
sensors

Article

On-Board, Real-Time Preprocessing System for
Optical Remote-Sensing Imagery

Baogui Qi 1, Hao Shi 1,2,* ID , Yin Zhuang 1, He Chen 1 and Liang Chen 1

1 Beijing Key Laboratory of Embedded Real-Time Information Processing Technology, Beijing Institute of
Technology, Beijing 100081, China; qibaogui@bit.edu.cn (B.Q.); zhuangyin640829@163.com (Y.Z.);
chenhe@bit.edu.cn (H.C.); chenl@bit.edu.cn (L.C.)

2 Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
* Correspondence: shihao@tsinghua.edu.cn; Tel.: +86-186-1166-1399

Received: 28 March 2018; Accepted: 18 April 2018; Published: 25 April 2018
����������
�������

Abstract: With the development of remote-sensing technology, optical remote-sensing imagery
processing has played an important role in many application fields, such as geological exploration
and natural disaster prevention. However, relative radiation correction and geometric correction
are key steps in preprocessing because raw image data without preprocessing will cause poor
performance during application. Traditionally, remote-sensing data are downlinked to the ground
station, preprocessed, and distributed to users. This process generates long delays, which is a major
bottleneck in real-time applications for remote-sensing data. Therefore, on-board, real-time image
preprocessing is greatly desired. In this paper, a real-time processing architecture for on-board
imagery preprocessing is proposed. First, a hierarchical optimization and mapping method is
proposed to realize the preprocessing algorithm in a hardware structure, which can effectively
reduce the computation burden of on-board processing. Second, a co-processing system using a
field-programmable gate array (FPGA) and a digital signal processor (DSP; altogether, FPGA-DSP)
based on optimization is designed to realize real-time preprocessing. The experimental results
demonstrate the potential application of our system to an on-board processor, for which resources
and power consumption are limited.

Keywords: remote sensing; preprocessing; relative radiation correction; geometric correction;
real-time

1. Introduction

Remote-sensing techniques are increasingly used in geological exploration, natural disaster
prevention, monitoring, etc. [1–5]. They usually require very high-resolution satellite images, which
are texturally-rich and may raise the running costs of systems. However, many remote-sensing
satellites must rapidly respond to emergencies, such as fires and earthquakes, and quickly return the
region of interest (ROI) of the emergency to the ground station [6]. In general processing procedure, the
satellite image data are downlinked to the ground station for processing and analysis. The data size of
Earth’s observation satellites often exceeds 10 GB. So, the process of data downlink causes a long delay
time, and it severely affects rapid response to emergencies [7–9]. On-board processing is a way to
effectively improve response speed and provide immediate products for rapid decision-making [10–12].
After processing and sending the data about which we are most concerned, the amount of data can be
reduced several times. Therefore, by processing the data on-board and downlinking the processing
results only, the communication bandwidth of downlink can be reduced. At the same time, the data
processing flow of the ground station can simultaneously be accelerated and simplified. Consequently,

Sensors 2018, 18, 1328; doi:10.3390/s18051328 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-2013-6592
http://www.mdpi.com/1424-8220/18/5/1328?type=check_update&version=1
http://www.mdpi.com/journal/sensors
http://dx.doi.org/10.3390/s18051328

Sensors 2018, 18, 1328 2 of 18

on-board processing can reduce the cost and complexity of ground processing systems and solve the
delay problem in image acquisition, analysis, and application.

The acquired remote-sensing images may contain uneven radiation brightness stripes and
deformation areas, due to the defects of the sensors and the relative movement between satellite
platforms and the Earth [13–15]. Therefore, the acquired raw data from sensors on satellite platforms
cannot be used directly. So, image preprocessing is a necessary step to solve such crucial problems.
There are several necessary steps for preprocessing within charge coupled device (CCD) camera
images, such as relative radiation correction (RRC), geometric correction (GC), and multi-CCD stitching
(MCCDS).

Numerous studies have been performed to satisfy the needs of on-board processing.
Cong Li et al. [16] introduced a new volume calculation formula and developed a new real-time
implementation of a maximum simplex volume algorithm, which is suitable for real-time, on-board
processing. Qian Du et al. [8] employed a small portion of pixels in the evaluation of data
statistics to accelerate the real-time implementation of detection and classification. This design
achieved fast, real-time, on-board processing by reducing computational complexity and simplifying
hardware implementation.

Scholars have also conducted related studies of architecture implementation and efficient
algorithm mapping. El-Araby et al. [10] presented a reconfigurable computing real-time cloud
detection system for satellite on-board processing. Kalomiros et al. [17] designed a hardware/software
field-programmable gate array (FPGA) system for fast image processing, which can be utilized for an
extensive range of custom applications. Winfried et al. [18] designed an on-board, bispectral infrared
detection system, which is based on the neural network processor NI1000, a digital signal processor
(DSP), and a FPGA. The system can perform on-board radiometric correction, geometric correction, and
texture extraction. Botella et al. [19] proposed an architecture for a neuromorphic, robust optical flow
based on a FPGA, which was applied in a complicated environment. Multi-core processors and graphic
processing units (GPUs) for achieving real-time performance of the Harsanyi–Farrand–Chang (HFC)
method for a virtual dimensionality (VD) algorithm was proposed for unmixing [20]. Carlos et al.
presented the first FPGA design for the HFC-VD algorithm to realize unmixing [21].

The previously mentioned methods—GPU, FPGA, and DSP—are the most common processors for
implementing these algorithms in real time. In a ground processing system, a GPU is the popular choice
for a preprocessing system. Although a GPU can provide high computing performance, it consumes
considerable energy and cannot achieve the radiation tolerance required for an on-board environment.
Therefore, a GPU cannot be adapted to an on-board processing system. To satisfy the requirements
of on-board processing, this system should be implemented using a FPGA, which has low power
consumption and high radiation resistance [22–24]. Considering the computational complexity of a
preprocessing algorithm, the use of a DSP as a co-processor is common to perform processes that are
not computationally demanding and need to be sporadically executed. Although some publications
have designed GC systems based on a FPGA, these systems are not suitable for remote-sensing
images [25–27] or cannot achieve the complete process [28]. To the best of our knowledge, no such
hardware systems have been proposed for remote image preprocessing, probably because of the
complex computations and data management required. However, such a preprocessing step should be
executed on this platform to achieve higher performance.

The process of image preprocessing can be decomposed into two parts. The first step calculates
the model parameters. This step processes small amounts of data but involves complex calculations
(such as sine and cosine functions), making it suitable for a DSP. The second step uses the model
parameters to perform a pixel-by-pixel, gray-scale calculation and obtain the output image. When
the pixels are calculated in this step, parallel calculations are appropriate, because the calculation
forms of all the pixels are similar. However, due to the irregularity of the image deformation and
other issues, there are several problems in the pixel calculation step. First, the calculation of each
pixel coordinate requires many parameters and a large amount of hardware computing resources.

Sensors 2018, 18, 1328 3 of 18

Some parameters are involved in each pixel coordinate calculation and must be repeatedly calculated
many times, thus wasting considerable time. Therefore, it is necessary to optimize the algorithm to
improve computational efficiency. Second, due to the irregularity of the image deformation, the input
and output data cannot be strictly correlated with each other, which makes it difficult to implement
the pipeline process. Therefore, it is necessary to design the methods for reading and storing the
data according to the characteristics of the geometric deformation. Third, existing algorithms use
floating-point data for calculations. Compared with fixed-point calculations, floating-point calculations
require more resources and more time. Because the amount of image data is large, it is very important
to design a fixed-point solution to speed up the process.

Therefore, we optimized the design of the preprocessing algorithm regarding these aspects
of the hardware implementation. First, a hierarchical decomposition mapping method based on
coordinate transformation is proposed, which can effectively reduce the computation burden of
on-board processing. Second, according to the characteristics of the data read and write irregularities,
a block mapping design is implemented to avoid wasting time when reading and writing data. Finally,
we design a fixed-point algorithm for the RRC and pixel resampling parts. The design can reduce
resources and ensure accuracy. Using these technologies, an optical image preprocessing system based
on FPGA and DSP coprocessors is designed and implemented. Because our system is designed for
on-board processing, we chose processors with high radiation tolerance for space environments.

Thus, our contributions can be summarized as follows: first, we proposed a hierarchical
optimization and mapping method to realize the preprocessing algorithm in a hardware structure,
which can effectively reduce the computation burden of on-board processing. Second, a FPGA-DSP
co-processing system based on optimization is designed to realize real-time preprocessing.

The remainder of this paper is structured as follows. The second section describes the
preprocessing algorithm. The third section describes a mapping strategy and optimizing method. The
fourth section describes the hardware realization and parallel accelerating design. The fifth section
presents the experimental results and comparison with related studies. The last section provides
conclusions and plans for future research.

2. Preprocessing Method

The complete process for optical remote-sensing CCD image data preprocessing is shown in
Figure 1. The process we implemented consists of three parts: RRC, MCCDS, and GC. The input of the
preprocessing chain is a raw image with its corresponding ancillary information (imaging time, orbit,
attitude, and other necessary information). The output of the preprocessing chain is the georeferenced
image. We call the image after the RRC the Level 0 image; the image after the MCCDS is the Level 1
image, and the image after the GC is the Level 2 image.

The RRC is used to remove the systematic noise introduced by the discrepancy in the
optical-electronic responses between different detectors and can be described as follows:

yi = ki × xi + bi, (1)

where bi and ki represent the bias and gain coefficients, respectively, of the ith detector, which are
provided by the manufacturer or calibration laboratory, and xi and yi correspond to the digital number
value and the at-sensor radiance of the ith detector, respectively [29].

Sensors 2018, 18, x FOR PEER REVIEW 3 of 19

calculated many times, thus wasting considerable time. Therefore, it is necessary to optimize the
algorithm to improve computational efficiency. Second, due to the irregularity of the image
deformation, the input and output data cannot be strictly correlated with each other, which makes it
difficult to implement the pipeline process. Therefore, it is necessary to design the methods for
reading and storing the data according to the characteristics of the geometric deformation. Third,
existing algorithms use floating-point data for calculations. Compared with fixed-point calculations,
floating-point calculations require more resources and more time. Because the amount of image data
is large, it is very important to design a fixed-point solution to speed up the process.

Therefore, we optimized the design of the preprocessing algorithm regarding these aspects of
the hardware implementation. First, a hierarchical decomposition mapping method based on
coordinate transformation is proposed, which can effectively reduce the computation burden of
on-board processing. Second, according to the characteristics of the data read and write
irregularities, a block mapping design is implemented to avoid wasting time when reading and
writing data. Finally, we design a fixed-point algorithm for the RRC and pixel resampling parts. The
design can reduce resources and ensure accuracy. Using these technologies, an optical image
preprocessing system based on FPGA and DSP coprocessors is designed and implemented. Because
our system is designed for on-board processing, we chose processors with high radiation tolerance
for space environments.

Thus, our contributions can be summarized as follows: first, we proposed a hierarchical
optimization and mapping method to realize the preprocessing algorithm in a hardware structure,
which can effectively reduce the computation burden of on-board processing. Second, a FPGA-DSP
co-processing system based on optimization is designed to realize real-time preprocessing.

The remainder of this paper is structured as follows. The second section describes the
preprocessing algorithm. The third section describes a mapping strategy and optimizing method.
The fourth section describes the hardware realization and parallel accelerating design. The fifth
section presents the experimental results and comparison with related studies. The last section
provides conclusions and plans for future research.

2. Preprocessing Method

The complete process for optical remote-sensing CCD image data preprocessing is shown in
Figure 1. The process we implemented consists of three parts: RRC, MCCDS, and GC. The input of
the preprocessing chain is a raw image with its corresponding ancillary information (imaging time,
orbit, attitude, and other necessary information). The output of the preprocessing chain is the
georeferenced image. We call the image after the RRC the Level 0 image; the image after the MCCDS
is the Level 1 image, and the image after the GC is the Level 2 image.

The RRC is used to remove the systematic noise introduced by the discrepancy in the
optical-electronic responses between different detectors and can be described as follows:

 ×= +i i i iy k x b , (1)

where bi and ki represent the bias and gain coefficients, respectively, of the ith detector, which are
provided by the manufacturer or calibration laboratory, and xi and yi correspond to the digital
number value and the at-sensor radiance of the ith detector, respectively [29].

RRC MCCDS GC

Raw image Level 0 image Level 1 image Level 2 image
Figure 1. Preprocessing chain. RRC: relative radiation correction; MCCDS: multi-charge-coupled device (CCD)
stitching; GC: geometric correction; Level 0: the image after the RRC; Level 1: the image after the MCCDs; and
Level 2: the image after the GC.

Figure 1. Preprocessing chain. RRC: relative radiation correction; MCCDS: multi-charge-coupled
device (CCD) stitching; GC: geometric correction; Level 0: the image after the RRC; Level 1: the image
after the MCCDs; and Level 2: the image after the GC.

Sensors 2018, 18, 1328 4 of 18

The MCCDS is based on the virtual CCD and rational function model (RFM). We summarize
the process in two steps. First, the image coordinates of the Level 1 image corresponding to a certain
number of points in the Level 0 image are solved using the rigorous imaging model and the orbit,
attitude, and auxiliary information. The Level 1 image rational polynomial coefficients (RPCs) for
the RFM are calculated based on these coordinate relationships. Second, for each coordinate in the
required Level 1 image, the corresponding coordinate in the Level 0 image is calculated via the RPCs,
and the gray value is obtained by resampling. The RFM that is employed in this process is expressed
as follows:

s = (x0 + a× x1 + b× x2 + a× b× x3)× sscale + so f f
l = (y0 + a× y1 + b× y2 + a× b× y3)× lscale + lo f f

, (2)

where a and b are the row coordinates and column coordinates, respectively, of the Level 1 image; s
and l are the row coordinates and column coordinates, respectively, of the Level 0 image; x0, x1, x2, x3,
y0, y1, y2, and y3 are the respective polynomial coefficients; sscale and lscale are the scale factors; and soff
and loff are the offsets.

The purpose of the GC is to correct the deformations that occur during imaging [30]. GC methods
are divided into parametric and non-parametric models [31]. For on-board processing, it is more
suitable to choose the parametric model, because the orbital information of the satellite platform can be
obtained. The GC is based on the RFM. We summarize the process in two steps. First, the geographic
coordinates in the Level 2 image that correspond to a certain number of points in the Level 1 image are
solved using the rigorous imaging model, the RFM of the Level 1 image, and other information. Then,
the RPCs for the RFM are solved based on the coordinate relationships. Second, for each geographic
coordinate of the requested region in the Level 2 image, the corresponding image coordinate in the
Level 1 image is calculated via the RPCs, and the gray value is obtained by resampling. The RFM used
in this process is expressed as follows:

s = x0+lon×x1+lat×x2+h×x3
lon×x4+lat×x5+h×x6+1 × sscale + so f f

l = y0+lon×y1+lat×y2+h×y3
lon×y4+lat×y5+h×y6+1 × lscale + lo f f

, (3)

where s and l are the pixel coordinates of the Level 1 image, x0–x6 and y0–y6 are RPCs, lon is the
longitude, lat is the latitude, h is the elevation, sscale and lscale are the scale factors, and soff and loff are
the offsets.

After the coordinate transformation, we obtain the coordinates (s and l) of the image pixels.
Because the image is a discrete space grid, resampling is required to obtain the image gray values using
the interpolation method. Because the bi-cubic interpolation method yields the best performance, we
chose this method for our preprocessing algorithm. The bi-cubic interpolation method is shown in
Figure 2, which can be described as

Q(u, v) = [a1 p11 + a2 p21 + a3 p31 + a4 p41]× b1 + [a1 p12 + a2 p22 + a3 p32 + a4 p42]× b2

+[a1 p13 + a2 p23 + a3 p33 + a4 p43]× b3 + [a1 p14 + a2 p24 + a3 p34 + a4 p44]× b4
, (4)

where
a1 = −t + 2t2 − t3 a2 = 1− 2t2 + t3 a3 = t + t2 − t3 a4 = −t2 + t3

b1 = −s + 2s2 − s3 b2 = 1− 2s2 + s3 b3 = s + s2 − s3 b4 = −s2 + s3 , (5)

and Q(u,v) is the output pixel gray value, (u,v) is the sample position, p11 to p44 are the original sample
pixel gray values, t = v− bvc, and s = u− buc.

More descriptions of the image preprocessing are provided in [32–34].

Sensors 2018, 18, 1328 5 of 18
Sensors 2018, 18, x FOR PEER REVIEW 5 of 19

p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

p41 p42 p43 p44

Q(u,v)

s t

Figure 2. Bi-cubic interpolation method. Q(u,v) is the output pixel gray value, (u,v) is the sample
position, p11 to p44 are the original sample pixel gray values, t v v= − , and s u u= − .

3. Parallel Accelerating Architecture

The preprocessing algorithm can be divided into two parts for hardware processing. The linear
part, which contains a large number of rapid but repetitive computations, is the largest
computational burden of on-board, real-time implementation. Because the linear part is a per-image
pixel operation, communication with a mass storage resource must be considered. The nonlinear
part consists of slower and more complex computations that determine the image quality.

3.1. Nonlinear Part Mapping Strategy

3.1.1. Hierarchical Decomposition Mapping Strategy

The nonlinear parts include the calculation of the RPCs and the coordinates. Although the
method in the last section can complete the preprocessing of images, point-by-point calculation
renders the hardware system complicated and time-consuming. To satisfy the needs of on-board
processing, optimization of the algorithm is important. To balance the accuracy and complexity of
the preprocessing algorithm, we split the image during the MCCDS and GC steps, as shown in
Figure 3. P1P2P3P4 is the input image (Level 0 image or Level 1 image), p1p2p3p4 is the corresponding
output image (Level 1 image or Level 2 image), and P1’P2’P3’P4’ is the image range for image storage.
abcd is one of the image blocks after the output image is divided, and the corresponding image block
in the input image is ABCD. For each image block, a corresponding set of RPCs exists. A smaller
image block produces more accurate image correction and higher computational complexity.
Therefore, the size of the image block is an important parameter.

s

l

x

y
1P 2P

3P4P

1p

2p

3p

4p

1P′ 2P ′

3P ′
4P ′

d c

ba

D

C

B

A

Figure 3. Image block correction method. P1P2P3P4 is the input image (Level 0 image or Level 1 image), p1p2p3p4
is the corresponding output image (Level 1 image or Level 2 image), P1’P2’P3’P4’ is the image range for image
storage, abcd is one of the image blocks after the output image is divided, and ABCD is the corresponding image
block in the input image.

Figure 2. Bi-cubic interpolation method. Q(u,v) is the output pixel gray value, (u,v) is the sample
position, p11 to p44 are the original sample pixel gray values, t = v− bvc, and s = u− buc.

3. Parallel Accelerating Architecture

The preprocessing algorithm can be divided into two parts for hardware processing. The linear
part, which contains a large number of rapid but repetitive computations, is the largest computational
burden of on-board, real-time implementation. Because the linear part is a per-image pixel operation,
communication with a mass storage resource must be considered. The nonlinear part consists of slower
and more complex computations that determine the image quality.

3.1. Nonlinear Part Mapping Strategy

3.1.1. Hierarchical Decomposition Mapping Strategy

The nonlinear parts include the calculation of the RPCs and the coordinates. Although the
method in the last section can complete the preprocessing of images, point-by-point calculation
renders the hardware system complicated and time-consuming. To satisfy the needs of on-board
processing, optimization of the algorithm is important. To balance the accuracy and complexity of the
preprocessing algorithm, we split the image during the MCCDS and GC steps, as shown in Figure 3.
P1P2P3P4 is the input image (Level 0 image or Level 1 image), p1p2p3p4 is the corresponding output
image (Level 1 image or Level 2 image), and P1

’P2
’P3

’P4
’ is the image range for image storage. abcd is

one of the image blocks after the output image is divided, and the corresponding image block in the
input image is ABCD. For each image block, a corresponding set of RPCs exists. A smaller image block
produces more accurate image correction and higher computational complexity. Therefore, the size of
the image block is an important parameter.

Sensors 2018, 18, x FOR PEER REVIEW 5 of 19

p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

p41 p42 p43 p44

Q(u,v)

s t

Figure 2. Bi-cubic interpolation method. Q(u,v) is the output pixel gray value, (u,v) is the sample

position, p11 to p44 are the original sample pixel gray values, t v v , and s u u .

3. Parallel Accelerating Architecture

The preprocessing algorithm can be divided into two parts for hardware processing. The linear

part, which contains a large number of rapid but repetitive computations, is the largest

computational burden of on-board, real-time implementation. Because the linear part is a per-image

pixel operation, communication with a mass storage resource must be considered. The nonlinear

part consists of slower and more complex computations that determine the image quality.

3.1. Nonlinear Part Mapping Strategy

3.1.1. Hierarchical Decomposition Mapping Strategy

The nonlinear parts include the calculation of the RPCs and the coordinates. Although the

method in the last section can complete the preprocessing of images, point-by-point calculation

renders the hardware system complicated and time-consuming. To satisfy the needs of on-board

processing, optimization of the algorithm is important. To balance the accuracy and complexity of

the preprocessing algorithm, we split the image during the MCCDS and GC steps, as shown in

Figure 3. P1P2P3P4 is the input image (Level 0 image or Level 1 image), p1p2p3p4 is the corresponding

output image (Level 1 image or Level 2 image), and P1’P2’P3’P4’ is the image range for image storage.

abcd is one of the image blocks after the output image is divided, and the corresponding image block

in the input image is ABCD. For each image block, a corresponding set of RPCs exists. A smaller

image block produces more accurate image correction and higher computational complexity.

Therefore, the size of the image block is an important parameter.

s

l

x

y
1P 2P

3P4P

1p

2p

3p

4p

1P 2P

3P 4P

Input image
Output image

d c

ba

D

C

B

A

Figure 3. Image block correction method. P1P2P3P4 is the input image (Level 0 image or Level 1 image), p1p2p3p4

is the corresponding output image (Level 1 image or Level 2 image), P1’P2’P3’P4’ is the image range for image

storage, abcd is one of the image blocks after the output image is divided, and ABCD is the corresponding image

block in the input image.

Figure 3. Image block correction method. P1P2P3P4 is the input image (Level 0 image or Level 1 image),
p1p2p3p4 is the corresponding output image (Level 1 image or Level 2 image), P1

’P2
’P3

’P4
’ is the image

range for image storage, abcd is one of the image blocks after the output image is divided, and ABCD is
the corresponding image block in the input image.

Sensors 2018, 18, 1328 6 of 18

In image block correction processing, the coordinate calculation in each image block involves
many parameters, which enables a reduction in the number of computations.

The RFM in Section 2 can be simplified to the following formula when converting coordinates
from a Level 1 image to a Level 0 image:

s = s0 + (t0 + n× t1)× sscale
l = l0 + (t2 + n× t3)× lscale

, (6)

where n is the column number of one block in the Level 1 image. The remaining parameters are
expressed as follows:

t0 = m× (s1 + s4) t1 = s2 + m× s3 + s5

t2 = m× (l1 + l4) t3 = l2 + m× l3 + l5
, (7)

where m is the row number of one block in the Level 1 image. The remaining parameters are
expressed as

s0 = (x0 + a0 × x1 + b0 × x2 + a0 × b0 × x3)× sscale + so f f s1 = ∆a× x1

s2 = ∆b× x2s3 = ∆a× ∆b× x3s4 = a0 × ∆b× x3 s5 = ∆a× b0 × x3

l0 = (y0 + a0 × y1 + b0 × y2 + a0 × b0 × y3)× lscale + lo f f l1 = ∆a× y1

l2 = ∆b× y2l3 = ∆a× ∆b× y3l4 = a0 × ∆b× y3 l5 = ∆a× b0 × y3

, (8)

where a0 and b0 are the initial row number of the block and the initial column number of the block,
respectively. ∆a and ∆b are the row step and column step, respectively; both are set to one in this
algorithm. The remaining parameters are described in Section 2.

So, we divide these parameter calculations into three levels. The relationships among the different
levels are shown in Figure 4. The first-level parameters only need to be calculated once during an
image block. The second-level parameters need to be calculated once during each line of a block. The
third-level parameters have to be calculated per pixel.

The three levels are also shown in Figure 5. The block phase, the line phase, and the point phase
correspond to Expression (6), Expression (5), and Expression (4), respectively. The block phase is
processed only when the initial parameters are provided for each image block. The results calculated
by the block phase are sent to the line operation phase. After receiving the block calculation data, each
line of the image block is calculated in the line phase, and the results are sent to the point phase. In the
point phase, a point-by-point calculation occurs according to the received parameters. By optimizing
the process, we can reduce the number of additions and multiplications when performing the
point-by-point calculations, which reduces the use of many resources.

Sensors 2018, 18, x FOR PEER REVIEW 6 of 19

In image block correction processing, the coordinate calculation in each image block involves

many parameters, which enables a reduction in the number of computations.

The RFM in Section 2 can be simplified to the following formula when converting coordinates

from a Level 1 image to a Level 0 image:

0 0 1

0 2 3

()

()

scale

scale

s s t n t s

l l t n t l

, (6)

where n is the column number of one block in the Level 1 image. The remaining parameters are

expressed as follows:

0 1 4 1 2 3 5

2 1 4 3 2 3 5

(

()

t m s s t s m s s

t m l l t l m l l

, (7)

where m is the row number of one block in the Level 1 image. The remaining parameters are

expressed as

0 0 0 1 0 2 0 0 3 1 1

2 2 3 3 4 0 3 5 0 3

0 0 0 1 0 2 0 0 3 1 1

2 2 3 3 4 0 3 5

()

()

scale off

scale off

s x a x b x a b x s s s a x

s b x s a b x s a b x s a b x

l y a y b y a b y l l l a y

l b y l a b y l a b y l

 0 3a b y

, (8)

where a0 and b0 are the initial row number of the block and the initial column number of the block,

respectively. Δa and Δb are the row step and column step, respectively; both are set to one in this

algorithm. The remaining parameters are described in Section 2.

So, we divide these parameter calculations into three levels. The relationships among the

different levels are shown in Figure 4. The first-level parameters only need to be calculated once

during an image block. The second-level parameters need to be calculated once during each line of

a block. The third-level parameters have to be calculated per pixel.

The three levels are also shown in Figure 5. The block phase, the line phase, and the point phase

correspond to Expression (6), Expression (5), and Expression (4), respectively. The block phase is

processed only when the initial parameters are provided for each image block. The results calculated

by the block phase are sent to the line operation phase. After receiving the block calculation data,

each line of the image block is calculated in the line phase, and the results are sent to the point phase.

In the point phase, a point-by-point calculation occurs according to the received parameters. By

optimizing the process, we can reduce the number of additions and multiplications when

performing the point-by-point calculations, which reduces the use of many resources.

0s 1s 3s2s 0l1l2l3l
Level1

Level2

Level3

t3 t2t0 t1

ls

parameters

m

n

Figure 4. Hierarchical parameters calculation flow of Level 0 to Level 1. Figure 4. Hierarchical parameters calculation flow of Level 0 to Level 1.

Sensors 2018, 18, 1328 7 of 18
Sensors 2018, 18, x FOR PEER REVIEW 7 of 19

Block phase: Calculate once in a block

Line phase:
Calculate once for
every line in a block

dc

ba

Figure 5. Different calculation phases in an image block.

The RFM in Section 2 that performs a coordinate transformation from a Level 2 image to a Level
1 image can be simplified. Because lon and lat are incremented by a fixed-step size and are
redundant in the calculations, the process can be transformed into

0 2 3

1 5 6

2 2 3

3 5 6

scale off

scale off

t n s h xs s s
t n s h x
t n l h yl l l
t n l h y

+ ⋅ + ⋅
= ⋅ +

+ ⋅ + ⋅
+ ⋅ + ⋅

= ⋅ +
+ ⋅ + ⋅

, (9)

where n is the number of steps in the longitude in the Level 2 image. The remaining parameters are
expressed as

0 0 1 1 3 4

2 0 1 3 3 4

t s m s t s m s
t l m l t l m l

= + ⋅ = + ⋅
= + ⋅ = + ⋅

, (10)

where m is the number of steps in the latitude in the Level 2 image. The remaining variables are
described in the following formula:

0 0 0 1 0 2 1 1 2 2

3 0 4 0 5 4 4 5 5

0 0 0 1 0 2 1 1 2 2

3 0 4 0 5 4 4 5 5

1

1

s x lon x lat x s lon x s lat x
s lon x lat x s lon x s lat x
l y lon y lat y l lon y l lat y
l lon y lat y l lon y l lat y

= + ⋅ + ⋅ = ∆ ⋅ = ∆ ⋅
= ⋅ + ⋅ + = ∆ ⋅ = ∆ ⋅
= + ⋅ + ⋅ = ∆ ⋅ = ∆ ⋅
= ⋅ + ⋅ + = ∆ ⋅ = ∆ ⋅

, (11)

where Δlon and Δlat are the steps in the latitude and the longitude, respectively. For the calculation
order of each parameter, we divide the coordinate transformation process into three phases, as
shown in Figure 5, with the same order employed for the Level 1 image to the Level 0 image. The
block phase, the line phase, and the point phase correspond to Expression (9), Expression (8), and
Expression (7), respectively.

After optimization, we can obtain the new preprocessing chain, as shown in Figure 6, in which
the parallelograms represent data and the rectangles represent the processing phases. The image
data flow is shown in solid red lines, and the attitude and ancillary data flows are shown in solid
blue lines. The data from the camera is separated into the image and the auxiliary data. The auxiliary
data are used to calculate the RPCs of the Level 1 image and the Level 2 image. After processing the
raw images using the RRC, the images are divided into blocks. Each image block undergoes the
block phase, line phase, point phase, and resampling processing based on the respective RPCs. After
this processing, we obtain the Level 2 image.

Figure 5. Different calculation phases in an image block.

The RFM in Section 2 that performs a coordinate transformation from a Level 2 image to a Level 1
image can be simplified. Because lon and lat are incremented by a fixed-step size and are redundant in
the calculations, the process can be transformed into

s = t0+n×s2+h×x3
t1+n×s5+h×x6

× sscale + so f f

l = t2+n×l2+h×y3
t3+n×l5+h×y6

× lscale + lo f f
, (9)

where n is the number of steps in the longitude in the Level 2 image. The remaining parameters are
expressed as

t0 = s0 + m× s1 t1 = s3 + m× s4

t2 = l0 + m× l1 t3 = l3 + m× l4
, (10)

where m is the number of steps in the latitude in the Level 2 image. The remaining variables are
described in the following formula:

s0 = x0 + lon0 × x1 + lat0 × x2 s1 = ∆lon× x1 s2 = ∆lat× x2

s3 = lon0 × x4 + lat0 × x5 + 1 s4 = ∆lon× x4 s5 = ∆lat× x5

l0 = y0 + lon0 × y1 + lat0 × y2 l1 = ∆lon× y1 l2 = ∆lat× y2

l3 = lon0 × y4 + lat0 × y5 + 1 l4 = ∆lon× y4 l5 = ∆lat× y5

, (11)

where ∆lon and ∆lat are the steps in the latitude and the longitude, respectively. For the calculation
order of each parameter, we divide the coordinate transformation process into three phases, as shown
in Figure 5, with the same order employed for the Level 1 image to the Level 0 image. The block phase,
the line phase, and the point phase correspond to Expression (9), Expression (8), and Expression (7),
respectively.

After optimization, we can obtain the new preprocessing chain, as shown in Figure 6, in which the
parallelograms represent data and the rectangles represent the processing phases. The image data flow
is shown in solid red lines, and the attitude and ancillary data flows are shown in solid blue lines. The
data from the camera is separated into the image and the auxiliary data. The auxiliary data are used to
calculate the RPCs of the Level 1 image and the Level 2 image. After processing the raw images using
the RRC, the images are divided into blocks. Each image block undergoes the block phase, line phase,
point phase, and resampling processing based on the respective RPCs. After this processing, we obtain
the Level 2 image.

Sensors 2018, 18, 1328 8 of 18Sensors 2018, 18, x FOR PEER REVIEW 8 of 19

Raw Data

Raw
Image

Ancillary and Orbit
and Attitude

RRC

Calculate Level 2
RPC Parameters

Level 2
Image

Calculate Level 1
RPC Parameters

Block Phase

Line Phase

Point Phase Resampling

Block Phase

Line Phase

Point Phase Resampling

Figure 6. Preprocessing system work flow. The parallelograms represent data, and the rectangles represent the
processing phases. The image data flow is shown in solid red lines, and the attitude and ancillary data flows are
shown in solid blue lines.

3.1.2. Complexity Analysis

After optimizing the calculation process, the computation times are reduced. For an image of
4096 × 4096 pixels, if we divide it into 32 × 32 blocks (each block is 128 × 128 pixels), then we can
eliminate 133,892,672 additions and 166,692,864 multiplications. Detailed information is listed in
Table 1.

Table 1. Computation times before and after optimization.

Operation Additions Multiplications
before 369,098,752 402,653,184
after 236,206,080 235,960,320

3.2. Linear Part Mapping Strategy

The linear part primarily includes pixel grey calculations and data access. These operations
need to calculate the grey values of each block of image. To satisfy the on-board processing needs,
we needed to improve the efficiency of data access and calculation.

3.2.1. Data Access Pattern

The principle of the mapping storage method is to optimize and balance the line and block data
access rate. The MCCDS and GC must adopt the block correction method. If an image is stored in a
normal sequence in the dual data rate (DDR) synchronous dynamic random-access memory
(SDRAM), then the read and write processes will involve cross-banking, which lowers the efficiency.
We needed to design a high-efficiency pattern based on the row-major format, which is a common
method for storing multidimensional arrays. Therefore, we designed a form of mapping memory
locations according to the image block, as shown in Figure 7, in which a single image block is
mapped, as shown in Figure 8. The image is divided into m × n blocks, and each block has 64 × 64
pixels. The image is stored in the DDR with m × n rows, and each row stores the data of one image
block. In the data read process, reading each image block corresponds to reading a row in the DDR.
Thus, we can achieve the maximum efficiency for reading and writing data.

Figure 6. Preprocessing system work flow. The parallelograms represent data, and the rectangles
represent the processing phases. The image data flow is shown in solid red lines, and the attitude and
ancillary data flows are shown in solid blue lines.

3.1.2. Complexity Analysis

After optimizing the calculation process, the computation times are reduced. For an image of
4096 × 4096 pixels, if we divide it into 32 × 32 blocks (each block is 128 × 128 pixels), then we can
eliminate 133,892,672 additions and 166,692,864 multiplications. Detailed information is listed in
Table 1.

Table 1. Computation times before and after optimization.

Operation Additions Multiplications

before 369,098,752 402,653,184
after 236,206,080 235,960,320

3.2. Linear Part Mapping Strategy

The linear part primarily includes pixel grey calculations and data access. These operations need
to calculate the grey values of each block of image. To satisfy the on-board processing needs, we
needed to improve the efficiency of data access and calculation.

3.2.1. Data Access Pattern

The principle of the mapping storage method is to optimize and balance the line and block data
access rate. The MCCDS and GC must adopt the block correction method. If an image is stored
in a normal sequence in the dual data rate (DDR) synchronous dynamic random-access memory
(SDRAM), then the read and write processes will involve cross-banking, which lowers the efficiency.
We needed to design a high-efficiency pattern based on the row-major format, which is a common
method for storing multidimensional arrays. Therefore, we designed a form of mapping memory
locations according to the image block, as shown in Figure 7, in which a single image block is mapped,
as shown in Figure 8. The image is divided into m × n blocks, and each block has 64 × 64 pixels. The
image is stored in the DDR with m × n rows, and each row stores the data of one image block. In the
data read process, reading each image block corresponds to reading a row in the DDR. Thus, we can
achieve the maximum efficiency for reading and writing data.

Sensors 2018, 18, 1328 9 of 18

Sensors 2018, 18, x FOR PEER REVIEW 9 of 19

A(1,1)

A(1,2)

A(1,n)

A(1,3)

A(m,n)

……

…
…

…
…

……

…
…

…
…

Storage array of DDRRaw data two-dimensional matrix

A(1,1) A(1,2) A(1,3) A(1,n)

A(m,1) A(m,n)

Figure 7. Block mapping method. DDR: dual data rate.

1,1 1,2 1,64

2,1 2,2 2,64

64,1 64,2 64,64

1,1 1,64 2,1 2,64 64,1 64,64

……

……

……

……

…… …… …… ……

Image Block DDR Line

Figure 8. Single image block mapping method.

During reading and writing, the decoding must be performed according to the corresponding
address. Because each operation is performed according to the image block, the decoding is divided
into two steps. First, the image coordinates are mapped to the image block number. Second, the
image block number is mapped to the DDR address. The relationship between the image
coordinates (x, y) and the image block coordinates (m, n) is as follows:

/ 64
/ 64

m x
n y

 =
 =

. (12)

The relationship between the image block coordinates (m, n) and the row number s of a single
bank in the DDR is

= × +s m N n . (13)

When external data are written into the DDR, the data controller transforms the image
according to the above method. In the subsequent image preprocessing process, the data controller
only needs to read and write data using an image block according to the coordinate relationship. The
inverse transformation of the image data only has to be done once in the final output process.

3.2.2. Parallel Processing Data Access

To realize parallel processing, we needed to analyze the data processing procedure. The image
blocks can be sequentially read and written during the RRC process. When performing the MCCDS
and GC processes, it is necessary to calculate the coordinates using the RFM and then perform
resampling calculations according to the image coordinates. Due to the irregularity of coordinate
transformation, it is difficult to predict the pixel positions required for each participating operation,
which will affect the efficiency of the pipeline processing performance. Researchers [35] have
proposed a parallel computing strategy that can weaken the influence of the above characteristics,
but that strategy is not suitable for implementation with a FPGA. When using a FPGA for data

Figure 7. Block mapping method. DDR: dual data rate.

Sensors 2018, 18, x FOR PEER REVIEW 9 of 19

A(1,1)

A(1,2)

A(1,n)

A(1,3)

A(m,n)

……

…
…

…
…

……

…
…

…
…

Storage array of DDRRaw data two-dimensional matrix

A(1,1) A(1,2) A(1,3) A(1,n)

A(m,1) A(m,n)

Figure 7. Block mapping method. DDR: dual data rate.

1,1 1,2 1,64

2,1 2,2 2,64

64,1 64,2 64,64

1,1 1,64 2,1 2,64 64,1 64,64

……

……

……

……

…… …… …… ……

Image Block DDR Line

Figure 8. Single image block mapping method.

During reading and writing, the decoding must be performed according to the corresponding
address. Because each operation is performed according to the image block, the decoding is divided
into two steps. First, the image coordinates are mapped to the image block number. Second, the
image block number is mapped to the DDR address. The relationship between the image
coordinates (x, y) and the image block coordinates (m, n) is as follows:

/ 64
/ 64

m x
n y

 =
 =

. (12)

The relationship between the image block coordinates (m, n) and the row number s of a single
bank in the DDR is

= × +s m N n . (13)

When external data are written into the DDR, the data controller transforms the image
according to the above method. In the subsequent image preprocessing process, the data controller
only needs to read and write data using an image block according to the coordinate relationship. The
inverse transformation of the image data only has to be done once in the final output process.

3.2.2. Parallel Processing Data Access

To realize parallel processing, we needed to analyze the data processing procedure. The image
blocks can be sequentially read and written during the RRC process. When performing the MCCDS
and GC processes, it is necessary to calculate the coordinates using the RFM and then perform
resampling calculations according to the image coordinates. Due to the irregularity of coordinate
transformation, it is difficult to predict the pixel positions required for each participating operation,
which will affect the efficiency of the pipeline processing performance. Researchers [35] have
proposed a parallel computing strategy that can weaken the influence of the above characteristics,
but that strategy is not suitable for implementation with a FPGA. When using a FPGA for data

Figure 8. Single image block mapping method.

During reading and writing, the decoding must be performed according to the corresponding
address. Because each operation is performed according to the image block, the decoding is divided
into two steps. First, the image coordinates are mapped to the image block number. Second, the image
block number is mapped to the DDR address. The relationship between the image coordinates (x, y)
and the image block coordinates (m, n) is as follows:{

m = bx/64c
n = by/64c

. (12)

The relationship between the image block coordinates (m, n) and the row number s of a single
bank in the DDR is

s = m× N + n. (13)

When external data are written into the DDR, the data controller transforms the image according
to the above method. In the subsequent image preprocessing process, the data controller only needs
to read and write data using an image block according to the coordinate relationship. The inverse
transformation of the image data only has to be done once in the final output process.

3.2.2. Parallel Processing Data Access

To realize parallel processing, we needed to analyze the data processing procedure. The image
blocks can be sequentially read and written during the RRC process. When performing the MCCDS and
GC processes, it is necessary to calculate the coordinates using the RFM and then perform resampling
calculations according to the image coordinates. Due to the irregularity of coordinate transformation,
it is difficult to predict the pixel positions required for each participating operation, which will affect
the efficiency of the pipeline processing performance. Researchers [35] have proposed a parallel

Sensors 2018, 18, 1328 10 of 18

computing strategy that can weaken the influence of the above characteristics, but that strategy is not
suitable for implementation with a FPGA. When using a FPGA for data processing, a suitable rule for
data reading and storage methods can make the processor perform better. Therefore, we designed
rules for data reading and writing for the preprocessing algorithm.

During the MCCDS and GC steps, the input image grid position corresponding to each output
image changes after the grid is divided. Therefore, the amount of data read from the DDR cannot be
consistent every time. To solve this problem, we analyzed the positions of the grids. As shown in
Figure 9, the output grids are primarily mapped to the input grids in four situations. Therefore, the
maximum number of input grids corresponding to each output grid is nine (but not all blocks will
be calculated). Therefore, we designed nine random-access memory (RAM) areas for reading data
in this module; each area is 1 k × 64 bit and stores 64 × 64 pixels. We also designed two RAM areas
for the output data, which can ensure that the pipeline writes the output image block. We designed
16 blocks instead of nine to read the data to ensure that the demand was still met in the event of a
large deformation.

Sensors 2018, 18, x FOR PEER REVIEW 10 of 19

processing, a suitable rule for data reading and storage methods can make the processor perform
better. Therefore, we designed rules for data reading and writing for the preprocessing algorithm.

During the MCCDS and GC steps, the input image grid position corresponding to each output
image changes after the grid is divided. Therefore, the amount of data read from the DDR cannot be
consistent every time. To solve this problem, we analyzed the positions of the grids. As shown in
Figure 9, the output grids are primarily mapped to the input grids in four situations. Therefore, the
maximum number of input grids corresponding to each output grid is nine (but not all blocks will be
calculated). Therefore, we designed nine random-access memory (RAM) areas for reading data in
this module; each area is 1 k × 64 bit and stores 64 × 64 pixels. We also designed two RAM areas for
the output data, which can ensure that the pipeline writes the output image block. We designed 16
blocks instead of nine to read the data to ensure that the demand was still met in the event of a large
deformation.

Input

Output

Input

Input Input

Output Output Output

Figure 9. Positional relationship of output and input data.

Because coordinate transformations and resampling calculations require more time than the
reading and writing of data, we can allow data reading and writing during the calculations to ensure
the functioning of the pipeline. When the current computing module uses the RFM for coordinate
transformation, the output of the previous sample block is written into the DDR, and the data
required for the next sample block is read from the DDR. To reduce the amount of redundant data
reads, only 2–3 input data blocks are read at one time. The input data block ranges must cover the
output block corner. As shown in Figure 10, we read different data in different situations: label 1 in
the gray-colored block is the input data that has been read, label 1 in the white-colored block is the
currently calculated output image, and label 2 in the white-colored block is the next output image
block to be calculated. The next output block coordinates will decide the next input image blocks,
and the data that must be read is represented by label 2 in the gray-colored blocks.

InputInput

OutputOutput

1 1

1 1

1

2

2

1 1

1 1 2

2

2

1
2 1

2

Figure 10. Image block read order. Label 1 in the gray-colored block is the input data that has been read, label 1
in the white-colored block is the currently calculated output image, label 2 in the white-colored block is the next
output image block to be calculated, and label 2 in the gray-colored blocks is the data that must be read.

3.2.3. Fixed-Point Calculation Design

When calculating the gray value of the image pixel, both fixed-point and floating-point data
formats can be used. The floating-point format has high precision, but is resource-intensive,
complex, and slower. The fixed-point format can be performed quickly and requires fewer

Figure 9. Positional relationship of output and input data.

Because coordinate transformations and resampling calculations require more time than the
reading and writing of data, we can allow data reading and writing during the calculations to ensure
the functioning of the pipeline. When the current computing module uses the RFM for coordinate
transformation, the output of the previous sample block is written into the DDR, and the data required
for the next sample block is read from the DDR. To reduce the amount of redundant data reads, only
2–3 input data blocks are read at one time. The input data block ranges must cover the output block
corner. As shown in Figure 10, we read different data in different situations: label 1 in the gray-colored
block is the input data that has been read, label 1 in the white-colored block is the currently calculated
output image, and label 2 in the white-colored block is the next output image block to be calculated.
The next output block coordinates will decide the next input image blocks, and the data that must be
read is represented by label 2 in the gray-colored blocks.

Sensors 2018, 18, x FOR PEER REVIEW 10 of 19

processing, a suitable rule for data reading and storage methods can make the processor perform
better. Therefore, we designed rules for data reading and writing for the preprocessing algorithm.

During the MCCDS and GC steps, the input image grid position corresponding to each output
image changes after the grid is divided. Therefore, the amount of data read from the DDR cannot be
consistent every time. To solve this problem, we analyzed the positions of the grids. As shown in
Figure 9, the output grids are primarily mapped to the input grids in four situations. Therefore, the
maximum number of input grids corresponding to each output grid is nine (but not all blocks will be
calculated). Therefore, we designed nine random-access memory (RAM) areas for reading data in
this module; each area is 1 k × 64 bit and stores 64 × 64 pixels. We also designed two RAM areas for
the output data, which can ensure that the pipeline writes the output image block. We designed 16
blocks instead of nine to read the data to ensure that the demand was still met in the event of a large
deformation.

Input

Output

Input

Input Input

Output Output Output

Figure 9. Positional relationship of output and input data.

Because coordinate transformations and resampling calculations require more time than the
reading and writing of data, we can allow data reading and writing during the calculations to ensure
the functioning of the pipeline. When the current computing module uses the RFM for coordinate
transformation, the output of the previous sample block is written into the DDR, and the data
required for the next sample block is read from the DDR. To reduce the amount of redundant data
reads, only 2–3 input data blocks are read at one time. The input data block ranges must cover the
output block corner. As shown in Figure 10, we read different data in different situations: label 1 in
the gray-colored block is the input data that has been read, label 1 in the white-colored block is the
currently calculated output image, and label 2 in the white-colored block is the next output image
block to be calculated. The next output block coordinates will decide the next input image blocks,
and the data that must be read is represented by label 2 in the gray-colored blocks.

InputInput

OutputOutput

1 1

1 1

1

2

2

1 1

1 1 2

2

2

1
2 1

2

Figure 10. Image block read order. Label 1 in the gray-colored block is the input data that has been read, label 1
in the white-colored block is the currently calculated output image, label 2 in the white-colored block is the next
output image block to be calculated, and label 2 in the gray-colored blocks is the data that must be read.

3.2.3. Fixed-Point Calculation Design

When calculating the gray value of the image pixel, both fixed-point and floating-point data
formats can be used. The floating-point format has high precision, but is resource-intensive,
complex, and slower. The fixed-point format can be performed quickly and requires fewer

Figure 10. Image block read order. Label 1 in the gray-colored block is the input data that has been read,
label 1 in the white-colored block is the currently calculated output image, label 2 in the white-colored
block is the next output image block to be calculated, and label 2 in the gray-colored blocks is the data
that must be read.

Sensors 2018, 18, 1328 11 of 18

3.2.3. Fixed-Point Calculation Design

When calculating the gray value of the image pixel, both fixed-point and floating-point data
formats can be used. The floating-point format has high precision, but is resource-intensive, complex,
and slower. The fixed-point format can be performed quickly and requires fewer resources, but the
results are less accurate. The optical CCD image pixel gray scale is always 12 bits; therefore, the
accuracy of calculation only has to be better than 12 bits. A fixed-point design for the calculation can
thus be achieved without damaging effects. By performing fixed-point processing of the data in the
calculation process, it is possible to optimize the use of resources and improve the calculation speed
while ensuring data accuracy.

The RCC formula is
yi = ki ∗ xi + bi, (14)

where xi is the original pixel gray with a 12-bit integer and yi is the corrected pixel gray, which also
must be an integer of 12 bits. To ensure a corrected pixel gray accuracy better than one gray level, both
ki × xi and bi should have accuracies that are better than 0.1 gray level, which is a 4-bit fractional part.
Therefore, bi is 16 bits, the first 12 bits are the integer, and the last 4 bits are the fractional part. Because
ki × xi should have the same accuracy as bi, ki is 28 bits, the first 12 bits are the integer, and the last
16 bits are the fractional part.

Because the results of the coordinate transformation in the MCCDS and GC are not an integer,
it is necessary to perform a bi-cubic interpolation on the 16 points around the target pixel to obtain
the gray value of the required point. Due to the pixel-by-pixel calculation and the large number of
computations, a fixed-point design similar to the RRC is used. Table 2 lists the data structure in the
fixed-point format that we have employed in this module. Those parameters have been described in
Section 2.

Table 2. Data structures of fixed-point design.

Variable Sign Integer Fractional

t, s 0 0 32
t2, s2 0 0 30
t3, s3 0 0 28

a1, a2, a3, a4 1 0 25b1, b2, b3, b4
Q(u, v) 0 12 0

4. Realization of the FPGA-DSP Accelerating Platform

To test and verify the functionality and performance of the proposed architecture, we developed
a prototype system for preprocessing and conducted a parallel processing analysis.

This preprocessing system is designed based on a FPGA and a DSP co-processor. The main
architectural modules of this preprocessing system are shown in Figure 11. The FPGA receives all the
raw data, sends the image to the DDR for storage, and sends the remaining data to the DSP. Then, the
FPGA processes the image data, whereas the DSP calculates the parameters of the two RFMs. Because
the computations (such as sine and cosine functions) of the RFMs are complicated but utilize few data,
the DSP is suitable for this purpose. All image data are processed by the FPGA, which ensures efficient
parallelization of the algorithm.

Sensors 2018, 18, 1328 12 of 18
Sensors 2018, 18, x FOR PEER REVIEW 12 of 19

Data Controller

DSP

Resampling
Unit 1

RRC
Unit

DDR3
SDRAM

MIG DSP_IF

Resampling
Unit 2

Raw Data Level 2 Image Data

FPGA

Main State Machine

Global Clock and Reset

Global Controller

RAM R
16k*64bit

Address
Control

RAM W
2k*64bit

Registers

RAM Controller

Block Phase

Transformation Unit

Line Phase

Pixel Phase

Registers

FIFO

.

Figure 11. Preprocessing system architecture. FPGA: field-programmable gate array; DSP: digital signal
processor; MIG: memory interface generator; RAM: random-access memory; FIFO: first-in-first-out; and
SDRAM: synchronous dynamic random-access memory.

The data controller is responsible for receiving external data and achieving data interactions
among the DDR, FPGA, and DSP. The memory interface generator (MIG) is used to control the DDR
SDRAM. The RAM controller caches the data that are needed for the RRC unit and resampling unit
1. The RRC unit achieves the RRC process for the entire image. The transformation unit and
resampling unit 1 realize the coordinate transformation and resampling processes of the MCCDS
and the GC. Resampling unit 2 is applied when a more accurate elevation is required. The DSP_IF
unit is used to exchange data between the FPGA and the DSP. We set the FPGA as the main
controller in the proposed system. The FPGA will send an interrupt signal to change the work state
of the DSP. After receiving the interrupt signal, the DSP will first read the register of the FPGA
through external buses. Then, the DSP executes the corresponding process algorithm according to
the register value. During this procedure, the DSP reads data from the RAM of the FPGA and then
writes the results back to the RAM of the FPGA. When finishing this procedure, the DSP modifies
the register value of the FPGA, and the FPGA will perform the specific operation according to the
register value, such as reading and writing data from RAM or changing the state machine. The
global controller contains the main state machine, which is responsible for the phase transition,
global clock, and reset. Global information is propagated to all modules in the form of broadcasts.

The transformation unit performs coordinate transformations based on the RPCs that are sent
by the DSP_IF and then sends the coordinate transformation results to resampling unit 1. This
module is designed based on the optimization algorithm of Section 3. We designed the block phase,
line phase, and point phase in this module. The block phase only needs to be run one time for each
image block. The line phase runs once for each line of an image block.

The processing timeline is shown in Figure 12, which illustrates the working sequence of the
different modules. For each procedure, after sending the data address by the DSP_IF or
transformation unit, the data controller and MIG will read or store data for different purposes.
Because the speed of reading is substantially higher than the speed of processing, the data
controller and MIG consume less time. Because the RAM controller is designed for simultaneously
reading and writing data, it can perform different functions during each procedure. As shown in
Figure 12, each processing unit (RRC unit, Transformation unit, and Resampling unit) starts

Figure 11. Preprocessing system architecture. FPGA: field-programmable gate array; DSP: digital signal
processor; MIG: memory interface generator; RAM: random-access memory; FIFO: first-in-first-out;
and SDRAM: synchronous dynamic random-access memory.

The data controller is responsible for receiving external data and achieving data interactions
among the DDR, FPGA, and DSP. The memory interface generator (MIG) is used to control the DDR
SDRAM. The RAM controller caches the data that are needed for the RRC unit and resampling unit 1.
The RRC unit achieves the RRC process for the entire image. The transformation unit and resampling
unit 1 realize the coordinate transformation and resampling processes of the MCCDS and the GC.
Resampling unit 2 is applied when a more accurate elevation is required. The DSP_IF unit is used to
exchange data between the FPGA and the DSP. We set the FPGA as the main controller in the proposed
system. The FPGA will send an interrupt signal to change the work state of the DSP. After receiving
the interrupt signal, the DSP will first read the register of the FPGA through external buses. Then,
the DSP executes the corresponding process algorithm according to the register value. During this
procedure, the DSP reads data from the RAM of the FPGA and then writes the results back to the RAM
of the FPGA. When finishing this procedure, the DSP modifies the register value of the FPGA, and the
FPGA will perform the specific operation according to the register value, such as reading and writing
data from RAM or changing the state machine. The global controller contains the main state machine,
which is responsible for the phase transition, global clock, and reset. Global information is propagated
to all modules in the form of broadcasts.

The transformation unit performs coordinate transformations based on the RPCs that are sent by
the DSP_IF and then sends the coordinate transformation results to resampling unit 1. This module is
designed based on the optimization algorithm of Section 3. We designed the block phase, line phase,
and point phase in this module. The block phase only needs to be run one time for each image block.
The line phase runs once for each line of an image block.

The processing timeline is shown in Figure 12, which illustrates the working sequence of the
different modules. For each procedure, after sending the data address by the DSP_IF or transformation
unit, the data controller and MIG will read or store data for different purposes. Because the speed of
reading is substantially higher than the speed of processing, the data controller and MIG consume
less time. Because the RAM controller is designed for simultaneously reading and writing data, it can

Sensors 2018, 18, 1328 13 of 18

perform different functions during each procedure. As shown in Figure 12, each processing unit
(RRC unit, Transformation unit, and Resampling unit) starts working after obtaining data and does
not stop until the procedure is ended. All units work on a pipeline and do not waste time waiting for
other units.

Sensors 2018, 18, x FOR PEER REVIEW 13 of 19

working after obtaining data and does not stop until the procedure is ended. All units work on a
pipeline and do not waste time waiting for other units.

Timeline

 RRC process

MCCDS process

 GC process

 System input of Raw data

MIG

RAM Controller

RRC Unit

Transformation Unit

Resampling Unit 1

Resampling Unit 2

DSP_IF

Data Controller

Figure 12. Processing timeline of the system.

5. Experimental Results

This section uses remote-sensing images to validate the preprocessing system. The verification
in this section has two main goals. The first goal is to test and evaluate the effects of the system
optimization methods. The second goal is to verify the function of the system and determine
whether the system can realize the task of preprocessing. To address an on-board environment, the
FPGA in this system was a Xilinx (San Jose, CA, United States) XC6VLX240T, and the DSP was a
Texas Instruments (Dallas, TX, United States) TMS320C6701. We mainly used Verilog language to
develop the system. In addition, we also used C language and a high-level synthesis tool to develop
some computation units, such as the transformation unit and resampling unit. We employed
synthetic and real data in our experiments. The synthetic data in this experiment consisted of three
CCD push-scan images; the size of each CCD was 12,000 × 30,000 pixels. The real data in this
experiment consisted of an image produced by the Gaofen-2 (GF-2) satellite. The image size was
29,200 × 27,620 pixels.

A photo of the hardware system that was employed for the preprocessing is shown in Figure
13. In this system, there were two parallel processing units. Each processing unit contained the
FPGA and DSP processors and the independent DDR and rapid data transport channel. Thus, we
could easily extend the processing ability for different data volumes.

Figure 13. Photo of the hardware system.

Figure 12. Processing timeline of the system.

5. Experimental Results

This section uses remote-sensing images to validate the preprocessing system. The verification
in this section has two main goals. The first goal is to test and evaluate the effects of the system
optimization methods. The second goal is to verify the function of the system and determine whether
the system can realize the task of preprocessing. To address an on-board environment, the FPGA in this
system was a Xilinx (San Jose, CA, United States) XC6VLX240T, and the DSP was a Texas Instruments
(Dallas, TX, United States) TMS320C6701. We mainly used Verilog language to develop the system.
In addition, we also used C language and a high-level synthesis tool to develop some computation
units, such as the transformation unit and resampling unit. We employed synthetic and real data in
our experiments. The synthetic data in this experiment consisted of three CCD push-scan images; the
size of each CCD was 12,000 × 30,000 pixels. The real data in this experiment consisted of an image
produced by the Gaofen-2 (GF-2) satellite. The image size was 29,200 × 27,620 pixels.

A photo of the hardware system that was employed for the preprocessing is shown in Figure 13.
In this system, there were two parallel processing units. Each processing unit contained the FPGA and
DSP processors and the independent DDR and rapid data transport channel. Thus, we could easily
extend the processing ability for different data volumes.

Sensors 2018, 18, x FOR PEER REVIEW 13 of 19

working after obtaining data and does not stop until the procedure is ended. All units work on a
pipeline and do not waste time waiting for other units.

Timeline

 RRC process

MCCDS process

 GC process

 System input of Raw data

MIG

RAM Controller

RRC Unit

Transformation Unit

Resampling Unit 1

Resampling Unit 2

DSP_IF

Data Controller

Figure 12. Processing timeline of the system.

5. Experimental Results

This section uses remote-sensing images to validate the preprocessing system. The verification
in this section has two main goals. The first goal is to test and evaluate the effects of the system
optimization methods. The second goal is to verify the function of the system and determine
whether the system can realize the task of preprocessing. To address an on-board environment, the
FPGA in this system was a Xilinx (San Jose, CA, United States) XC6VLX240T, and the DSP was a
Texas Instruments (Dallas, TX, United States) TMS320C6701. We mainly used Verilog language to
develop the system. In addition, we also used C language and a high-level synthesis tool to develop
some computation units, such as the transformation unit and resampling unit. We employed
synthetic and real data in our experiments. The synthetic data in this experiment consisted of three
CCD push-scan images; the size of each CCD was 12,000 × 30,000 pixels. The real data in this
experiment consisted of an image produced by the Gaofen-2 (GF-2) satellite. The image size was
29,200 × 27,620 pixels.

A photo of the hardware system that was employed for the preprocessing is shown in Figure
13. In this system, there were two parallel processing units. Each processing unit contained the
FPGA and DSP processors and the independent DDR and rapid data transport channel. Thus, we
could easily extend the processing ability for different data volumes.

Figure 13. Photo of the hardware system.

Figure 13. Photo of the hardware system.

Sensors 2018, 18, 1328 14 of 18

5.1. Processing Performance

This section tests the effectiveness of the algorithmic optimization approach that was employed.
To evaluate the optimization of the algorithms and structures, we compared the effects of the calculation
units (RRC unit, transformation unit, and resampling Unit) before and after optimization.

To ensure the comparison of identities, we designed the pipeline mode of each unit such that each
unit expended the same amount of time for the same image data. The Flip-Flop (FF), Look-Up-Table
(LUT), and DSP48 are the most important resources that determine the resource consumption of a
FPGA. So, we verified the resource consumption before and after the calculation optimization. The
comparison of the resource results is shown in Figure 14. After algorithm optimization and fixed-point
calculation design, the consumption of all the calculation resources was lower. Therefore, the design of
the hierarchical mapping and fixed-point calculations can reduce the use of resources more than the
design with no optimization. Table 3 shows the FPGA resource occupation. The maximal frequency of
this design is approximately 163 MHz.

Sensors 2018, 18, x FOR PEER REVIEW 14 of 19

5.1. Processing Performance

This section tests the effectiveness of the algorithmic optimization approach that was employed.
To evaluate the optimization of the algorithms and structures, we compared the effects of the
calculation units (RRC unit, transformation unit, and resampling Unit) before and after
optimization.

To ensure the comparison of identities, we designed the pipeline mode of each unit such that
each unit expended the same amount of time for the same image data. The Flip-Flop (FF),
Look-Up-Table (LUT), and DSP48 are the most important resources that determine the resource
consumption of a FPGA. So, we verified the resource consumption before and after the calculation
optimization. The comparison of the resource results is shown in Figure 14. After algorithm
optimization and fixed-point calculation design, the consumption of all the calculation resources
was lower. Therefore, the design of the hierarchical mapping and fixed-point calculations can reduce
the use of resources more than the design with no optimization. Table 3 shows the FPGA resource
occupation. The maximal frequency of this design is approximately 163 MHz.

88110

74338

418

24844
28699

324
FF LUT DSP48s

0

20,000

40,000

60,000

80,000

100,000

Re
so

ur
ce

 Before Optimization
 After Optimization

Figure 14. Calculation units’ resource consumption before and after optimization.

To the best of our knowledge, similar hardware systems for remote image preprocessing have
not been proposed; thus, we compare our system with central processing unit (CPU) based and
GPU-based systems. The total system processing time for 2.01 GB of data is 11.6 s. For comparison
purposes, we also processed 1.12 GB of data and recorded the time. The processing time of each
processor in our system (FPGA-DSP co-processor) was compared with the processing times for other
systems (CPU and GPU) [36]. Table 4 lists the processing speeds of the different systems. The
processing time of an RRC in our system is more than the processing time of a GPU; however, the
processing time of a GC is less than the processing time of a GPU. The FPGA design can reach higher
speeds, because the FPGA can be more flexible in implementing pipelined and parallel process.
Thus, the total processing speed is faster. Due to the relatively slow processing speed of the model
parameters calculation by the DSP, the acceleration of the RRC process by increasing the resource
usage and waiting for the parameters is unnecessary. Although the system based on a GPU can
realize rapid development, it is not suitable for an on-board environment. The power consumption
of our system is about 33 W, which includes two pairs of FPGAs and DSPs and the corresponding
memory and Input/Output (I/O) devices. In contrast, the power consumption of the traditional
GPU-based system is about 200 W. However, NVIDIA has released the embedded GPU, such as
Jetson TX2, and the power consumption of an embedded GPU is nearly 8 W per processor. In order
to process the same data volume, the power consumption of an embedded GPU system is close to

Figure 14. Calculation units’ resource consumption before and after optimization.

To the best of our knowledge, similar hardware systems for remote image preprocessing have not
been proposed; thus, we compare our system with central processing unit (CPU) based and GPU-based
systems. The total system processing time for 2.01 GB of data is 11.6 s. For comparison purposes,
we also processed 1.12 GB of data and recorded the time. The processing time of each processor in
our system (FPGA-DSP co-processor) was compared with the processing times for other systems
(CPU and GPU) [36]. Table 4 lists the processing speeds of the different systems. The processing time of
an RRC in our system is more than the processing time of a GPU; however, the processing time of a GC
is less than the processing time of a GPU. The FPGA design can reach higher speeds, because the FPGA
can be more flexible in implementing pipelined and parallel process. Thus, the total processing speed
is faster. Due to the relatively slow processing speed of the model parameters calculation by the DSP,
the acceleration of the RRC process by increasing the resource usage and waiting for the parameters is
unnecessary. Although the system based on a GPU can realize rapid development, it is not suitable for
an on-board environment. The power consumption of our system is about 33 W, which includes two
pairs of FPGAs and DSPs and the corresponding memory and Input/Output (I/O) devices. In contrast,
the power consumption of the traditional GPU-based system is about 200 W. However, NVIDIA has
released the embedded GPU, such as Jetson TX2, and the power consumption of an embedded GPU is
nearly 8 W per processor. In order to process the same data volume, the power consumption of an
embedded GPU system is close to the power consumption of our system. But these embedded GPUs
cannot be adapted for an on-board processing system, which needs radiation tolerance. So, our system

Sensors 2018, 18, 1328 15 of 18

is more suitable for an energy-constrained and high radiation space environment. Using the FPGA
and the DSP enables greater flexibility in configuration and development at higher speeds. Therefore,
the advantage of using the FPGA and DSP systems for on-board data preprocessing is irreplaceable.

Table 3. FPGA resources occupation (Xilinx xc6vlx240t). LUTs: Look-Up-Table; and FF: Flip-Flop

Parameter Used Available

Number of slice registers 41,061 301,440
Number of slice LUTs 39,072 150,720

Number of fully used LUT-FF pairs 20,674 59,459
Number of block RAM/FIFO 230 416

Number of DSP48s 324 768

Table 4. Processing times of different systems. CPU: central processing unit; and GPU: graphic processing unit.

Platform Model CPU (seconds) Intel
Xeon E5650 CPU

GPU (seconds) Tesla
M2050 GPU

Co-Processor (seconds)
XC6VLX240T& TMS320C6701

RRC 3.64 0.23 0.67
MCCDS - - 1.67

GC 424.23 8.49 5.40

5.2. Real-Time Assessment

To assess the real-time performance, we present the following formula:

p =
Tin + Tpro + Tout

N ∗ Tin
, (15)

where Tin and Tout represent the time of raw-data input and the processing result output of the
processing node, respectively. Tpro is the processing delay. N is the number of processing nodes. When
p is less than one, the system can satisfy the real-time requirement. If p is larger than one, the system
cannot satisfy the real-time requirement. Because one processing node can process an image, the speed
of all data processing is positively related to the number of nodes. For the real-time, on-board task, if
we only need to obtain a determined area, then one node is sufficient. If we need to process all data that
are acquired, two solutions are available. The first solution is to establish additional processing nodes.
The second solution is to establish additional memory when the processing time is less than the input
time. Then, the system can process the first image when the second image is inputting into the memory.
Our system employs the second solution to cope with the low-speed condition. For the GF-2 satellite,
the data input time of the 2 GB image data is 1 s. Our system requires 0.89 s to process and output
the same data. Thus, our system can satisfy the needs of real-time processing. For actual processing,
only part of the image needs to be preprocessed and downlinked. Thus, the processing time will be
substantially shorter. Therefore, our system can satisfy the needs of on-board, real-time processing.

5.3. Correctness Results

To verify the correctness of our preprocessing system, we compared the results of this system
with the results of the personal computer (PC) platform using the root-mean-square error (RMSE) of
the output data of the two platforms as the evaluation criteria. The RMSE is expressed as

RMSE =

√√√√∑w
i=1 ∑h

j=1

(
DNFPGA

ij − DNPC
ij

)2

w ∗ h
, (16)

where NDij
FPGA and DNij

PC are the 16 bit integer values of the image pixels that are processed on
the on-board platform and PC, respectively. w and h are the width and height of the Level 2 image.

Sensors 2018, 18, 1328 16 of 18

Because the results of the CPU calculation are floating-point data and the results of the FPGA output are
fixed-point data, we first compared the RMSE between the output of the FPGA and the floating-point
data of the CPU. Then, we compared the RMSE between the FPGA output and the rounding of
the CPU output. Table 5 lists the results. As we can see, the maximum RMSE is 0.2934 before the
data are rounded. However, after rounding, the RMSE of both becomes zero, which means the
corresponding resultant images are perfectly matched. However, the task of image preprocessing
needs to obtain only integer-type image data to meet the requirements. Therefore, the fixed-point
optimization method adopted by the system satisfies the precision requirements while improving the
computational efficiency. Figure 15 provides an example of the input and output of the GC processing.

Sensors 2018, 18, x FOR PEER REVIEW 16 of 19

where NDijFPGA and DNijPC are the 16 bit integer values of the image pixels that are processed on the
on-board platform and PC, respectively. w and h are the width and height of the Level 2 image.
Because the results of the CPU calculation are floating-point data and the results of the FPGA output
are fixed-point data, we first compared the RMSE between the output of the FPGA and the
floating-point data of the CPU. Then, we compared the RMSE between the FPGA output and the
rounding of the CPU output. Table 5 lists the results. As we can see, the maximum RMSE is 0.2934
before the data are rounded. However, after rounding, the RMSE of both becomes zero, which
means the corresponding resultant images are perfectly matched. However, the task of image
preprocessing needs to obtain only integer-type image data to meet the requirements. Therefore, the
fixed-point optimization method adopted by the system satisfies the precision requirements while
improving the computational efficiency. Figure 15 provides an example of the input and output of
the GC processing.

(a) (b)

Figure 15. Example of the input and output of the GC processing: (a) raw image and (b)
georeferenced image.

Table 5. Root-mean-square errors (RMSEs) between the CPU processors and the DSP/FPGA co-processors.

Processor RMSE (before Rounding) RMSE (after Rounding)
RRC 0.2886 0

MCCDS 0.2934 0
GC 0.2869 0

6. Conclusions

This paper presents a FPGA and DSP co-processing system for an optical remote-sensing image
preprocessing algorithm. The design can be applied to the rapid responses required for the on-board
processing of remote-sensing images. The main contributions of this paper are as follows.

First, we optimized a mapping methodology for the preprocessing algorithm. For the linear
part, hierarchical coordinate transformation optimization, a block mapping design, and fixed-point
calculation are proposed. The hierarchical optimization can reduce the complexity, the block
mapping can prevent the problem of geometric deformation, and the fixed-point design can reduce
the time consumption and simplify the design.

Second, we designed a parallel acceleration architecture for real-time requirements. An optical
image preprocessing system that is based on a FPGA and DSP coprocessor was designed and
implemented. Because our system is designed for on-board processing, we chose processors with a
high radiation tolerance for space environments. The experimental results of this system

Figure 15. Example of the input and output of the GC processing: (a) raw image and (b) georeferenced image.

Table 5. Root-mean-square errors (RMSEs) between the CPU processors and the DSP/FPGA co-processors.

Processor RMSE (before Rounding) RMSE (after Rounding)

RRC 0.2886 0
MCCDS 0.2934 0

GC 0.2869 0

6. Conclusions

This paper presents a FPGA and DSP co-processing system for an optical remote-sensing image
preprocessing algorithm. The design can be applied to the rapid responses required for the on-board
processing of remote-sensing images. The main contributions of this paper are as follows.

First, we optimized a mapping methodology for the preprocessing algorithm. For the linear
part, hierarchical coordinate transformation optimization, a block mapping design, and fixed-point
calculation are proposed. The hierarchical optimization can reduce the complexity, the block mapping
can prevent the problem of geometric deformation, and the fixed-point design can reduce the time
consumption and simplify the design.

Second, we designed a parallel acceleration architecture for real-time requirements. An optical
image preprocessing system that is based on a FPGA and DSP coprocessor was designed and
implemented. Because our system is designed for on-board processing, we chose processors with a
high radiation tolerance for space environments. The experimental results of this system demonstrate
that our system has the potential for application on an on-board processor, for which the resources and
power consumption are limited.

Sensors 2018, 18, 1328 17 of 18

Although the current system can achieve the task of preprocessing, it requires the DSP to calculate
the RPCs, which limits potential applications. In future research, a preprocessing algorithm based
on a full FPGA design will be investigated. By using the FPGA to implement all the processes, the
computational efficiency can be further improved and wider applications can also be realized.

Author Contributions: B.Q. and H.S. conceived of and designed the framework, performed the experiments and
analyzed the data; H.C. and L.C. contributed to the hardware platform implementation; B.Q. wrote the paper; and
Y.Z. and H.S. reviewed and revised the paper.

Acknowledgments: This work was supported by the National Natural Science Foundation of China under
Grant 91438203, the Chang Jiang Scholars Program under Grant T2012122, and the Hundred Leading Talent
Project of Beijing Science and Technology under Grant Z141101001514005.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Goddijn-Murphy, L.; Peters, S.; van Sebille, E.; James, N.A.; Gibb, S. Concept for a hyperspectral remote
sensing algorithm for floating marine macro plastics. Mar. Pollut. Bull. 2018, 126, 255–262. [CrossRef]
[PubMed]

2. Percivall, G.S.; Alameh, N.S.; Caumont, H.; Moe, K.L.; Evans, J.D. Improving Disaster Management Using
Earth Observations—GEOSS and CEOS Activities. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6,
1368–1375. [CrossRef]

3. Panteras, G.; Cervone, G. Enhancing the temporal resolution of satellite-based flood extent generation using
crowdsourced data for disaster monitoring. Int. J. Remote Sens. 2018, 39, 1459–1474. [CrossRef]

4. Serge, A.; Berny, S.; Philippe, G.; Riza, F.A. INDESO project: Results from application of remote sensing and
numerical models for the monitoring and management of Indonesia coasts and seas. Mar. Pollut. Bull. 2018.
[CrossRef] [PubMed]

5. Tralli, D.M.; Blom, R.G.; Zlotnicki, V.; Donnellan, A.; Evans, D.L. Satellite remote sensing of earthquake,
volcano, flood, landslide and coastal inundation hazards. ISPRS J. Photogramm. Remote Sens. 2005, 59,
185–198. [CrossRef]

6. Joyce, K.E.; Belliss, S.E.; Samsonov, S.V.; Mcneill, S.J.; Glassey, P.J. A review of the status of satellite remote
sensing and image processing techniques for mapping natural hazards and disasters. Prog. Phys. Geogr.
2009, 33, 183–207. [CrossRef]

7. Chang, C.I.; Ren, H.; Chiang, S.S. Real-time processing algorithms for target detection and classification in
hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2001, 39, 760–768. [CrossRef]

8. Du, Q.A.; Nekovei, R. Fast real-time onboard processing of hyperspectral imagery for detection and
classification. J. Real-Time Image Process. 2009, 4, 273–286. [CrossRef]

9. Subramanian, S.; Gat, N.; Ratcliff, A.; Eismann, M. Real-time Hyperspectral Data Compression Using
Principal Components Transformation. In Proceedings of the Aviris Earth Science & Applications Workshop;
NASA Technical Reports Server: Cleveland, OH, USA, 2000.

10. El-Araby, E.; El-Ghazawi, T.; Le Moigne, J.; Irish, R. Reconfigurable processing for satellite on-board
automatic cloud cover assessment. J. Real-Time Image Process. 2009, 4, 245–259. [CrossRef]

11. Du, Q.; Nekovei, R. Implementation of real-time constrained linear discriminant analysis to remote sensing
image classification. Pattern Recognit. 2005, 38, 459–471. [CrossRef]

12. Visser, S.J.; Dawood, A.S. Real-Time Natural Disasters Detection and Monitoring from Smart Earth
Observation Satellite. J. Aerosp. Eng. 2004, 17, 10–19. [CrossRef]

13. Wang, M.; Zhu, Y.; Jin, S.; Pan, J.; Zhu, Q. Correction of ZY-3 image distortion caused by satellite jitter via
virtual steady reimaging using attitude data. ISPRS. J. Photogramm. 2016, 119, 108–123. [CrossRef]

14. Guo, J.N.; Yu, J.; Zeng, Y.; Xu, J.; Pan, Z.Q.; Hou, M.H. Study on the relative radiometric correction of CBERS
satellite CCD image. Sci. China Ser. E 2005, 48, 12–28. [CrossRef]

15. Toutin, T. Review article: Geometric processing of remote sensing images: Models, algorithms and methods.
Int. J. Remote Sens. 2004, 25, 1893–1924. [CrossRef]

16. Li, C.; Gao, L.; Plaza, A.; Zhang, B. FPGA implementation of a maximum simplex volume algorithm
for endmember extraction from remotely sensed hyperspectral images. J. Real-Time Image Process. 2017.
[CrossRef]

http://dx.doi.org/10.1016/j.marpolbul.2017.11.011
http://www.ncbi.nlm.nih.gov/pubmed/29421096
http://dx.doi.org/10.1109/JSTARS.2013.2253447
http://dx.doi.org/10.1080/01431161.2017.1400193
http://dx.doi.org/10.1016/j.marpolbul.2018.01.056
http://www.ncbi.nlm.nih.gov/pubmed/29449006
http://dx.doi.org/10.1016/j.isprsjprs.2005.02.002
http://dx.doi.org/10.1177/0309133309339563
http://dx.doi.org/10.1109/36.917889
http://dx.doi.org/10.1007/s11554-008-0106-9
http://dx.doi.org/10.1007/s11554-008-0107-8
http://dx.doi.org/10.1016/j.patcog.2004.09.008
http://dx.doi.org/10.1061/(ASCE)0893-1321(2004)17:1(10)
http://dx.doi.org/10.1016/j.isprsjprs.2016.05.012
http://dx.doi.org/10.1360/05ze1007
http://dx.doi.org/10.1080/0143116031000101611
http://dx.doi.org/10.1007/s11554-017-0679-2

Sensors 2018, 18, 1328 18 of 18

17. Kalomiros, J.A.; Lygouras, J. Design and evaluation of a hardware/software FPGA-based system for fast
image processing. Microprocess. Microsyst. 2008, 32, 95–106. [CrossRef]

18. Halle, W.; Venus, H.; Skrbek, W. Thematic data processing on board the satellite BIRD. In 2000 International
Symposium on Optical Science and Technology; Digital Library: San Diego, CA, USA, 2000; Volume 4540,
pp. 412–419. [CrossRef]

19. Botella, G.; Garcia, A.; Rodriguez-Alvarez, M.; Ros, E.; Meyer-Baese, U.; Molina, M.C. Robust Bioinspired
Architecture for Optical-Flow Computation. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2010, 18, 616–629.
[CrossRef]

20. Torti, E.; Fontanella, A.; Plaza, A. Parallel real-time virtual dimensionality estimation for hyperspectral
images. J. Real-Time Image Process. 2017. [CrossRef]

21. Gonzalez, C.; Lopez, S.; Mozos, D.; Sarmiento, R. A novel FPGA-based architecture for the estimation of the
virtual dimensionality in remotely sensed hyperspectral images. J. Real-Time Image Process. 2015. [CrossRef]

22. Li, B.; Shi, H.; Chen, L.; Yu, W.; Yang, C.; Xie, Y.; Bian, M.; Zhang, Q.; Pang, L. Real-Time Spaceborne Synthetic
Aperture Radar Float-Point Imaging System Using Optimized Mapping Methodology and a Multi-Node
Parallel Accelerating Technique. Sensors (Basel) 2018, 18. [CrossRef] [PubMed]

23. Yang, C.; Li, B.; Chen, L.; Wei, C.; Xie, Y.; Chen, H.; Yu, W. A Spaceborne Synthetic Aperture Radar Partial
Fixed-Point Imaging System Using a Field- Programmable Gate Array-Application-Specific Integrated
Circuit Hybrid Heterogeneous Parallel Acceleration Technique. Sensors (Basel) 2017, 17. [CrossRef] [PubMed]

24. Hauck, S. The roles of FPGAs in reprogrammable systems. Proc. IEEE 1998, 86, 615–638. [CrossRef]
25. Qiang, L.; Allinson, N.M. FPGA Implementation of Pipelined Architecture for Optical Imaging Distortion

Correction. In Proceedings of the 2006 IEEE Workshop on Signal Processing Systems Design and
Implementation, Banff, AB, Canada, 2–4 October 2006; pp. 182–187. [CrossRef]

26. Zemčík, P.; Přibyl, B.; Herout, A.; Seeman, M. Accelerated image resampling for geometry correction.
J. Real-Time Image Process. 2011, 8, 369–377. [CrossRef]

27. Shevlin, F.P. Correction of geometric image distortion using FPGAs. In Proceedings of the Opto-Ireland 2002:
Optical Metrology, Imaging, and Machine Vision, Galway, Ireland, 19 March 2003; Volume 4877, pp. 28–37.

28. Zhou, G.Q.; Zhang, R.T.; Liu, N.; Huang, J.J.; Zhou, X. On-Board Ortho-Rectification for Images Based on an
FPGA. Remote Sens.-Basel. 2017, 9. [CrossRef]

29. Gehrke, S.; Beshah, B.T. Radiometric Normalization of Large Airborne Image Data Sets Acquired by Different
Sensor Types. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B1, 317–326. [CrossRef]

30. Nguyen, T. Optimal Ground Control Points for Geometric Correction Using Genetic Algorithm with Global
Accuracy. Eur. J. Remote Sens. 2015, 48, 101–120. [CrossRef]

31. Maras, E.E. Improved Non-Parametric Geometric Corrections For Satellite Imagery Through Covariance
Constraints. J. Indian Soc. Remote Sens. 2015, 43, 19–26. [CrossRef]

32. Schowengerdt, R.A. Remote Sensing: Models and Methods for Image Processing, 3rd ed.; Elsevier Academic Press
Inc.: San Diego, CA, USA, 2007; pp. 1–515.

33. Bannari, A.; Morin, D.; Bénié, G.B.; Bonn, F.J. A theoretical review of different mathematical models of
geometric corrections applied to remote sensing images. Remote Sens. Rev. 1995, 13, 27–47. [CrossRef]

34. Tao, C.V.; Hu, Y. A Comprehensive study of the rational function model for photogrammetric processing.
Photogramm. Eng. Remote Sens. 2001, 67, 1347–1357.

35. Zhou, H.F.; Yang, X.J.; Liu, H.Z.; Tang, Y. GPGC: A Grid-enabled parallel algorithm of geometric correction
for remote-sensing applications. Concurr. Comput.-Pract. Exp. 2006, 18, 1775–1785. [CrossRef]

36. Fang, L.; Wang, M.; Li, D.; Pan, J. CPU/GPU near real-time preprocessing for ZY-3 satellite images: Relative
radiometric correction, MTF compensation, and geocorrection. ISPRS J. Photogramm. 2014, 87, 229–240.
[CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.micpro.2007.09.001
http://dx.doi.org/10.1117/12.406579
http://dx.doi.org/10.1109/TVLSI.2009.2013957
http://dx.doi.org/10.1007/s11554-017-0703-6
http://dx.doi.org/10.1007/s11554-014-0482-2
http://dx.doi.org/10.3390/s18030725
http://www.ncbi.nlm.nih.gov/pubmed/29495637
http://dx.doi.org/10.3390/s17071493
http://www.ncbi.nlm.nih.gov/pubmed/28672813
http://dx.doi.org/10.1109/5.663540
http://dx.doi.org/10.1109/SIPS.2006.352578
http://dx.doi.org/10.1007/s11554-011-0213-x
http://dx.doi.org/10.3390/rs9090874
http://dx.doi.org/10.5194/isprsarchives-XLI-B1-317-2016
http://dx.doi.org/10.5721/EuJRS20154807
http://dx.doi.org/10.1007/s12524-014-0391-7
http://dx.doi.org/10.1080/02757259509532295
http://dx.doi.org/10.1002/cpe.1028
http://dx.doi.org/10.1016/j.isprsjprs.2013.11.010
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preprocessing Method
	Parallel Accelerating Architecture
	Nonlinear Part Mapping Strategy
	Hierarchical Decomposition Mapping Strategy
	Complexity Analysis

	Linear Part Mapping Strategy
	Data Access Pattern
	Parallel Processing Data Access
	Fixed-Point Calculation Design

	Realization of the FPGA-DSP Accelerating Platform
	Experimental Results
	Processing Performance
	Real-Time Assessment
	Correctness Results

	Conclusions
	References

