org/10.3390/s18051392

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop