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Abstract: This paper presents a effective sensor fault detection and system reconfiguration approach
for DC-DC Boost converter. We consider to design a Luenberger observer to solve the problem of the
sensor fault detection of the DC-DC Boost converter. We establish mathematical model according to
the state of the switch . Luenberger observer is designed to produce residual errors and analyse faults.
We detect three types of sensor faults online and compare residuals with thresholds. The system
is able to maintain stability by taking system reconfiguration approach. The effectiveness of this
approach is demonstrated by simulations.
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1. Introduction

In recent decades, sensor fault detection in power electronics has aroused increasing attention.
Power electronics products, such as switching power supply, frequency converter and UPS power
supply, have been widely used in all aspects of social life and national economy such as aerospace,
automobile system, vehicle system, ship system, medical equipment and so on [1,2]. The safe operation of
power electronic products is of great significance to the safety, efficiency and quality of the entire system.

According to the power conversion type of the power treatment device, The switching converters
have the following four basic forms:AC-DC converters, AC-AC converters, DC-AC converters, DC-DC
converters. Thereinto, DC-DC converters have widely applied to many fields, including multiple
input source applications [3], offshore wind power [4] and so on. To achieve an ultrahigh step-up ratio
while maintaining a high conversion efficiency, a novel DC-DC converter topology is proposed in [5].
The design and control of DC-DC converters is an important branch of electronic technology. There are
three common fault in DC-DC converters: open -circuit fault, gain deviation fault and noise abnormity
fault. In this case, some solutions about fault detection and fault tolerant control methods have been
proposed [6–9]. In [10], the model-based estimator approach is used to design a fault diagnosis method
for switching power converters . In [11], based on analytical redundancy relations, the paper design
the sensor fault detection and isolation method. It is the role of transforming the direct current of
input into the direct current of output which has different characteristics. Thereinto, the DC-DC boost
converter is widely used into daily life. This is a direct-current converter with an output voltage
higher than the input voltage. In recent years, some papers propose different methods to research and
analysis this boost converter [12–18]. In [19], the paper proposed a open circuit switch fault detection
method which is very fast and effective with the fault tolerant converter topology.

In the field of automatic control, sensors are the main devices for information acquisition.
When a sensor faults occurs, it will have a serious impact on the follow-up monitoring and
controlling. Therefore, the researching of sensor fault detection is particularly important. Under these
circumstances, some papers proposed different sensor fault detection methods [20–23]. In addition,
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there are some reconfiguration schemes for fault tolerant control [24–27] . Common sensor faults
mainly include three kinds of faults: open-circuit fault, gain deviation fault and noise abnormity fault.
Real-time detection of DC-DC converter fault by online and the appropriate fault-tolerant control
approaches can improve the fault-tolerant ability of the system.

Many kinds of observer-based fault detection methods have been proposed which generate
residuals to detect system fault information [28–31]. More recently, different kinds of observers have
been used for fault detection, including Luenberger observers, adaptive observers, sliding mode
observers and so on. To observe the states and estimate the component parameters , the paper designs
a model-observer-based scheme for Buck converters [32]. The Luenberger observers are able to estimate
current and voltage accurately. In [33], the paper design a Luenberger observer for the sensor fault
detection and fault tolerant control.

This paper propose a sensor fault detection and system reconfiguration method for the DC-DC
Boost converter. Firstly, the boost converter is described as a switched model, which can precisely
capture the characteristics between different working modes of the converter. Secondly, a fault
detection observer is designed based on the faulted mode to construct residual signal. The residual
value is larger than the threshold when the sensor fault happens, an alarm is generated. Thirdly,
we design a switching control law for the Boost converter under healthy condition. Then we put to use
a system reconfiguration method to improve the fault-tolerant ability of the system. Finally, we apply
the method proposed above to three kinds of sensor faults in the current sensor and the voltage sensor.

The structure of the paper is organized as follows. The mathematical model of the Boost converter
is established in Section 2. The Luenberger observer is designed in Section 3. The switching control
law for healthy condition is presented in Section 4. In Section 5, we present fault detection and
system reconfiguration scheme design. In Section 6, The efficiency of this approach is demonstrated by
simulation examples. Finally, we arrive at the conclusion of this paper in Section 7.

2. System Model

The DC-DC Boost converter circuit is shown in Figure 1. The circuit is able to get a higher voltage
through the switch S . This process contains two operating modes. The switch is open (S = 0) when
the system is in mode 1. The switch is closed (S = 1) in mode 2 . The two operating modes can be
described as follows : 

S = 0

d
dt

iL = −R
L

iL −
1
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vc +
1
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Vin

d
dt

vc =
1

C0
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L
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Figure 1. Schematic representation of the DC-DC Boost converter.
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Then we can get the mathematical model of the circuit:

ẋ(t) = Aσ(t)x(t) + Bu(t)

y(t) = Cx(t)
(1)

In the above equation, x(t) is the state vector, y(t) is the output vector, u(t) is the input vector,
σ(t) appears the switching signal generated by converter control. Aσ(t), B and C are the collection of
state space models. Where x(t) , Aσ(t), B and C are set as:

x(t) =

[
iL(t)
vc(t)

]
, Aσ(t) =

[
− R

L − 1−S
L

1−S
C0

− 1
RloadC0

]
, B =

[
1
L
0

]
, C =

[
1 0
0 1

]
.

Remark 1. In this paper, two state vector (iL, vc) is used to build the system model and analyse the mathematical
model. Because we hope to get a stable output voltage for DC-DC boost converter. The voltage of capacitor is
equal to output voltage. Therefore, we focus on the state vector vc.

In the next sections, we need to realize the sensor fault detection and the system reconfiguration.
We design a Luenberger observer to produce a residual signal and compare it with a predefined
threshold. When the sensor fault happens, the residual value is larger than the threshold and an alarm
is generated. Thus, the value of Luenberger observer is applied to system switching law instead of
measured value. In addition, the output value y is replaced by the desired value x∗. Consequently,
The system is able to maintain stability by taking system reconfiguration approach and we can obtain
a stable output voltage. The block scheme of the fault detection and system reconfiguration is shown
in Figure 2.

Figure 2. Block scheme of the fault detection and system reconfiguration.

3. Luenberger Observer Design

Since sensor faults appear in the system, the output value y(t) will have some changes. So we can
describe the fault model of system as:

ẋ(t) = Aσ(t)x(t) + Bu(t)

y(t) = Cx(t) + Q f (t)
(2)
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where Q = I with appropriate dimensions and f (t) is the sensor fault signal which caused by the
undesirable sensor faults in the electric circuit. In order to realize fault detection, the following
Luenberger observer for the switched system is constructed:

˙̂x(t) = Aσ(t) x̂(t) + Bu(t) + H(y(t)− ŷ(t))

ŷ(t) = Cx̂(t)

r(t) = y(t)− ŷ(t)

(3)

where x̂(t) is the observer state, ŷ(t) is the observer output, H is the observer gain matrix and r(t) is
the observer residual vector .

Denoting e(t) = x(t) − x̂(t), the augmented state vector x̃(t) = e(t), r̃(t) = r(t) − f (t).
The augmented system of (2) and (3) can be written as

˙̃x(t) = Ãx̃(t) + B̃ f (t)

r̃(t) = C̃x̃(t) + D̃ f (t)
(4)

where [
Ã B̃

C̃ D̃

]
=

[
Aσ(t) − HC −H

C 0

]
(5)

The frameworks of fault detection observer design: the Luenberger state-observer is designed
such that the augmented system (4) is asymptotically stable when f (t) = 0 and under zero-initial
condition, For detection objective, the effects from the faults to the residual error signal r̃(t) are
minimized. The fault detection observer satisfies the following index :∫ ∞

0
r̃T(t)r̃(t)dt < γ2

∫ ∞

0
f T(t) f (t)dt (6)

In the following theorem, we obtain the necessary condition that system (4) satisfies the upper
requirement. The observer gain H can be achieved at the same time.

Theorem 1. Given the constant a1σ , if there exist matrix variables W, H, P =

[
P1 P2

∗ P3

]
> 0 satisfying

the inequalities
−W −WT P + WT Aσ −HC− a1σW −H 0
∗ a1σWT Aσ + a1σ AT

σ W − a1σHC− a1σCTHT −a1σH CT

∗ ∗ −γ2 I 0
∗ ∗ ∗ −I

 < 0 (7)

then the system (4) under arbitrary switching is asymptotically stable, and guarantees the robust performance (6).
Moveover, if (7) is feasible, then the observer gain in form of (3) can be given by H = (WT)−1H.

Proof of Theorem 1. Firstly, consider the stability for the system (4), we rewrite the system as
˙̃x(t) = Ãx̃(t) when f (t) = 0, and choose the common Lyapunov functions: V(x̃(t)) = x̃T(t)Px̃(t).

Then it has

V̇σ(x̃(t)) = x̃T(t)(ÃT P + PÃ)x̃ (8)
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We consider the following performance index Γ(t) =
∫ t

0 (r̃
T(τ)r̃(τ)− γ2 f T(τ) f (τ))dτ. For any

nonzero f (t) ∈ l2 [0, ∞) and the under zero-initial condition, we have

Γ(t) =
∫ t

0
(r̃T(τ)r̃(τ)− γ2 f T(τ) f (τ) + V̇σ(x̃(τ)))dτ −Vσ(x̃(t))

≤
∫ t

0
(r̃T(t)r̃(t)− γ2 f T(t) f (t) + V̇σ(x̃(τ)))dτ

It notes that

r̃T(τ)r̃(τ)− γ2 f T(τ) f (τ) + V̇σ(x̃(τ)) =

[
x̃(τ)
f (τ)

]T

Λ

[
x̃(τ)
f (τ)

]

where

Λ =

[
ÃT P + PÃ + C̃TC̃ PB̃ + C̃T D̃

∗ −γ2 I + D̃T D̃

]

Thus, if Λ < 0, it follows form (8) that V̇σ(x̃(t)) < 0,which implies that V(x̃(t)) converges to zero
as t→ ∞. The switched system (4) under arbitrary switching is asymptotically stable. Moreover, it also
implies Γ(t) < 0. Then, it has the robust performance (6).

It notes that Λ can be rewritten as

[
ÃT I 0
B̃T 0 I

]  0 P 0
P C̃TC̃ C̃T D̃
0 D̃TC̃ −γ2 I + D̃T D̃


 Ã B̃

I 0
0 I

 < 0 (9)

By Projection theorem, (9) is equivalent to 0 P 0
P C̃TC̃ C̃T D̃
0 D̃TC̃ −γ2 I + D̃T D̃

+ He


 −I

ÃT

B̃T

 [
W a1σW 0

] < 0 (10)

where W is the matrix variables of appropriate dimensions. By denoting H = WT H and applying
schur complement formula, and after some matrix manipulation, (10) becomes (7).

Remark 2. Theorem 1 has formulated the inequality conditions for the stability and the performance (6). As long
as the parameters satisfy the inequalities, the system is asymptotically stable and satisfies the robust performance
index (6). Moreover, it is noted that condition (7) is all convex. Hence, the problem of observer design can be
directly translated into solve (7). The observer gain can be derived by H = (WT)−1H.

4. System Control Law

4.1. Design of Control Law

In [34], the paper design a switching control law for the Boost converter under healthy condition.
In this paper, we use this switching law to guarantee the stability of the system. In this process, we will
use a Lyapunov function, see [35]. Denote z = x− x∗, then we consider the system

ż(t) = Aσz(t) + Aσx∗ + Bu(t) (11)

where x∗ = (i∗L, v∗c )T . Moreover, i∗L > 0 and v∗c > 0 are desired current and voltage. We choose the
control Lyapunov function

V(x) = zT Pz (12)
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P =

[
p11 0
0 p22

]
> 0 . Since S ∈ {0, 1} represents two modes of operation, there exist two

derivatives V̇0(x) {S = 0} and V̇1(x) {S = 1}. The switching law of system (1) is designed as follows:

(1) If V̇0(x) < V̇1(x), the system is in mode 1, in which the switch is open (S = 0).
(2) If V̇1(x) < V̇0(x), the system is in mode 2, in which the switch is closed (S = 1).

Remark 3. For guaranteeing the switching system (11) is asymptotically stable, we consider V̇(x) < 0.
For Lyapunov function V(x), the derivative of V(x) is a negative number. So the smaller the derivative,
the greater the attenuation rate of V(x). This condition is used to derive the upper switching law. Therefore,
we choose the switching law as follows:

σ(x(t)) = arg min
σ
{V̇σ(x) < 0}. (13)

By taking this switching control law, the switching system (11) can be stable as soon as possible
and we can obtain a stable output voltage. We will prove the feasibility of this switching law in the
following theorem.

Theorem 2. Let p11, p22 > 0, p11
L = p22

C , if exist vin < v∗c ≤
√

RloadVin
2
√

R
, and i∗L =

Vin−
√

V2
in−

4Rv∗c
2

Rload
2R , then the

system (11) is asymptotically stable under the upper control law. Moreover, the system (11) has the unique
equilibrium point (i∗L, v∗c ).

Proof of Theorem 2. For guaranteeing the stability of the system (11), we consider V̇(x) < 0.
There exist two derivatives V̇0(x) {S = 0} and V̇1(x) {S = 1}.

(1) For S = 0, we have V̇0(x) < 0. Substituting the parameters Vin, R, Rload, L, C, x∗,
using P11

L = P22
C gives

R(iL −
Vin + Ri∗L − v∗c

2R
)2 +

1
Rload

(vc −
Rload(i∗L +

v∗c
Rload

)

2
)2

>
(Vin − Ri∗L − v∗c )2 − 4Ri∗Lv∗c

4R
+

Rload(i∗L +
v∗c

Rload
)2

4

(14)

(2) For S = 1, we have V̇1(x) < 0. Substituting the parameters Vin, R, Rload, L, C, x∗, using again
P11
L = P22

C gives

R(iL −
Vin + Ri∗L

2R
)2 +

(vc − v∗c
2 )2

Rload
>

(Vin − Ri∗L)
2

4R
+

v∗c
2

4Rload
(15)

This gives the expressions

Φ0 = {(iL, vc) ∈ R2 : R(iL −
Vin + Ri∗L − v∗c

2R
)2 +

1
Rload

(vc −
Rload(i∗L +

v∗c
Rload

)

2
)2

>
(Vin − Ri∗L − v∗c )− 4Ri∗Lv∗c

4R
+

Rload(i∗2 +
v∗c

Rload
)2

4
}

(16)

Φ1 = {(iL, vc) ∈ R2 : R(iL −
Vin + Ri∗L

2R
)2 +

(vc − v∗c
2 )2

Rload
>

(Vin − Ri∗L)
2

4R
+

v∗c
2

4Rload
} (17)
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We also define ΨS:={x ∈ R2 : V̇S = 0}. Obviously, Ψ0 and Ψ1 are both ellipses. Compare 1
R

to Rload, we can get the graph as in Figure 3. The graph indicates that Φ0 is the external area of the
ellipse Ψ0. Φ1 is the external area of the ellipse Ψ1. For guaranteeing system (11) is asymptotically
stable, for each x ∈ R2, there exist S ∈ {0, 1} such that VS(x) < 0. As a result, the two ellipses must
have a unique crossover point at most, which leads to

V̇0(x) = V̇1(x) (18)

we have

(
Ri∗L

2

v∗c
+

1
Rload

)vc
2 − (

i∗LVin

v∗c
+

Ri∗L
2

v∗c
+

v∗c
Rload

)vc + Vini∗L = 0 (19)

Figure 3. An example of a possible sign distribution for the two ellipses V̇0(x) = 0 and V̇1(x) = 0.

Then Equation (19) should have a unique solution at most. By solving (19), we can get
i∗L =

Vin −
√

V2
in −

4Rv∗c 2

Rload

2R

v∗c ≤
√

RloadVin

2
√

R

(20)

Moreover, we can obtain (i∗L, v∗c ) is the unique crossover point of two ellipses which is the
equilibrium point of system (11). The proof of the theorem is complete.

Remark 4. (i∗L, v∗c ) actually is the intersection point of two ellipses. It is also a equilibrium point of the
switching law. In order to ensure that the equilibrium point is unique, the intersection point of two ellipses is

only one. Then we can get i∗L =
Vin−

√
V2

in−
4Rv∗c

2

Rload
2R and v∗c ≤

√
RloadVin
2
√

R
from the process of solving Equation (19).
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4.2. Separation Principle

In order to realize system reconfiguration, state value x and output value y are replaced by x̂
and x∗. Therefore, we will discuss the feasibility of this system reconfiguration approach. Let ϑ(t) =[

e(t)
z(t)

]
. Since e(t) = x(t)− x̂(t), z(t) = x(t)− x∗ it has

ϑ̇(t) =

[
ė(t)
ż(t)

]
=

[
Aσ − HC 0

0 Aσ

] [
e(t)
z(t)

]
+

[
0

Aσx∗ + Bu(t)

]
(21)

Calculating the poles of augmented system (21), then there

det[sI −
[

Aσ − HC 0
0 Aσ

]
] = det

[
sI − (Aσ − HC) 0

0 sI − Aσ

]
= det[sI − (Aσ − HC)]·det[sI − Aσ]

(22)

After the system reconfigured, it has

˙̂x(t) = Aσ x̂(t) + Bu + H(x∗ − ŷ(t))

ŷ(t) = Cx̂(t)

There exist e(t) = x(t)− x̂(t) and z∗(t) = x̂(t)− x∗, it has

ė(t) = Aσe(t) + Hz∗(t)

ż∗(t) = (Aσ − HC)z∗(t) + (Aσx∗ + Bu(t))

Denoting η(t) =

[
e(t)

z∗(t)

]
and calculating the poles

det[sI −
[

Aσ H
0 Aσ − HC

]
] = det

[
sI − Aσ −H

0 sI − (Aσ − HC)

]
= det[sI − Aσ]·det[sI − (Aσ − HC)]

(23)

Separation principle is applied in this process. From Equations (22) and (23) , we can see that the
poles of ϑ(t) and η(t) are the same. It indicates that ϑ(t) and η(t) are independent of each other. Thus,
the designs of the Luenberger observer and the switching control law can be independent. Hence the
system reconfiguration approach is feasible.

5. Fault Detection And System Reconfiguration Scheme Design

5.1. Residual Generation and Threshold Calculation

We calculate the threshold of sensor faults in this section. In this paper, we take into account
observerd errors and measurement noise when calculating the threshold. We use residual evaluation
function to calculate the threshold. This can minimize misdiagnosis. This paper focuses on three kinds
of sensor faults in current sensor and voltage sensor, including open-circuit fault, gain deviation fault,
and noise abnormity fault. In this paper, the designed Luenberger state-observer is used to detect three
kinds of sensor faults.

In sensor fault detection, the measured value and observed value can produce residuals.
The residual error for current of inductor and voltage of resistor are determined to be
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{
ri(t) = iL(t)− îL(t)

rv(t) = Vc(t)− V̂c(t)
(24)

Define the residual r1(t) = r2
i (t) + r2

v(t). In healthy mode, the residual error maintain at pretty
low value.The residual increases instantly when sensor faults happen. We need to choose a threshold
to guarantee the precision of fault detection and avoid misdiagnosis. This paper adopts residual
evaluation function when calculating the threshold. The threshold can be chosen as

J(r1(t)) =

√
1
M

∫ M

0
r1(τ)Tr1(τ)dτ (25)

where 0 is the initial evaluation time instant and M is the evaluation time step. Once the evaluation
function has been selected, we are able to determine the threshold. The threshold Jth is selected such
that f (t) = 0. Thus, the threshold in this paper is determined as

Jth = sup
f (t)=0

J(r1(t)). (26)

Based on this, the occurrence of faults can be detected by comparing r1(t) and Jth according to the
following logic rule: {

r1(t) ≤Jth, the system no alarm,

r1(t) >Jth, the system with alarm.

5.2. Control System Reconfiguration

Fault detection and system reconfiguration can improve the fault-tolerant ability of system
operation. By means of system reconfiguration, system can operate safely and maintain stability when
sensor faults happen.

System reconfiguration contains two parts in this paper. The Luenberger state-observer operates
normally when sensor fault happens. Hence, the value of Luenberger observer is applied to system
switching law instead of measured value. In addition, the output value y is replaced by the
desired value (i∗L, v∗c ) at the same time. Thus, fault tolerant control is realized by taking this system
reconfiguration approach. This fault detection and system reconfiguration method is applied to three
kinds of sensor faults in the current sensor and the voltage sensor.

6. Simulation Results

The efficiency of this approach is demonstrated by simulations in this section. The Boost
converter model is built under MATLAB/Simulink. The simulations are performed using Vin = 190 V,
C = 0.00285 F, L = 0.005 H, R = 0.082 Ω, Rload = 100 Ω, (i∗L, v∗c ) = (7.6, 380). To better meet the
performance index (6) and make γ get the minimum value. We give a11 = 299, a12 = 152. By solving
the LMI (7), and the FD observer gain matrix is shown as:

H =

[
36.4677 −17.0967
28.5219 75.6359

]

In this paper, we choose the threshold as Jth = 0.02. The three kinds of sensor faults in current
sensor and voltage sensor are simulated when the system is in stable operation.

(1) Simulations for open-circuit fault in current sensor and voltage sensor: The simulation results
for the open-circuit fault are shown in Figure 4. The state-observer still works properly when
open-circuit fault occurs. Since the open-circuit fault occurs at t = 0.2 s, the residual error r1(t)



Sensors 2018, 18, 1375 10 of 13

is larger than the threshold. Hence the measured values are replaced by the observed values to
realize system reconfiguration. According to Figure 4c,f, the output voltage remains relatively
stable after the open-circuit fault. This indicates fault tolerant control is realized.

(2) Simulations for gain deviation fault in current sensor and voltage sensor: the gain deviation fault
occurs separately in current sensor and voltage sensor at t = 0.2 s. The simulation results are
shown in Figure 5. As shown in Figure 5b,e, the residual error r1(t) increases and oversteps the
threshold, which indicates the current sensor fault and voltage sensor fault. Then the system is
reconfigured. Finally, we can get a relatively stable output voltage.

(3) Simulations for noise abnormity fault in current sensor and voltage sensor:a group of random
noise is added separately on the measured values of the current iL and the voltage vc at t = 0.2 s.
The simulation results are shown in Figure 6. As Figure 6b,e suggests,the residual error r1(t)
keeps to zero before t = 0.2 s. Then the residual error r1(t) increases and overtakes the threshold,
which indicates noise abnormity fault in current sensor and voltage sensor. By the fault tolerant
control, we can get a relatively stable output voltage.
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Figure 4. (a–c) are simulation results for the open-circuit fault in current sensor; (d–f) are simulation
results for the open-circuit fault in voltage sensor.
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Figure 5. (a–c) are simulation results for current gain deviation fault in current sensor; (d–f) are
simulation results for voltage gain deviation fault in voltage sensor.
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Figure 6. (a–c) are simulation results for current noise abnormity in current sensor; (d–f) are simulation
results for voltage noise abnormity in voltage sensor.

Remark 5. The above simulation results validate the effectiveness of the proposed metnod in the Boost converter.
Besides, we applied this method to converters, including Buck converters and Buck-Boost converters. In addition,
the validity of the presented approach is demonstrated by simulation examples.
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7. Conclusions

This fault detection and system reconfiguration method is applied to three kinds of sensor faults
in the current sensor and the voltage sensor. The simulation results are shown to test and verify the
effectiveness of the approach. The system is able to maintain stability by taking system reconfiguration
approach. We can get a relatively stable output voltage after occurrences of sensor faults. We will build
a experimental platform to verify the proposed fault detection and system reconfiguration method in
the follow-up work.
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