
sensors

Article

A Low-Ambiguity Signal Waveform for Pseudolite
Positioning Systems Based on Chirp

Qing Liu 1,* ID , Zhigang Huang 1, Yanhong Kou 1 and Jinling Wang 2

1 School of Electronic and Information Engineering, Beihang University, Beijing 100083, China;
baahzg@163.com (Z.H.); kouy@buaa.edu.cn (Y.K.)

2 School of Civil and Environmental Engineering, University of New South Wales,
Sydney, NSW 2052, Australia; jinling.wang@unsw.edu.au

* Correspondence: xc1989lq1988@outlook.com; Tel.: +61-048-121-4802

Received: 16 February 2018; Accepted: 23 April 2018; Published: 25 April 2018
����������
�������

Abstract: Signal modulation is an essential design factor of a positioning system, which directly
impacts the system’s potential performance. Chirp compressions have been widely applied in the
fields of communication, radar, and indoor positioning owing to their high compression gain and
good resistance to narrowband interferences and multipath fading. Based on linear chirp, we present
a modulation method named chirped pseudo-noise (ChPN). The mathematical model of the ChPN
signal is provided with its auto-correlation function (ACF) and the power spectrum density (PSD)
derived. The ChPN with orthogonal chirps is also discussed, which has better resistance to near-far
effect. Then the generation and detection methods as well as the performances of ChPN are discussed
by theoretical analysis and simulation. The results show that, for ChPN signals with the same
main-lobe bandwidth (MLB), generally, the signal with a larger sweep bandwidth has better tracking
precision and multipath resistance. ChPN yields slighter ACF peaks ambiguity due to its lower
ACF side-peaks, although its tracking precision is a little worse than that of a binary offset carrier
(BOC) with the same MLB. Moreover, ChPN provides better overall anti-multipath performance than
BOC. For the ChPN signals with the same code rate, a signal with a larger sweep bandwidth has
better performance in most aspects. In engineering practice, a ChPN receiver can be implemented
by minor modifications of a BOC receiver. Thus, ChPN modulation shows promise for future
positioning applications.

Keywords: chirp; low-ambiguity; high-precision; navigation; pseudolite

1. Introduction

Global Navigation Satellite System (GNSS) positioning accuracy degrades significantly in indoor
and urban canyon environments due to severe signal attenuations and multipath effects, which has
been motivating researchers to explore alternative technologies for location-based service (LBS)
in recent years [1–4]. GNSS-like positioning technologies, for example, pseudolite positioning
systems (PLs) and GNSS repeater systems, have been extensively investigated for indoor and urban
applications [5–7]. A pseudolite system employs signals the same as or similar to GPS signals for
ranging [8,9]. As an essential design consideration of a positioning system, the signal modulation
method directly affects the inherent performance of the system [10].

GNSS-like technologies are widely investigated for positioning in GNSS signal blocked situations,
e.g., indoor, urban canyons, and open-pit mines, etc. It is well known that high accuracy and flexibility
are the basic requirements for such applications. The portable transmitters, e.g., PLs powered by
batteries, and receivers have become more and more significant, which made us to explore low-power
consumption solutions. BPSK signals with a larger bandwidth can provide better tracking precision,
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but require correspondingly greater transmitter power to conserve integrated energy per code epoch [11].
High order BOC signals may provide high tracking performance without shortening the chip width
so that will not increase the power consumption. The large side-peaks of its ACF (auto-correlation
function), however, may lead to false locking. Therefore, it is of practical significance to design a
modulation method to meet the requirements.

Chirp signal sweeps over a frequency band in a certain time duration, with which one can spread
the spectrum without shrinking the chip width, so that it will not increase the power consumption
compared with BPSK and quite suitable for a GNSS-like system which is low data-rate. Recent
advances in surface acoustic wave (SAW) devices have shown that chirp generators and matched
filters can be implemented by using completely passive, low-cost SAW chirp delay lines [12]. Nanotron
Technologies (Berlin, Germany) has brought forth some mature chirp integrated circuits (IC) at a
price of about 40 Euro per chip, that work in the industrial, scientific and medical (ISM) radio band.
In addition, SEMTECH (Camarillo, CA, USA) and SAGE Millimeter (Torrance, CA, USA) have also
developed chirp products that work in various radio bands.

Chirp signals have been widely used in radar systems [13–15]. Owing to their properties of
high compression gain, good resistance to narrowband interferences and multipath effects [12,14],
chirp signals have also been used extensively in other fields, such as measurement [16], ultra-wide
band communication [17] and optical fiber communication [12]. Furthermore, the chirp signal is also
introduced for positioning and navigation. Typically, Nanotron has presented an positioning system
based on CSS (chirp spread spectrum, a globally patented design of the company), and successfully used
in open-pit mining, and its positioning products, nanoLOCs, are widely used in indoor positioning [18].
What’s more, [19] employs chirp in an RFID indoor positioning system, some experiments also have
been done by researchers and obtained some useful results [18,20,21]. Another signal named absolute
phase modulation (APM), which is based on non-linear chirp, has also been introduced to positioning
systems [22]. Most chirp-based positioning systems are two-way ranging systems. They have several
shortcomings, such as limited system capacity and the need for more base-stations, compared with
one-way ranging systems.

Based on the linear chirp technique, we present a modulation method named chirped pseudo-noise
(ChPN). Its principle is similar to BOC modulation by replacing the BOC sub-carrier with one period of
chirp. As will be demonstrated later, ChPN inherits the attractive features of both PRN code and chirp
signals, such as excellent auto-correlation and cross-correlation properties, fine multipath resolution,
and high compression gain. Our contributions are as follows: (1) the signal model as well as ACF
and PSD are derived; (2) the signal performances are evaluated by theoretical analysis and simulation;
(3) the ChPN with orthogonal chirps is also discussed. Since the ACF side-peaks of the ChPN signal are
much lower than that of the BOC modulation, the wrong acquisition and false lock problems caused
by the ACF peak ambiguity can be mitigated. Although the slightly sharper ACF main peak of the
BOC signal promises a little higher tracking precision, the multipath-induced tracking biases converge
much slower than the ChPN signal with the multipath delay increasing. The near-far effect can be
mitigated by the ChPNs with orthogonal chirps. However, its candidates amount is subject to signal
bandwidth. From the perspective of receiver complexity, the ChPN receivers can be implemented
by a slight modification of the BOC receiver. Thus, ChPN modulation provides a good candidate for
pseudolite ranging signal design.

The remainder of the paper is organized as follows: the time-domain model of the ChPN signal
will be provided in Section 2, followed by its ACF and power spectrum density (PSD). Section 3 will
analyze the generation and detection methods of the ChPN signal. Section 4 will provide a theoretical
analysis for signal performance. The simulation is done in the Section 5. Conclusions will be given in
Section 6. Finally, Appendix A gives the detailed derivation of the chirp spectrum.

2. Mathematical Models

The time-domain model, ACF, and PSD expressions of ChPN will be explored in this section.
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2.1. Modulation Principle

The ChPN signal can be expressed as the following equation:

s(t) = ∑∞
−∞ cm p(t−mTc) (1)

with the spread spectrum symbol waveform, p(t), as:

p(t) =
√

2 cos
(

2π fct± π
Bs

Tc
t2
)

g
(

t
Tc

)
, −Tc

2
< t <

Tc

2
(2)

where {cm = ±1} is the PRN sequence, Tc is the chip duration, fc is the center frequency of chirp, Bs is
the sweep bandwidth, g(t/Tc) is the gate function with a duration of Tc. The amplitude of p(t) is
assumed as

√
2 to ensure the power is 1, without loss of generality. A chirp with frequency increasing

is called an up-chirp, otherwise is called a down-chirp [17]. While only up-chirp is taken as an example
hereinafter, the techniques and conclusions in this paper are also applicable to the down-chirp case.
The waveform of the ChPN signal is illustrated in Figure 1.
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Figure 1. Illustration of waveforms of (a) PRN code signal; (b) Chirp signal; (c) ChPN signal.

Henceforth, the notation ChPN(p,q) will denote a ChPN signal with a sweep bandwidth of
Bs = p× f0 and a code rate of q× f0, respectively, with f0 = 1.023 MHz. The main-lobe bandwidth
(MLB) of the ChPN signal is determined by the chipping rate and the sweep range. As most signal
energy is concentrated on the band −(p + q) f0~(p + q) f0, the MLB can be expressed as:

Bchp = 2(p + q) f0 (3)

According to Equation (3), there exist various modulations with the same MLB if we change
parameters p and q. It is necessary for us to make comparisons for them that will be carried out in
Sections 4 and 5.

2.2. Auto-Correlation Function

The ACF of the ChPN signal, R(t + τ, t), can be expressed as:

R(t + τ, t) = E
[
s(t)∗s(t + τ)

]
=

+∞

∑
k=−∞

+∞

∑
n=−∞

{
E(cn

∗cn+k)[p(t− nTc)]
∗

×p(t− nTc + τ − kTc)

}
(4)

According to (4), “*” represents complex conjugate, R(t + τ, t) is a periodic function with respect
to the variable t with a period of Tc; (1) indicates that the mean value of s(t) is also a periodic function
with the same period Tc. So the ChPN signal is cyclostationary, and its ACF, R(τ) with t eliminated,
can be obtained by the time average of R(t + τ, t):

R(τ) =
1
Tc

+∞

∑
k=−∞

Rc(k)Rp(τ − kTc) (5)
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Rp(τ) is the ACF of p(t), Rc(k) is the ACF of cn. Assuming that the PRN code sequence is random,
non-periodic, identically distributed, equiprobable and independent, we have:

Rc(k) = E(cn
∗cn+k) ≈

{
1, k = 0
0, k 6= 0

(6)

Thus, (5) can be simplified as:
R(τ) = Rp(τ)/Tc (7)

where the Rp(τ) is as follows [23]:

Rp(τ) = Tc

sin
(

πBsτ
(

1− |τ|Tc

))
πBsτ

cos(2π f0τ),−Tc < τ < Tc (8)

Based on Equations (7) and (8), the ACF is given by:

R(τ) =
sin
(

πBsτ
(

1− |τ|Tc

))
πBsτ

cos(2π fcτ), −Tc < τ < Tc (9)

Based on the Equation (9), the computer numerical results show that the ACF curve reaches
its maximum at τ = 0 and its first zero at τ ≈ ±1/2Bs, and the ACF main peak width is about
1/Bs. Therefore, the sharpness of the ACF main peak is proportional to Bs; a wide Bs results in
a sharp correlation peak, and thus a fine multipath resolution as well as good acquisition and
tracking performance. What’s more, the signal-to-noise ratio (SNR) of the output of the match
filter in the receiver is amplified by the following two factors: (1) the compression gain of chirp,
Gc = 10 log(BsTc) dB [24]; (2) the dispreading gain 10 log(Nc) dB, where Nc is the PRN code length.

2.3. Power Spectrum Density

The PSD can be derived from the following expression [25]:

Schp( f ) =
1
Tc
|P( f )|2Sc( f ) (10)

where, |P( f )| is the amplitude spectrum of p(t); Sc( f ) is the PSD of the PRN sequence {cm} as follows:

Sc( f ) =
∞

∑
k=−∞

Rc(k)e−j2π f kTc = 1 (11)

After a complicated derivation (the detailed derivation is shown in Appendix A), P( f ) is:

P( f ) =
1
2

√
T
Bs



exp
[
−j Tcπ( f− f0)

2

Bs

]
×[C(X1) + jS(X1) + C(X2) + jS(X2)]

+ exp
[

j Tcπ( f+ f0)
2

Bs

]
×[C(X3) + C(X4)− jS(X3)− jS(X4)]


(12)

where:

X1 =
Bs + 2( f − fc)√

2Bs/Tc
, X2 =

Bs − 2( f − fc)√
2Bs/Tc

X3 =
Bs − 2( f + fc)√

2Bs/Tc
, X4 =

Bs + 2( f + fc)√
2Bs/Tc
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C(X) and S(X) are the Fresnel cosine and sine integrals, respectively. Simplifying (12) yields:

P( f ) =
√

A2 + B2 + 2AB cos(θ1 − θ2) exp
(

jarctan
(

A sin(θ1) + B sin(θ2)

A cos(θ1) + B cos(θ2)

))
(13)

where:

A =
1
2

√
Tc

Bs

√
(C(X1) + C(X2))

2 + (S(X1) + S(X2))
2

B =
1
2

√
Tc

Bs

√
(C(X3) + C(X4))

2 + (S(X3) + S(X4))
2

θ1 = −πTc( f − f0)
2

Bs
+ arctan

(
S(X1) + S(X2)

C(X1) + C(X2)

)

θ2 =
πTc( f + f0)

2

Bs
− arctan

(
S(X3) + S(X4)

C(X3) + C(X4)

)
Substituting (11) and (13) into (10) yields the PSD expression:

Schp( f ) =
(

A2 + B2 + 2AB cos(θ1 − θ2)
)

/Tc (14)

2.4. ChPN with Orthogonal Chirps

If the better cross-correlation performance is wanted, we can select the chirp waveforms based on
the following equation [12]:

porth(t) =
√

2 cos

(
πN
T2

c

(
t− k

Tc

N

)2
− π

4

)
− Tc

2
< t <

Tc

2
(15)

where N = BsTc, and k = 0, 1, . . . , N − 1. Replacing p(t) with porth(t) in Equation (1), then the
ChPN with orthogonal chirps obtained, which is denoted as O-ChPN. Due to the constraint condition,
the transmitter number is limited to N, i.e., the maximum number of transmitters is 5 with a Bs of 5 f0,
and a Tc of 1/ f0. Both the chirp waveforms and PN sequences are different among the transmitters.
The further discussion will be present in Sections 4.5 and 5.

3. Signal Generation and Detection

Traditionally, a chirp signal can be generated with analog circuitry via a voltage-controlled
oscillator (VCO). Recent advances in SAW devices have made it easier to generate chirp in a low-cost
way. Chirp can also be generated digitally by using a direct digital synthesizer (DDS) [14].

Since the modulation principle of ChPN is similar to BOC, the ChPN signal can be generated
by replacing the BOC sub-carrier generating module with the chirp generating module, as shown in
Figure 2a. In the figure, the data waveform d(t) is modulated by the PRN code signal c(t) and the
chirp sub-carrier p(t) to form a baseband signal s(t). After passing through the band-pass filter (BPF)
and being modulated by the radio frequency (RF) carrier, s(t) is up-converted to the RF signal sRF(t).
The clock signals driving PRN code and chirp generation modules should be derived coherently from
the same oscillator source.
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Figure 2. ChPN generating schematic diagram (a); Regular acquisition scheme of ChPN signal (b).

A regular acquisition scheme of ChPN signals is shown in Figure 2b, which is similar to that of
BOC signals. First, the RF signal sRF(t) was mixed with the local oscillator (LO) signal, down-converted
to an intermediate frequency (IF); then, the IF signal SIF(t) is down-converted by the local carrier and
cross-correlated by the local ChPN reference signal, respectively; next, after coherent integrations and
square operations, the decision variable can be obtained by adding the outputs of I and Q channels as
the following: {

SI =
√

C/2R(τ) cos(θ)sinc
(
πFDTp

)
+ nI

SQ =
√

C/2R(τ) sin(θ)sinc
(
πFDTp

)
+ nQ

(16)

where C is the signal power, τ is the delay difference between the local code and the incoming code,
θ is the phase difference between the local carrier and the incoming signal carrier, FD is the frequency
difference between the local carrier and the incoming signal carrier, Tp is the pre-detection integration
time, nI and nQ are the Gaussian noises in the correlator outputs. The decision variable S(FD, τ) can
be expressed as:

S(FD, τ) = SI
2 + SQ

2 (17)

which is a random process with a chi-square distribution and two degrees of freedom, and its
non-centrality parameter is λ = C/2sinc2(πFDTp

)
R2(τ).

4. Numerical Results

In this section, we will divide the discussion into five parts. First, ACF and PSD are analyzed
as they are the most essential characteristics for a navigation signal. The second part will focus
on the tracking precision, which is the most concerned in most civil applications. The multipath
resistance will be discussed in the third part, as it is the main error source in a GNSS-like positioning
system and can hardly be eliminated. Then, the tracking ambiguity is analyzed as the ACF contain
multiple peaks. Finally, the cross-correlation comparison among several signal signals. Since ChPN(5,1)
keeps the spectral characteristics of chirp with a relatively reasonable bandwidth, it is selected as the
representative for the comparison between different signal waveforms. The analysis will be carried
out in three situations as Table 1 shows.
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Table 1. Analysis situations.

Situations Signals Characteristics

1 ChPN(5,1), ChPN(4,2), ChPN(3,3) ChPN signals with the same MLB, different sweep bandwidths.
2 ChPN(5,1), BOC(5,1) Different waveforms with the same code rate and MLB.
3 ChPN(10,1), ChPN(5,1) ChPN signals with the same code rate and different MLBs.

4.1. ACF and PSD

Figure 3 is drawn with infinite front-end bandwidth. For the first situation, as shown in that
figure, the ChPN(5,1) has the sharpest ACF main peak among the alternative options, while ChPN(4,2)
has a sharper ACF peak than ChPN(3,3) in a relative large time delay and a more obtuse ACF peak
in a small time delay. Therefore, ChPN(5,1) may provide the best tracking precision, ChPN(4,2) may
provide a better tracking precision than ChPN(3,3) with a small previous detection bandwidth (PDB),
and worse tracking precision with a large PDB based on the tracking theory provided by Betz [26,27].
What’s more, ChPN(4,2) has the largest side-peak amplitude, while ChPN(3,3) has the smallest one.
For the second situation, BOC(5,1) has sharper ACF main peak than ChPN(5,1), which may lead to
better tracking precision. However, the ACF side-peaks of ChPN(5,1) are much lower than that of
BOC(5,1), which yields a larger noise margin and thus a lower false locking probability if the traditional
E-L discriminator is used for the delay lock loop (DLL). The larger main-peak to maximum-side-peak
ratio (MSPR) can reflect the lower ambiguity. The MSPRs of ChPN(5,1) and BOC(5,1) are about 15 dB
and 0.91 dB, respectively. Therefore, the ACF peak ambiguity problem can be mitigated by ChPN,
which makes it easier to track the correct ACF peak using the traditional E-L discriminator. For the
third situation, ChPN(10,1) has a shaper ACF main peak, and more ACF side-peaks, which may lead to
better tracking precision and more serious ACF peaks ambiguity, respectively. Owing to the symmetry
of the ACF, the “Bump and Jump” technique can be employed to achieve the unambiguous tracking of
ChPN signal, which will increase the receiver complexity.
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According to (14), the PSD envelopes for ChPN(5,1), ChPN(4,2), ChPN(3,3) and ChPN(10,1),
and BOC(5,1) are drawn in Figure 4. As we can see from the figure, some conclusions can be drawn.
For the first situation, the PSD of ChPN(5,1) is flatter than the others as well as more high-frequency
components, ChPN(4,2) owns more frequency components in the band of 1 MHz to 5 MHz while
ChPN(3,3) owns more frequency components in band with higher absolute value of frequency. Hence,
ChPN(3,3) may has a better tracking precision than ChPN(4,2) with a large PDB. For the second
situation, the PSD of BOC(5,1) contains more high-frequency components than ChPN(5,1), which may
yield a better tracking precision. For the third situation, ChPN(10,1) has a flatter PSD envelopes
and contains more high-frequency components than ChPN(5,1), which may contribute to better
tracking precision.
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4.2. Tracking Performance

For the evaluation of the 1-sigma thermal noise jitter of DLL tracking, [28] developed a low bound
of tracking error (LBTE), which is independent of specific code tracking circuit design and reflects the
ultimate tracking performance. Considering the similarity of the modulation principle of ChPN with
BOC signals, the canonical model of code-tracking loop can be employed to evaluate the ChPN tracking
performance [26]. The LBTE of the time-of-arrival (TOA) estimate of this model can be written as:

σLB ∼=
1
Tc

√√√√ BL(1− 0.5BLT)

(2π)2C
∫ βr/2
−βr/2 f 2[Gs( f )/Gw( f )]d f

(chip) (18)

where BL is the loop bandwidth, T is the coherent integration time, C is the received signal power, βr is
the PDB, Gs( f ) is the normalized signal PSD, Gw( f ) is the PSD of the sum of noise plus interference.

Based on (18), Figure 5 can be obtained with the following preconditions: (1) BL = 0.5 Hz,
T = 1 ms, Gw( f ) = N0, where N0 is the PSD of thermal noise; (2) the same PDB of 30 MHz. Based
on Figure 5, the following conclusions can be drawn. For the first situation, ChPN(5,1) owns the
smallest LBTEs, ChPN(3,3) has smaller LBTEs than ChPN(4,2) due to there are more high-frequency
components in the PDB of 30 MHz. For the second situation, BOC(5,1) has smaller LBTEs than
ChPN(5,1). For the third situation, ChPN(10,1) has smaller LBTEs than ChPN(5,1). Furthermore,
when the carrier-to-noise ratio (C/N0) increases, either the LBTE itself or the LBTE differences between
ChPN signals with different sweep bandwidth or between ChPN and BOC become smaller.Sensors 2018, 18, x FOR PEER REVIEW  9 of 19 
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Assuming non-coherent DLL is used, the tracking precision can be evaluated with the
mathematical model presented by [26] as follows:

σ = 1
Tc

√√√√ BL
∫ βr/2
−βr/2 Gs( f ) sin2(π f D)d f

(2π)2 C
N0

(∫ βr/2
−βr/2 f Gs( f ) sin(π f D)d f

)2 ×

√√√√1 +
BL
∫ βr/2
−βr/2 Gs( f ) cos2(π f D)d f

T C
N0

(∫ βr/2
−βr/2 f Gs( f ) cos(π f D)d f

)2 (chip) (19)

where D is the early-late spacing (ELS), the tracking precision curves of ChPN(5,1), ChPN(4,2),
ChPN(3,3), ChPN(10,1) and BOC(5,1) are shown in Figure 6, which is drawn under the conditions
that (1) code loop bandwidth is 0.5 Hz; (2) ELS is 5.86 m; and (3) coherent integration time is 1 ms.
As we can see from the figure, when the C/N0 increases, either the tracking error itself or the tracking
error differences between different signals become smaller. With the PDB increasing, the tracking
error become smaller. For the first situation, ChPN(5,1) has the smallest tracking errors, ChPN(3,3)
performs better than ChPN(4,2) with a PDB of 24 MHz, and worse than that with a PDB of 12 MHz.
For the second situation, BOC(5,1) has a smaller tracking error than ChPN(5,1). For the third situation,
ChPN(10,1) has a smaller tracking error than ChPN(5,1) with a PDB of 24 MHz; when the PDB is
12 MHz, however, the larger tracking error happens due to lots of frequency components are wasted
which can be easily seen in Figure 4.
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4.3. Multipath Resistance

Tang developed an explicit expression for multipath error envelope (MPEE), which reflects the
multipath mitigation performance of GNSS signals, expressed as follows [29]:

ε(τ) =
±a
∫ βr/2
−βr/2 Gs( f ) sin(2π f τ) sin(π f D)d f

2π
∫ βr/2
−βr/2 f Gs( f ) sin(2π f D)[1± a cos(2π f τ)]d f

(second) (20)

where τ is multipath delay, a is the amplitude ratio of multipath to direct path; when the phase
difference between direct path and reflected path is 0 or 180 degrees, ‘±’ is ‘+’ or ‘−’, respectively.
Based on (20), Figure 7 computes MPEEs of different modulations for a non-coherent delay DLL with
an ELS of 5.86 m and a multipath to direct ratio (MDR) of −6 dB. As the figure shows, the users
can achieve smaller MPEEs with a larger PDB. The MPEEs for multipath delay below 7 m and 5 m
are practically equal for all the signals with PDBs of 24 MHz and 12 MHz, respectively. For the first
situation, with a PDB of 12 MHz, ChPN(5,1) has the smallest MPEEs, followed by ChPN(4,2) and
ChPN(3,3); when the PDB increase to 24 MHz, with a multipath delay less than 30 m, ChPN(3,3) has
the smallest MPEEs followed by ChPN(5,1) and ChPN(4,2); ChPN(5,1) has the best overall multipath
resistance performance. For the second situation, BOC(5,1) has smaller MPEEs than ChPN(5,1) when
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multipath delay below 40 m, MPEE curves of ChPN(5,1) converge much faster than that of BOC(5,1),
ChPN(5,1) has a better overall multipath resistance. For the third situation, ChPN(10,1) is better than
ChPN(5,1) in MPEEs.
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Figure 8 shows the average worst-case multipath errors (AWME) for various signals, which is
drawn with the following model and the same conditions with Figure 7:

εa =
1
τ

∫ τ

0

 abs
(

ε(τ)|ϕ=0

)
+ abs

(
ε(τ)|ϕ=180o

)
2

dτ(second) (21)

where ϕ carrier phase difference of multipath and direct path. With the PDB increasing, the AWMEs
become smaller. For the first situation, ChPN(5,1) has the smallest AWMEs followed by ChPN(4,2)
and ChPN(3,3) with a PDB of 12 MHz; when the PDB is 24 MHz, ChPN(3,3) has the smallest AWMEs
with a multipath delay below 50 m, ChPN(5,1) owns the smallest AWMEs if multipath delay exceeds
50 m, ChPN(4,2) performs worst over all multipath delay. For the second situation, BOC(5,1) has
the smaller AWMEs than ChPN(5,1) with multipath delay less than 80 m and 50 m when the PDBs
are 12 MHz and 24 MHz, respectively. For the third situation, ChPN(10,1) has smaller AWMEs than
ChPN(5,1). Moreover, due to a PDB of 12 MHz is not sufficient to include the frequency components
of ChPN(10,1), the AWME curves of ChPN(10,1) “jump” from a high level to low level when the PDB
changes from 12 MHz to 24 MHz.Sensors 2018, 18, x FOR PEER REVIEW  11 of 19 
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4.4. ACF Peaks Ambiguity

Due to the similar modulation principle to BOC, ChPN also suffers ACF peaks ambiguity, which is
caused by the ACF side-peaks. That phenomenon makes it difficult for receivers to acquire and track
the signal correctly, and sometimes false locking occurs in the presence of thermal noise or dynamic
stress. Therefore, it is necessary for us to present the MSPRs for ChPN signals with different p and q.

The time delay corresponding to the maximum-side-peak can be computed by the following
implicit equation:

τs = arg min
{

dR(τ)
dτ

= 0, τ > 0
}

(22)

then, substituting τs into (9), we obtain auto-correlation value Rm, the MSPR obtained by computing
the following equation:

MSPR = 20 log10(Rm) (23)

Figure 9 is drawn based on (23), which presents the MSPRs of various ChPN modulations.
As shown in the figure, the MSPRs reaches the minimum amplitude when the code rate equals to the
sweep bandwidth and reaches the maximum amplitude when the sweep bandwidth is double of the
code rate. The figure gives us a reference when we choose parameters for ChPN signals.
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4.5. Cross-Correlation Comparison

As we know, the cross correlation is an essential indicator for a ground-based navigation system,
which reflects the resistance to near-far effects. The following statistic histogram is drawn with the
signals that modulated by the C/A code of satellite 1 and 2. The cross-correlation amplitudes are
normalized with the value of auto-correlation peak. As we can see from Figure 10, BPSK(1) and
ChPN(5,1) have the same maximum cross correlation, which is larger than O-ChPN(5,1). Furthermore,
most samples of ChPN(5,1) and O-ChPN(5,1) are located in −0.02 to 0.02, while BPSK(1) contains
more samples in higher range, such as 0.02 to 0.06. The auto-to-cross-correlation peak ratio (ACCR) of
BPSK(1) and ChPN(5,1) is 24 dB, while the ACCR of O-ChPN(5,1) is about 26 dB, 2 dB better than the
above two.
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5. Simulation

In order to explore the signal performance, the computer simulation is performed, with the
method shown Figure 11. First, the digital IF navigation signal is generated by MATLAB, and saved in
a disk. Second, we load this signal samples, add noise and multipath signal to the original samples
with a specified CN0 and MDR when we use. Then, the signal samples are processed by a software
defined receiver (SDR). Finally, the signal performance is evaluated by the tracking results output
from SDR.
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Figure 11. Simulation method.

Figure 12 shows the simulated PSDs of ChPN(5,1), ChPN(4,2), ChPN(3,3), ChPN(10,1) and
BOC(5,1), which quite match with Figure 4. According to Figure 12, a signal with a wider sweep
bandwidth owns a flatter PSD; the signals of situation 1 differ in characteristics, ChPN(3,3) is similar
to BPSK, ChPN(4,2) is similar to BOC, and ChPN(5,1) is similar to chirp; for situation 2, ChPN(5,1) has
a more flatter PSD than BOC(5,1) while BOC(5,1) has more high-frequency components; for situation 3,
ChPN(10,1) has a flatter and wider PSD than ChPN(5,1).

Figure 13 shows the simulated tracking errors of different signals, which is drawn with an ELS of
5.86 m, a sampling rate of 61 MHz, a code loop bandwidth of 0.5 Hz, and a coherent integration time
of 1 ms. According to the figure, we can draw some conclusions: (1) either the tracking error or the
tracking error difference between different signals decrease when the C/N0 increase; (2) the tracking
errors become smaller when the PDB increase; (3) a wider sweep bandwidth leads to better tracking
performance for the signals that own the same or different MLBs; (4) BOC(5,1) owns smaller tracking
errors than ChPN(5,1) with the same MLB.
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Figure 13. Simulated tracking errors of various signals with bandwidth of 12 MHz and 24 MHz.

As we can see from Figures 6 and 13, the two figures are similar in variation trend, but differ in
numerical value. Figure 6 is obtained by calculating with a mathematical model. As some factors that
impact the tracking errors are not considered in that model but encountered in SDR, such as carrier
phase differences, carrier frequency differences and sampling frequency.

MPEE reflects the maximum ranging error caused by one-ray multipath with specific parameters,
which is the theory limit calculated by mathematical model. Hence, it is hard for us to obtain MPEEs
from a SDR, but multipath errors are reachable. Figure 14 shows the simulated multipath errors for
various signals, which is drawn under the condition that C/N0 is 40 dB-Hz, ELS is 5.86 m, sampling
rate is 61 MHz, the code loop bandwidth is 0.5 Hz, MDR is −6 dB, PDB is 24 MHz. According to
Figures 14 and 15, some conclusions can be drawn. First, for situation 1, the signal with a wider sweep
bandwidth has a smaller multipath error among the alternative signals, such as ChPN(5,1) has the
smallest multipath error and the fastest convergence speed followed by ChPN(4,2) and ChPN(3,3).
Secondly, for situation 2, ChPN(5,1) has a smaller multipath error than BOC(5,1), the convergence
speed is faster than that of BOC(5,1). Thirdly, for situation 3, ChPN(10,1) has a smaller multipath error
and a faster convergence speed than ChPN(5,1). The variation trends are similar to Figure 7, as well as
the conclusions.
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Figure 15 shows the standard deviation of multipath error of various signals, which reflects
the jitter of multipath error. ChPN(5,1) has the smallest multipath error standard deviation among
the signals of situation 1. Both ChPN(5,1) and ChPN(10,1) has the smaller multipath error standard
deviation than BOC(5,1).

In order to explore the ACF peaks ambiguity of the signals, we carry out the Monte Carlo
simulation with 10,000 runs. Figure 16 shows the simulated false locking probability (FLP) caused by
ACF side-peaks, which is drawn with a PDB of 24 MHz, a sampling rate of 61 MHz, and a coherent
integration time of 1 ms. Generally, the FLP become smaller when the C/N0 increase. The FLP of
BOC(5,1) is larger than ChPN(5,1) due to its large MSPR and numerous side-peaks as shown in Figure 3.
Owing to the smallest side-peak amplitude, as Figures 3 and 9 show, ChPN(3,3) owns the smallest FLP
among the ChPN signals with a MLB of 12 f0, i.e., ChPN(3,3), ChPN(4,2) and ChPN(5,1). Furthermore,
ChPN(10,1) has a slightly larger FLP than ChPN(5,1) due to the similar MSPR and the more side-peaks,
as Figures 3 and 9 show. In summary, the side-peaks number and MSPR are the two factors that impact
the ACF peaks ambiguity, but MSPR is the major factor.
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Figure 16. False locking probability caused by side-peaks for various signals.

Near-far effect is caused by the cross correlation of the signals that are coming from the transmitters
of different distances, which will affect the receiver to track the correct but weaker navigation signal.
The Monte Carlo simulation is carried out with a PDB of 24 MHz, a sampling rate of 61 MHz, and a
coherent integration time of 1 ms to explore the anti-near-far effect performance of the proposed signals.
In the simulation, the signal with the C/A code of GPS satellite 1 is acting as the “far” signal; the signal
with the C/A code of GPS satellite 2 is acting as the “near” signal, which is treated as the “interference”.
As Figure 17 shows, the signal with a larger C/N0 has a smaller FLP; as near-to-far signal amplitude
ratio increase, the FLP become larger; the O-ChPN has the best anti-near-far performance, followed
by ChPN and BPSK. O-ChPN can be used in a system that do not need much transmitters or the
bandwidth is sufficient, such as the ISM band.
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6. Conclusions

Based on the chirp technique widely applied in the fields of communication, radar, and indoor
navigation, we have proposed a high-accuracy, low-ambiguity, low-power consumption signal
modulation method named ChPN. The signal model, ACF, and PSD have been presented, and the
signal generation and detection methods have been discussed. The O-ChPN is also discussed.
The theoretical performance of ChPN signals are analyzed, the simulation is also carried out to
evaluate the signal performance.

The signals are analyzed in three situations: (1) the ChPN signals with the same MLB and
different p and q, such as ChPN(5,1), ChPN(4,2) and ChPN(3,3); (2) the different signals with the same
MLB, such as ChPN(5,1) and BOC(5,1); (3) the ChPN signals with different MLBs, such as ChPN(5,1)
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and ChPN(10,1). By analyzing the ACF, PSD, LBTE, tracking error, MPEE, AWME and ACF peaks
ambiguity characteristics of ChPN and BOC signals, we have found that: (1) for the first situation,
ChPN(5,1) has the best tracking precision and multipath resistance, while ChPN(3,3) has the smallest
MSPR and FLP; (2) for the second situation, BOC(5,1) has a better tracking precision and LBTEs,
while ChPN(5,1) provides better overall resistance to multipath effects and has smaller MSPR and
FLP; (3) for the third situation, ChPN(10,1) has better tracking precision, better multipath resistance,
while ChPN(5,1) has smaller FLP. O-ChPN can mitigate the near-far effect, although it may decrease the
transmitter amount. Last but not least, ChPN receivers can be implemented by minor modification of
GNSS receivers owing to their similar signal structures. In summary, ChPN is a feasible and promising
signal modulation method for PRN code ranging systems.
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Appendix A

The spectrum of chirp signal with a sweep bandwidth of Bsw and a chip duration of Tc can be
expressed as [23]:

P(ω) =
∫ Tc/2
−Tc/2

√
2 cos

(
ωct + µt2

2

)
exp(−jωt)dt

=
√

2
2

∫ Tc/2
−Tc/2 exp

[
j(ωct−ωt) + j µt2

2

]
dt +

√
2

2

∫ Tc/2
−Tc/2 exp

[
−j(ωct + ωt)− j µt2

2

]
dt

(A1)

where µ = Bsw/Tc, ωc = 2π fc, Bsw = 2πBs. Here,
√

2 is used to ensure the power is 1 (unity power).
As we can see P(ω) can be divided into two terms.

A.1. The First Term

The first term of (A1) can be expressed as [23]:

U1( f ) =
√

2
2

√
Tc

2Bs
exp

[
−j

Tcπ( f − fc)
2

Bs

]
[C(X1) + jS(X1) + C(X2) + jS(X2)] (A2)

where ω, ωc, Bsw are replaced by 2π f , 2π fc, 2πBs, respectively; and:
C(X) =

X∫
0

cos πy2

2 dy

S(X) =
X∫
0

sin πy2

2 dy
(A3)

are the Fresnel cos and sin integrals, the X1 and X2 are expressed as: X1 = Bs+2( f− f0)√
2Bs/Tc

X2 = Bs−2( f− f0)√
2Bs/Tc

(A4)
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A.2. The Second Term

The second term is:

U2(ω) =

√
2

2

∫ Tc/2

−Tc/2
exp

[
−j
{
(ωc + ω)t +

µt2

2

}]
dt (A5)

which can be expressed as:

U2(ω) =

√
2

2
exp

[
j
(ω + ωc)

2

2µ

]∫ Tc/2

−Tc/2
exp

[
−j

µ

2

(
t +

(ω + ωc)

µ

)2
]

dt (A6)

with the assumption of
√

µ
(

t + ω+ω0
2

)
=
√

πx, and then dt =
√

π/µdx, (A6) can be expressed as:

U2(ω) =

√
2

2

√
π

µ
exp

[
j
(ω + ωc)

2

2µ

]∫ X4

−X3

exp
[
−j

π

2
x2
]
dx (A7)

X3 and X4 are as:  X3 =
µTc/2−(ω+ωc)√

πµ

X4 =
µTc/2+(ω+ωc)√

πµ

(A8)

Based on the Euler formula:

exp
[
−j

π

2
x2
]
= cos

(π

2
x2
)
− j sin

(π

2
x2
)

(A9)

(A7) can be re-written as:

U2(ω) =

√
2

2

√
π

µ
exp

[
j
(ω + ωc)

2

2µ

]∫ X4

−X3

[
cos
(π

2
x2
)
− j sin

(π

2
x2
)]

dx (A10)

which can be further simplified as:

U2(ω) =

√
2

2

√
π

µ
exp

[
j
(ω + ωc)

2

2µ

]{∫ X4

−X3

cos
(π

2
x2
)

dx− j
∫ X4

−X3

sin
(π

2
x2
)

dx
}

(A11)

Substituting Fresnel cosine and sine function into the above equation, we have:

U2(ω) =

√
2

2

√
π

µ
exp

[
j
(ω + ωc)

2

2µ

]
[C(X3) + C(X4)− jS(X3)− jS(X4)] (A12)

C(X) and S(X) are shown in (A3). Substituting ω = 2π f , ωc = 2π fc, µ = Bsw/Tc, Bsw = 2πBs

into (A12), then we have:

U2( f ) =
1
2

√
Tc

Bs
exp

[
j
Tcπ( f + f0)

2

Bs

]
[C(X3) + C(X4)− jS(X3)− jS(X4)] (A13)

where:  X3 = Bs−2( f+ fc)√
2Bs/Tc

X4 = Bs+2( f+ fc)√
2Bs/Tc

(A14)
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A.3. The Expression

According to (A2) and (A13), the P( f ) is shown in the following expression:

P( f ) = U1( f ) + U2( f ) (A15)

which can be also expressed as:

P( f ) =
1
2

√
Tc

Bs



exp
[
−j Tcπ( f− fc)

2

Bs

]
×[C(X1) + jS(X1) + C(X2) + jS(X2)]

+ exp
[

j Tcπ( f+ fc)
2

Bs

]
×[C(X3) + C(X4)− jS(X3)− jS(X4)]


(A16)

which has been shown in (12) previously.
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