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Abstract: The emergence of smart Internet of Things (IoT) devices has highly favored the realization of
smart homes in a down-stream sector of a smart grid. The underlying objective of Demand Response
(DR) schemes is to actively engage customers to modify their energy consumption on domestic
appliances in response to pricing signals. Domestic appliance scheduling is widely accepted as an
effective mechanism to manage domestic energy consumption intelligently. Besides, to residential
customers for DR implementation, maintaining a balance between energy consumption cost and users’
comfort satisfaction is a challenge. Hence, in this paper, a constrained Particle Swarm Optimization
(PSO)-based residential consumer-centric load-scheduling method is proposed. The method can be
further featured with edge computing. In contrast with cloud computing, edge computing—a method
of optimizing cloud computing technologies by driving computing capabilities at the IoT edge of the
Internet as one of the emerging trends in engineering technology—addresses bandwidth-intensive
contents and latency-sensitive applications required among sensors and central data centers through
data analytics at or near the source of data. A non-intrusive load-monitoring technique proposed
previously is utilized to automatic determination of physical characteristics of power-intensive home
appliances from users’ life patterns. The swarm intelligence, constrained PSO, is used to minimize
the energy consumption cost while considering users” comfort satisfaction for DR implementation.
The residential consumer-centric load-scheduling method proposed in this paper is evaluated under
real-time pricing with inclining block rates and is demonstrated in a case study. The experimentation
reported in this paper shows the proposed residential consumer-centric load-scheduling method can
re-shape loads by home appliances in response to DR signals. Moreover, a phenomenal reduction in
peak power consumption is achieved by 13.97%.

Keywords: demand-side management; demand response; edge computing; energy disaggregation;
swarm intelligence

1. Introduction

A smart city in brief can be defined as a city in which Information and Communication Technologies
(ICT) such as smart sensing, cognitive learning as well as context-aware computing are employed to
make lives more comfortable and sustainable [1]. The Internet of Things (IoT), being designed and used
to respond to needs for real-time and context-specific information intelligence and analytics to address
specific local imperatives [2], is a key enabler for smart cities. Management of smart and green buildings
and houses in downstream sectors of a smart grid often requires analyzing IoT data from inter-connected
end-sensing devices and actuators, to optimize electrical efficiency and comfort satisfaction. Smart grid

Sensors 2018, 18, 1365; d0i:10.3390/s18051365 www.mdpi.com/journal/sensors


http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-1407-2262
http://www.mdpi.com/1424-8220/18/5/1365?type=check_update&version=1
http://www.mdpi.com/journal/sensors
http://dx.doi.org/10.3390/s18051365

Sensors 2018, 18, 1365 20f13

techniques, which conduct ICT to upgrade a traditional power grid into a smart one, are being developed
to gains of energy inefficiencies by consumers where residential households have a significant role in
energy consumption and threaten the power grid in grid health and power reliability. From smart and
green buildings and houses in downstream sectors of a smart grid, significant efficiency gains make
cities sustainable in terms of resources. The realization of smart, energy-efficient as well as green home
infrastructure will form the backbone of future green city architecture [3]. Therefore, energy management
covering Demand-Side Management (DSM), peak load reduction, and carbon emissions reduction [4] in
smart buildings and houses is a key aspect of building efficient smart cities [5]. As pointed out in [6],
there has been evidence from various load surveys that the demand of electricity in residential and
commercial buildings is highly variable and changes throughout the day. Hence, conducting efficient
energy management of home demands as well as reducing peak energy demands meet the rapidly growing
need of building efficient smart cities. In contrast with increasing the maximum power generation capacity
by more required power generators of power plants in a smart grid, reducing peak loads is mostly valuable
for utilities to meet the increased energy demands. Demand Response (DR) strategies that motivate
consumers to re-shape load profiles as well as limit peak energy demands by home appliances through
smart meters based on time-based rates are gaining an importance in a smart grid, due to continuously
increasing energy demands by consumers. Both the consumers that respond to DR signals in exchange for
a discount on electricity prices and the utilities that ensures the un-jeopardized stability of the smart grid
can benefit from DR as DSM.

In the literature, several advanced technical optimization approaches that deal with residential
DR for smart homes in a smart grid have been developed, where (1) heuristic-based load control
strategies for diverting peak power consumption [6] and shedding household appliances [7] and
(2) load-scheduling methods for scheduling power consumption on household appliances [8-18] have
been proposed. The authors have attempted to address residential DR. Nevertheless, most of the
approaches do not consider Real-Time Pricing (RTP) with Inclining Block Rates (IBR). Compared with
the Time-Of-Use (TOU) model where the variant of dynamic pricing establishes a variable electricity
prices structure for peak, shoulder, and off-peak hours, RTP has been identified as the popular variant
of dynamic pricing for DR implementation in a future grid as indicated in [18]. IBR can diminish peak
energy demands. Besides, before taking the advantage of RTP in DR, consumers need to first determine
the physical characteristics of household appliances based on their past trends of using electricity
manually. They do not pay attention to automated residential DR; user intervention to the approaches
is required. Also, all the approaches in the literature do not consider locally generated renewable
energy such as photovoltaic power generation and/or wind power generation during residential
DR, as renewable energy has the advantage that energy is clean and abundantly available in nature.
In [6], the study mainly focuses on proposing a home energy management system, Home Energy
Management as a Service, constituting reinforcement learning with four peak reduction thresholds
and being interactive with the smart environment. In [9], a heuristic-based load-scheduling method
that optimizes the electricity cost was realized. However, in the research, the peak power consumption
leading to a relatively high Peak-to-Average Ratio (PAR) may emerge when the considered electricity
price is low. Thus, IBR should be considered and included for residential DR implementation. In [10],
both the electricity cost and PAR can be simultaneously reduced. However, the assumptions made in
the study seem impractical, as indicated in [8]. To alleviate the defects in [9], reference [8] proposes
a Genetic Algorithm (GA)-based load-scheduling approach optimizing household appliances based
on RTP with IBR. In contrast with TOU establishing an electricity price-varying model for peak,
shoulder, and off-peak hours, RTP is identified and expected as the popular variant of dynamic pricing
for DR implementation in smart grids. With proposed in [8], residents who conduct and use the
load-scheduling approach to optimize their electricity cost need to manually specify the physical
characteristics of each enrolled household appliance in advance. In [10-12], the authors considered the
energy consumption cost as the primary objective function of DSM. Besides, in the research, the IBR
that diminishes the peak power consumption is not taken into consideration. In [13], the authors
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developed a recursive process on four load control scenarios for reduction of peak power computation.
During the recursive process in [13], RTP is considered. In [14], a variant of ant colony optimization is
used to solve the DSM problem. The research in [15] against most up-to-date studies in non-intrusive
load monitoring [16,17] as a part of DSM takes into consideration RTP with IBR for DR implementation.
However, the PAR reported in the research could be improved. Assuming an advanced building
energy management system for air-conditioning facilities in commercial buildings, the researchers
in [18] study a simulated annealing optimization that minimized an evaluation function consisting of
power cost and comfort degradation terms.

As motivated before and surveyed above, energy efficiency is one of the central issues in smart and
green buildings and houses. Intelligent energy management encompassing modern IoT technologies
and data science analytics to re-shape load profiles as well as reduce peak energy demands by home
appliances through smart meters based on time-based rates (a.k.a. dynamic pricing) unlocks the full
potential of smart and green buildings and houses. In summary, the main objective of the work in this
paper is to shift load profiles by home appliances as well as cut down on peak energy demands through
a new constrained swarm intelligence-based residential consumer-centric DSM method considering
predictable day-ahead RTP with IBR and comfort satisfaction of using electricity to consumers based
on their past trends of gathered load data in a smart home environment with minimal user intervention.
The new method modelled for residential DR, presented in this paper, and used to achieve the objective
is (1) facilitated by energy disaggregation [15] for fully automated physical characteristics of household
appliances, (2) mathematically formulated in a weighted-sum manner, and (3) executed for load
scheduling under IBR-combined predictable day-ahead RTP signals. In this paper, locally generated
renewable energy such as photovoltaic power generation and/or wind power generation is considered
and mathematically formulated. This is because renewable energy has an advantage in which energy
is clean as well as infinite in nature. RTP allowing electricity prices to change on an hourly time basis
based on market demands is considered in this paper, since RTP identified and combined with IBR will
be used as the popular dynamic pricing of DR implementation for future smart grids. As validated in
this paper, a phenomenal peak energy demand reduction of 13.97% is achieved by the new constrained
swarm intelligence-based residential consumer-centric DSM method. Major abbreviations/acronyms
in this paper are defined in Table 1.

Table 1. Nomenclature.

Abbreviation/Acronym  Expanded Form

ICT Information and Communication Technologies
IoT Internet of Things
DSM Demand-Side Management
DR Demand Response
RTP Real-Time Pricing
IBR Inclining Block Rates
PAR Peak-to-Average Ratio
PSO Particle Swarm Optimization
[, Bi] a time interval in which the i-th schedulable home appliance in a smart
v home environment was identified and expected statistically for use
I; a time duration of the presence of the i-th schedulable home appliance
Ny the start instance of the i-th schedulable home appliance
! scheduled /optimized
5. a marginal parameter that the i-th schedulable home appliance is valid
1

to be scheduled/optimized

P! ouable- i a term of locally generated renewable energy resources considered
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This paper is organized as follows. The residential consumer-centric DSM model used to realize
DR programs to utilities is given in Section 2. Section 3 presents the proposed method. Experimentation
is conducted in Section 4. Finally, Section 5 concludes this paper.

2. Residential Consumer-Centric Energy Management Model Involving Future Edge Computing

An Overview of the residential consumer-centric DSM model is depicted in Figure 1. The model
can be further featured with edge computing where a method of optimizing cloud computing
technologies by driving computing capabilities at the edge/IoT data sources of the Internet emerges as
one of the emerging trends in engineering technology.
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Figure 1. Schematic Diagram of the residential consumer-centric DSM model enabling utilities and
consumers to operate their energy management schemes.

The model mainly comprises a smart meter used to receive DR signals from utilities via a wide area
network/advanced metering infrastructure for DSM, a home gateway implemented on an embedded
system in [15] or a laptop computer in this paper and acted as a well-known Energy Management Controller
(EMC), and home appliances monitored and optimized for substantial electricity cost savings with
consideration of user comfort preferences. A wireless communication network/wireless home area network
constructed and used to forward gathered load information from monitored home appliances to the central
EMC for further DR implementation. In contrast with cloud computing, edge computing, a method of
optimizing cloud computing technologies by driving computing capabilities at the IoT edge of the Internet
as one of the emerging trends in engineering technology, addresses bandwidth-intensive contents and
latency-sensitive applications required among sensors and central data centers through data analytics
at or near the source of data. To the home gateway in the proposed residential consumer-centric DSM
model a BeagleBoard embedded system having an OMAP3530 720 MHz ARM® Cortex™-A8 processor
(BeagleBoard, Texas Instruments, Dallas, TX, USA) can be featured, where an Apache HTTP server,
MySQL Relational Database, PHP sous Linux OS stack can also be configured for the implementation and
realization of edge computing as one of the emerging trends in engineering technology. The upgraded
one can be applied to different IoT environments/use cases where (i) network connectivity is not always
available or is limited and (ii) data need to be processed for real-time actions at the IoT data source.
In this paper, the energy disaggregation developed in [15] is conducted for automated determination
of operational characteristics of monitored home appliances from emerged human life patterns/load
profiles. In this paper, the proposed constrained residential consumer-centric DSM method for electricity
cost versus discomfort minimization along with peak demand reduction is implemented in R language.
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R language is a free software environment for statistical computing and graphics; it publicly provides a
free package repository to feature more than 11,800 available software packages ranging from Machine
Learning & Statistical Learning to Graphics for Data Science/Big Data analytics and data visualization [19].
In this paper, R language is also suited and used as a TCP/IP server (i) allowing engineering programs
to use facilities of R from various programming languages without the need of initializing R or linking
against R libraries and (ii) being able to start multiple R serves to handle multiple connections via different
TCP/IP ports for concurrent R sessions [19]. For pairing R/SparkR with the EMC to Big Data analytics,
we will demonstrate a more pragmatic approach against the method proposed in this paper in a Big Data
analytics way.

3. Energy Disaggregation-Piloting Constrained Swarm Intelligence

To take advantage of DR programs such as minimization of electricity costs considering user
satisfaction, residents need a home wizard to help them determine when their home appliances
reacting to DR pricing must be scheduled based on their past trends.

In this section, the constrained swarm intelligence-based consumer-centric DSM method proposed
in this paper is introduced. The proposed constrained swarm intelligence-based consumer-centric DSM
method involves the following two stages. In the first stage, an energy disaggregation algorithm proposed
in [15] is conducted and used to automatically characterize home appliances and consequently remove user
intervention (there is no need to manually specify load characteristics/constraints to the objective function
for DR implementation) based on historical data with past trends. In the second stage, a constrained
swarm intelligence, constrained Particle Swarm Optimization (PSO), is executed for optimal schedules
of monitored and enrolled home appliances in response to DR pricing once the home appliances are
characterized through energy disaggregation.

3.1. Particle Swarm Optimization

In a smart grid, down-stream sectors have a huge number of different types of home appliances.
The home appliances also have different load characteristics such as power ratings as natural signatures
and operational constraints with various user comfort preferences. In literature, mathematical
techniques such as linear programming can be employed and used to efficiently handle such the
complexities. However, more computational resources are required, and they are inadequate to handle
multiple constraints [20-22]. Meta-heuristics such as swarm intelligence, PSO, have been shown
superior capabilities to cope with such the complexities. In this paper, the PSO used during the
optimization process of the proposed residential customer-centric DSM model in this paper is briefly
discussed below.

The conventional PSO [23-27] inspired by the swarming or collaborative behavior of biological
populations and developed by Dr. Eberhart and Dr. Kennedy in 1995 is a population-based stochastic
optimization technique. The PSO is similar to GA in the sense that these two meta-heuristics are
population-based search methods. Compared with the GA solving engineering optimization problems
that the search space is highly modal, discontinuous, and/or constrained [24], the PSO where the
engineering optimization problems addressed by the GA can also be solved has the following three
advantages: First, there are no explicit evolution operators—selection operations, crossover operations,
and mutation operations. Second, it has low probabilities that solutions fall in local optimization
regions. Third, the designed optimization process has fewer adjusted parameters than that of the
GA. The PSO has been successfully applied in many engineering fields such as continuous function
optimization and fuzzy logic control. The conventional PSO is initialized with a population of randomly
generated particles as solution candidates. It searches for global optima by updating particles through
iterations; particles having their own velocity to direct the flying of themselves fly through the search
space by following the current optimal particles (it is the best strategy to find the best solution).
In each generation of the optimization process, each particle is updated by ppes; and gpest. Where, ppes
is the best solution (from the local view), which has achieved so far; gy..; is the best solution (from the
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global view) that the solution is obtained currently by any particle in the population. After finding
Prest and gpest, the particle updates its velocity and position as follows.
Use (1) to update particle velocity “v[t + 1].”

o[t + 1] =w - o[t] + ¢ - rand() - (Ppest[t] — present[t]) + cp - rand() - (pest[t] — present[t]). 1)

In Equation (1), ¢ denotes the t-th iteration; w is the inertia weight parameter; rand() being a
randomly generated real number belongs to (0, 1); c; andc; are acceleration factors. In this paper, w in
Equation (1) varies as Equation (2).

W = Wyax — (Wiax — Wiyin) - (Iterationy / Iterationyygy). 2)

In Equation (2), Iterationy,y stands for the maximum number of iterations. Moreover, in this paper,
coefficients c; and ¢ in Equation (1) are adaptively changed, which impacts on the convergence speed
and optimization accuracy [19]; ¢; and ¢, are adapted by Equations (3) and (4) respectively during the
optimization process.

€1 = Climax — (Clmax — Cimin) - (teration; / Iterationyy,y). 3)

€2 = Comax — (Comax — Comin) - (Iteration; / Iterationyy,y). 4)

Use Equation (5) to update particle position “present[t + 1].”
present[t + 1] = present[t] + v[t + 1]. (5)

From generation to generation, particles converge to the best solution. The pseudo code of the
PSO procedure used to realize residential consumer-centric DSM in this paper is given in Algorithm 1.
More variants such as swarm activity defined in [28] and used as the root mean square velocity of particles
in PSO can also be conducted for examinations.

Algorithm 1: The PSO procedure with its variants proposed in [26]

For each particle
Randomly Initialize the particle
End

Do
For each particle
Compute its fitness value (the objective function optimized for residential consumer-centric DSM in this paper
is described in Section 3.2)
If the fitness value is better than py,g; in history, then
Set the current value as the new pp,g;
End
Choose the particle with the best fitness value (against all the other particles in the population) as the gpes;
For each particle
Compute its particle velocity according to Equation (1)
Update its particle position according to Equation (5)
End
During the optimization process, operational constraints by the objective function in Section 3.2 need to
be satisfied.
While the pre-specified maximum iteration or the minimum error tolerance is not attained
The goal of the constrained PSO used in this paper is to minimize electricity costs and maximize user
satisfaction; at the same time, all the constraints are respected.

The residential consumer-centric DSM addressed in this paper and optimized by the PSO above
is mathematically modeled in Section 3.2.
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3.2. Load-Scheduling Formulation

The objective of the proposed residential consumer-centric DSM solved by the PSO in this paper
is to simultaneously optimize electricity costs and user satisfaction while respecting all operational
constraints of appliance models. An appliance model is described below.

Consider there are n schedulable home appliances monitored and enrolled for participation in
DR programs. 1 day is divided into 24 h with a total of T time slots. A schedulable home appliance
model can be represented by a tuple: («;, B;, l;, si, 6;). Where, [«;, B;] stands for the time interval in
which the i-th schedulable home appliance in a smart home environment was identified and expected
statistically for use through an analysis of energy disaggregation [15]. [; is the time duration of the i-th
schedulable home appliance in which the load is present. Notice that 8; — a; must be greater than or
equal to /;. It must also be less than or equal to T. s; ranging from the time interval [«;, B; — I;] accounts
for the time in which the i-th schedulable home appliance is started for use. By introducing a marginal
parameter, ¢;, s; of the i-th home appliance that is valid to be optimized falls into the time interval
[a; — 6;, Bi — I; + 61l

Now, the mathematical formulation of the objective function that is subject to the operational
constraints to the constrained swarm intelligence-based residential consumer-centric DSM in this
paper is clarified as Equation (6).

H=24 n . . n
Minimize w1-"T (£ Pl 50) = Phyre S mi e sl
= 1= 1=
s.t. s; € [a; — 0, Bi — 1i + 64

Equation (6) shows the objective function to be optimized and composed of the electricity cost
and the user satisfaction. In Equation (6), the two objectives are fused into one single objective in
a weighted-sum way. The PSO simultaneously optimizes the two objectives. The two objectives
can be assigned equal weights w; and wy, respectively. The weight coefficients can vary from 0 to
1, and wy + wy = 1. 75, in Equation (6) denotes the hourly electricity expense; it combines day-ahead
RTP with five-level IBR. The five-level IBR used imposes more expense and diminishes PAR. It can be
expected that IBR avoiding the outcome of peak demands during the optimization process restrains
PAR so that the un-jeopardized stability of the power grid remains to utilities. In Equation (6), Pi,,,ting
represents the power rating of the i-th home appliances. x;,' identifying whether the i-th home appliance
is being operated for use in period h or not belongs to {0, 1}. The constraints in Equation (6) imply
that operational length of scheduled home appliances in time duration is all complete/satisfactory
to avoid the users’ frustration. That is, the home appliances scheduled fulfill their operation time.
In the first objective of Equation (6), must-run service of home appliances is considered. Also, the first
objective is dually altered by a term, P oewavie- Dy Of locally generated renewable energy resources,
where local renewable energy such as photovoltaics with output power of P rewable 1S generated and
identified in time period of A for load scheduling. In Equation (6), the second objective considering
user satisfaction of using electricity is a shifted control of Is; — a;|. J; accounts for the marginal
parameter that the i-th schedulable home appliance falling into the time interval [a; — J;, B; — I; + J;] is
valid to be scheduled/optimized.

Through the constrained optimization process, it is depicted that the total electricity cost must
be less than that of the original one. Moreover, with or without use of the proposed constrained
PSO-based residential consumer-centric DSM method, the total energy consumption on the home
appliances must be the same.

In this paper, the following two constraints are also made and satisfied during the constrained
optimization process. First, the scheduled home appliances are not interruptible. Second, during the
optimization process, the total ampacity must not exceed the ampere capacity of the circuit breaker(s)
in the main electrical panel of the household.
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4. Case Study

Experimentation is conducted in this section. The proposed constrained swarm intelligence (PSO)-
based consumer-centric DSM method is examined in a household. No renewable energy generated
can be included and used for the home appliances in the household. The home appliances used in
the household are listed in Table 2. During the experimentation, data were gathered from the home
appliances for 30 days; 1 day is divided into 1440 time slots (the time resolution is 1 min). During the load
scheduling process in this paper, there is no need to manually pre-specify the physical characteristics of the
enrolled schedulable home appliances in Table 3. That is, the energy disaggregation algorithm presented
in [15] and applied on the gathered data is used to statistically and automatically identify the physical
characteristics, a;, B;, and I;, of the enrolled schedulable home appliances by consumers with their past
comfort satisfaction of using electricity for constrained PSO where randomly-generated particles encoded
for s; and evaluated according to Equation (6) considering renewable energy resources under day-ahead
predictable IBR-combined RTP are heuristically initialized in interval [&; — J;, B; — I; + §;]. The detailed
optimization process by the constrained PSO is given later. Figure 2 shows the load profile of electric water
boilers. The load profile of the schedulable home appliances is shifted according to DR pricing, during
the optimization process. The energy disaggregation-piloting constrained PSO residential consumer DSM
method proposed in this paper can be used to forecast short-term energy consumption based on the past
trends of electricity usage by the resident(s) as well as minimize energy wastage of schedulable home
appliances consuming electricity energy, as shown in Figure 2 as an example. The proposed method
meta-heuristically optimizes the electricity cost while considering the user satisfaction under IP-based
day-ahead IBR-combined RTP. The five-level IBR can be seen in Figure 3. The RTP assumed to be predicted
ahead of the day, used to test the proposed method in this paper, and given in Figure 4 changes every
hour. The accumulation time is scaled down from 1 month to 1 h. For instance, if the accumulative power
consumption, 0.3322 kWh/h as an example, exceeds 0.1667 kWh/h, the received RTP within that hour is
multiplied by a ratio of 1.276. The IBR imposes more expense and alleviates high PAR. 1 in Equation (6)
becomes a dummy variable that total H in number equals 120 instead of 24 because 1 h is divided into
5 time slots. In the meantime, the IBR thresholds in every 12-min time slot can be computed and obtained.
During the experimentation, the constrained PSO introduced in Section 3.2 is conducted for residential
consumer-centric DSM. The parameters used by the constrained PSO are given in Table 3.

Table 2. Monitored home appliances.

Home Appliance Power Rating (kW)
electric rice cooker 1.10
electric water boiler 0.90
Steamer 0.80
TV 0.22
range hood 0.14
PC 0.35
hair dryer 1.20
washing machine 0.30

air conditioner drawing variable power draws

Table 3. Statistically identified physical characteristics [15] of the enrolled schedulable home appliances.

Schedulable Home Appliances [a;, Bil [n? J;
electric water boiler [1035, 1071] 23 180
steamer 22 [361, 379] 15 60

steamer P [589, 606] 15 90

steamer © [672,721] 36 90

steamer 9 [1035, 1084] 24 90

H[-]] rounds the averaged J; to the nearest integer. The averaged /; is less than ¢;, and is obtained from the historical
data statistically analyzed through the energy disaggregation. 2 steamer 4 represent the steamer is used four times
in chronological order in one day.
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Figure 2. Load profile of electric water boilers.
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Figure 3. Five-level IBR used in this paper and announced by Taipower , a state-owned electric power
industry (Taiwan Power Company, Taipei City, Taiwan) providing electricity to Taiwan and offshore
islands of the Republic of China, in Taiwan.
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Figure 4. Assumed and simulated day-ahead RTP used to test the proposed method in this paper.

During the optimization process, each particle is encoded as a serial of 5 real numbers s; (refer
to Table 3 in this case study), and is heuristically generated at random. The range of each weight
coefficient is bounded by interval [—10, 10]. The PSO evaluates each particle in the current population
based on the pre-clarified and problem-dependent objective function. The objective function clarified
in this paper can be applied to domestic load scheduling with consideration of locally equipped
renewable energy resources. The two objectives in Equation (6) were assigned an equal value of
weights w; and wy, respectively. In this paper, the PSO is implemented in R language, which is a free
software environment for statistical computing and graphics and provides a free package repository to
feature more than 11,800 available packages ranging from Machine Learning & Statistical Learning to
Graphics for data science analytics and data visualization. Also, it is run on an ASUS ZENBOOK™
Intel® Core™ i7 UX410UQ laptop computer. As shown in Figure 5, the optimal fitness value achieved
and reported by the PSO was 15.070. Through the optimization process, s;* is [electric water boiler,
steamer?, steamer®, steamer®, steamerd] = [1034.948, 361.1806, 589.5783, 671.9045, 1033.975]. According
to the RTP given in Figure 4, the resulting residential consumer-centric DSM solved by the constrained
PSO is shown in Figure 6. The whole-house load profile was re-shaped through the optimization
process. The assumed and simulated predictable day-ahead RTP considered and used in this paper is
based on an averaged daily load curve by Taipower (Taiwan Power Company, Taipei City, Taiwan),
where the average daily load by houses in residential sectors of the power grid in Taiwan should be
quite similar to that of the power generation cost by the utility (Taipower). Based on the past trends of
load data automatically mined from the residents with their comfort satisfaction of using electricity,
the home appliances scheduled for a new whole-house load profile (Figure 6b) and suggested to the
residents with their past trends of using electricity are able to react to the assumed and simulated
IP-based day-ahead IBR-combined RTP signal from the utility.

The economic benefit and phenomenal reduction of PAR achieved by the proposed method for
residential consumer-centric DSM are summarized in Table 4.

As shown in Table 4, a phenomenal reduction in peak power consumption is achieved by 13.97%.
The result shows the evidence of the proposed constrained PSO-based residential consumer-centric
DSM method considering comfort satisfaction of using electricity to consumers based on the past
trends of gathered load data in a smart home environment. Energy demands in residential dwellings
are related to activity patterns of residents [29]. Appliances modeled in Equation (6) and managed by
the residential consumer-centric DSM model in this paper can be further analyzed as activity patterns
for human life-pattern identification.
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Table 4. Economic benefit and phenomenal reduction of PAR achieved in this paper.

PSO-Based Residential Consumer-Centric DSM

under IBR-Combined RTP Unscheduled Demand Scheduled Demand
Total Electricity Cost ($) 28.4482 28.2073 (—0.2409/improved by 0.85%)
PAR 3.3222 2.858 (—0.4642 /improved by 13.97%)
160
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Figure 5. The optimal fitness value achieved and reported by the PSO was 15.070.
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Figure 6. DSM /DR implementation with/without the proposed Residential consumer-centric DSM
method: (a) the original load profile and (b) the resulting residential consumer-centric DSM solved by
the PSO.
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5. Conclusions

In this paper, a residential consumer-centric DSM is first modelled. The model proposed in
this paper will be featured with edge computing where a method of optimizing cloud computing
technologies by driving computing capabilities at the edge/IoT data sources of the Internet emerges as
one of the emerging trends in engineering technology. Then, in the model a new constrained swarm
intelligence-based residential consumer-centric DSM method considering predictable day-ahead RTP
with IBR and comfort satisfaction of using electricity to consumers based on past trends of load data in a
smart home environment with the required minimal user intervention of setting the marginal parameter
of each enrolled schedulable household appliance is implemented and validated, where electricity
cost versus discomfort minimization along with peak demand reduction is realized. Nowadays,
many households adopt the use of clean and sustainable renewable energy sources to satisfy their
load demands. The objective function of Equation (6) clarified in this paper is considered alongside
domestic load scheduling in the presence of locally equipped renewable energy resources contributing
to grid safety and stability. A case study examining the proposed method has been demonstrated in
this paper. The experimentation validates that the proposed method reflects electricity cost savings
with consideration of user satisfaction of using electricity while achieving a phenomenal reduction,
13.97%, of PAR.

The work presented in this paper is comparative to the previous work in [15]; they will be
examined and demonstrated further through multiple residential households in a downstream sector
of a power grid leading a demonstration project of Regional Electrical Energy Integration, Dispatching
and Ancillary Services in Taiwan in the future, where the energy disaggregation will be developed in a
Big Data analytics way.
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