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Abstract: Mechanical fault diagnosis usually requires not only identification of the fault characteristic
frequency, but also detection of its second and/or higher harmonics. However, it is difficult to detect
a multi-frequency fault signal through the existing Stochastic Resonance (SR) methods, because the
characteristic frequency of the fault signal as well as its second and higher harmonics frequencies tend
to be large parameters. To solve the problem, this paper proposes a multi-frequency signal detection
method based on Frequency Exchange and Re-scaling Stochastic Resonance (FERSR). In the method,
frequency exchange is implemented using filtering technique and Single SideBand (SSB) modulation.
This new method can overcome the limitation of “sampling ratio” which is the ratio of the sampling
frequency to the frequency of target signal. It also ensures that the multi-frequency target signals
can be processed to meet the small-parameter conditions. Simulation results demonstrate that the
method shows good performance for detecting a multi-frequency signal with low sampling ratio.
Two practical cases are employed to further validate the effectiveness and applicability of this method.

Keywords: signal processing; stochastic resonance; frequency re-scaling; frequency exchange;
multi-frequency signal detection

1. Introduction

Various types of rotating machinery, such as electric generators, water turbines, centrifugal
compressors, pumps, etc., have played an important role in industry. During the design, installation,
application, and other processes, some potential risks of fault may exist in the rotating machinery
system, which can result in a serious threat to the safe operation of equipment. Therefore, researchers
have produced a mountain of research on the health monitoring and fault diagnosis of rotating
machines [1–3]. In particular, the detection of incipient faults has become the focus of a number
of studies of fault diagnosis. Some methods, such as wavelet transform [4,5], empirical mode
decomposition [6], and nonlinear dynamic theory [7,8], have been studied in depth and widely
for weak fault feature extraction in many practical situations. The weak signal can be simply amplified
without distortion by a linear amplifier. However, while the weak fault signal submerged in heavy
background noise is amplified by a linear amplifier, the background noise is also amplified in the same
proportion. The Signal-to-Noise Ratio (SNR) of the amplified signal is not improved. Therefore, the
weak fault characteristic signal is still submerged in the background noise and cannot be identified.

Stochastic Resonance (SR) is an unusual nonlinear phenomenon which can be used to enhance
and detect weak signals embedded in heavy background noise. SR theory has been of wide concern
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since its discovery by Italian physicists Benzi, Sutera and Vulpiani [9] in the 1980s and it has been
verified experimentally in the Schmitt trigger circuit [10] and the bidirectional ring laser [11]. Soon
after, the theory of SR in the adiabatic limit was proposed [12–14]. To date, SR theory has been
studied and applied in many fields. Collins [15] discussed the subthreshold SR phenomenon in the
FitzHugh-Nagumo (FHN) neuronal model, and Stocks [16] studied the suprathreshold SR phenomenon
in multilevel threshold systems. The two SR phenomena were realized by the conventional method of
introducing noise into the threshold systems. Another way to realize SR phenomenon is the method of
tuning nonlinear system parameters [17], which is more practical than the method of adding noise
to the nonlinear systems for signal processing [18]. Bates et al. [19] found an SR phenomenon in an
intracellular associative genetic perceptron, which manifests itself by the improvement of response
in efficiency after the learning event under the optimal level of noise. The SR techniques have
also been applied to image de-noising and enhancement [20,21]. In the field of signal transmission,
Duan et al. [22] designed a bi-stable dynamic receiver to detect binary modulated signals and observed
non-conventional SR phenomena, such as residual ASR and short-time SR effects. Qi et al. [23] studied
a modified adaptive stochastic resonance to detect fault information from the power supply. While in
the field of mechanical fault diagnosis, some weak fault signal detection methods based on SR have
been investigated to extract the incipient fault features from mechanical vibration signals [24–26].

Due to the limitation of strict small-parameter conditions (the amplitude and frequency of periodic
signal and noise intensity are far less than 1), via SR theory, it is difficult to detect the mechanical fault
signals which usually have a large-parameter frequency (greater than 1 Hz). In order to deal with
the large-parameter problem in practical engineering applications, a variety of solutions have been
proposed, such as Frequency Re-scaling Stochastic Resonance (FRSR) [25,27], Parameters Normalized
Stochastic Resonance (PNSR) [28], Modulated Stochastic Resonance (MSR) [29], Frequency Shifted and
Re-scaling Stochastic Resonance (FSRSR) [30]. Actually, the main aim of these methods is to transform
the large-parameter signal into a small-parameter signal which satisfies the small-parameter conditions.
Then it can achieve detection of the large-parameter signal by SR theory. Although these methods
have been applied to engineering applications successfully, they also have their own limitations.
For instance, FRSR and PNSR require a higher sampling ratio (greater than 50) which is the ratio of
the sampling frequency to the frequency of the target signal. The theory of Double SideBand (DSB)
modulation used in MSR, may result in a signal superposition problem which will affect the results
of detection.

In addition, it requires not only detection of the fault characteristic frequency, but also the
identification of its second and higher harmonics in fault diagnosis and condition monitoring systems.
To date, researchers have studied the multi-frequency fault signal detection based on SR. In the presence
of colored noise, Xu et al. [31] studied multi-frequency signal processing and recovery via SR with
tuning system parameters. Jiao et al. [32] studied the detection of the multi-frequency signal embedded
in α stable noise by means of parameter-induced SR and parameter compensation. Shi et al. [33]
proposed a method for multi-frequency signal detection based on orthogonal wavelet transform and SR.
In the paper, the original signal is decomposed into different scales by orthogonal wavelet transform,
and then some decomposed components containing the target signals are respectively detected by
FRSR. A multi-frequency weak signal detection method based on discrete wavelet transform and
parameter compensation band-pass multi-stable SR is proposed in the paper [34] by Han. To detect
the multi-frequency weak fault signal of rolling bearings, Guo et al. [35] studied a method based on
the multi-segmentation of data and cascaded SR. These methods for detecting multi-frequency fault
signal, however, still have such problems as relatively high sampling frequency and a large amount of
sampling points. Therefore, they are still not convenient for practical application. It is necessary to
solve the problems further to make SR more suitable for multi-frequency signal detection.

In this paper, a multi-frequency signal detection method based on Frequency Exchange and
Rescaling Stochastic Resonance (FERSR) is proposed. In the method, frequency exchange is first
carried out based on filtering technique and SSB modulation. For a multi-frequency signal, it is
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necessary to design a multi-band filter bank for extracting the signal at a different characteristic
frequency. After that, the frequencies of the processed signals are rescaled. Through classical stochastic
resonance and frequency recovery, the characteristic frequency information of the original signal can
finally be read from a three-dimensional frequency spectrogram.

The paper is organized as follows. In Section 2, the classical stochastic resonance theory, frequency
rescaling stochastic resonance theory and their existing problems are introduced. In Section 3, this
paper elaborates the frequency exchange method and proposes a signal detection method based on
frequency exchange and rescaling stochastic resonance. In Section 4, a filter bank is designed to extract
first the multi-frequency signal. Additionally, frequency exchange is introduced by Single SideBand
(SSB) modulation theory. Finally, the multi-frequency signal detection method based on FERSR is
proposed. The simulation analysis, experimental verification, and discussion on this method are given
in Section 5. Conclusions are provided in the last section.

2. Basic Theory

2.1. Classical Stochastic Resonance (CSR)

The mechanism of CSR is simple to explain. Assuming that an overdamped Brownian particle
moving in a symmetric double-well potential is driven by fluctuation forces. For a convenient
description, in the presence of noise and periodic forcing, the overdamped motion of a Brownian
particle in a bi-stable potential can be described by the Langevin equation,

dx
dt

= ax− bx3 + s(t) + n(t) (1)

where a and b are barrier parameters with positive real values. s(t) is a periodic signal with amplitude
A and frequency f0, s(t) = A cos(2π f0t); n(t) denotes a zero-mean, Gaussian white noise with noise
intensity D and autocorrelation function 〈n(t)n(t− τ)〉 = 2Dδ(τ).

For small amplitudes, the response of the system to the periodic input signal can be written as [13]

〈x(t)〉 = x cos
(
2π f0t− φ

)
(2)

where x and φ are the amplitude and a phase lag respectively. The approximate expressions of the
amplitude x is

x =
A
〈

x2〉
0

D
rk√

r2
k + π2 f0

(3)

where
〈

x2〉
0 is the D-dependent variance of the stationary unperturbed system (A = 0). rk is Kramers

rate and can be written as

rk =
a√
2π

exp
(
− a2

4bD

)
(4)

After rewriting Equation (3), the approximate amplitude amplification value K of the response of
the SR system is given by

K = x/A =

〈
x2〉

0
D

rk√
r2

k + π2 f0

=
a

bD
√

1 + 2π4 f 2
0

a2 exp
(

a2

2bD

) (5)

As demonstrated in Figure 1, the amplitude amplification value K decreases monotonically with
the frequency of the input periodic signal. When the frequency is a large parameter, the output signal
is not enhanced but weakened, which is caused by the small-parameter conditions of CSR theory.
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   3
02sindx ax bx A f t n t

dt
      


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Figure 1. The response amplification value K of the classical stochastic resonance (CSR) system versus
the frequency f0.

2.2. Frequency Re-Scaling Stochastic Resonance

In order to detect large-parameter frequency signals, Leng et al. [25,27] proposed the Frequency
Re-scaling Stochastic Resonance (FRSR). In the FRSR method, the sampling frequency fs and the
large-parameter characteristic frequency f0 are rescaled in proportion by introducing the scale factor
R (>1). Then f0 is transformed into a small-parameter frequency which satisfies the small-parameter
conditions in order to realize the detection of the large-parameter fault signals based on CSR. The
rescaled sampling frequency is

fsr = fs/R (6)

The rescaled characteristic frequency is
f ′0 = f0/R (7)

Correspondingly, the time is rescaled as
t′ = Rt (8)

For the scale-transformed signal, Equation (1) can be rewritten as

dx
dt′

= ax− bx3 + A sin
(
2π f ′0t′

)
+ n

(
t′
)

(9)

When the frequency f ′0 satisfies the small-parameter conditions, the characteristic signal can
usually be detected by Equation (9). However, it is only when the sampling ratio λ is relatively high
that the FRSR method has a good detection performance. The sampling ratio λ is the ratio of sampling
frequency fs to the frequency f0, i.e., λ = fs/ f0. Paper [27] demonstrates that the sampling ratio λ

should be greater than 50. For a low sampling ratio, it is usually impossible to find the appropriate
R to ensure both requirements that the rescaled frequency f ′0 meets the small-parameter conditions
and the solution of Equation (9) is convergent. It should be noted that the Runge-Kutta method is
used to solve Equation (9). The step length h of the Runge-Kutta method is also directly related to the
convergence of the solution. And the step length is given by h = 1/ fsr = R/ fs, hence, the coefficient R
affects the convergence of the solution directly.

3. Frequency Exchange and Re-Scaling Stochastic Resonance (FERSR)

In order to overcome the constraint of sampling ratio λ of FRSR and detect higher-frequency
signals, Frequency-Information-Exchange Stochastic Resonance (FIESR) was studied in [36]. In that
paper, the frequency information of a higher-frequency signal is exchanged with that at low frequency
in the frequency spectrum obtained by Fast Fourier Transformation (FFT). Then the signal detection
can be achieved by FRSR. However, FIESR still has some difficulty in practical application, because the
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accuracy of frequency information extraction is affected by the leakage in the frequency spectrum. The
spectrum leakage is caused by incoherent sampling and a finite number of samples. In view of this
situation, this section presents a new FERSR method based on filtering technique and SSB modulation
in time domain in which, it can facilitate the application of the SR method.

3.1. The Principle of Frequency Exchange Based on SSB Modulation

The principle of frequency exchange based on SSB modulation is depicted in Figure 2. Firstly,
an input signal sin(t) and a carrier signal cos(2π fct) are shifted in phase by π/2 through Hilbert
transform. After that, the upper sideband of the carrier signal and lower sideband of the input signal
can be achieved by SSB modulation. The Hilbert transform of a continuous signal s(t) is defined as

∧
s(t) = H[s(t)] = h(t) ∗ s(t) =

∫ ∞

−∞
s(τ)× h(t− τ)dτ =

1
π

∫ ∞

−∞

s(τ)
t− τ

dτ (10)

where H[•] denotes the Hilbert transform operator. The time impulse response of the Hilbert
transformer is

h(t) =
1

πt
(11)

As shown in Figure 2, the upper-sideband modulation of the input signal sin(t) is

sUSB(t) = sin(t)× cos(2π fct)−H[sin(t)]×H[cos(2π fct)] (12)

and the lower-sideband modulation of sin(t) is

sLSB(t) = sin(t)× cos(2π fct) +H[sin(t)]×H[cos(2π fct)] (13)
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Figure 2. Schematic diagram of single-sideband modulation.

Assuming that the characteristic signal is mt(t) = At cos(2π ftt + ϕt), the reference low-frequency
signal is ml(t) = Al cos(2π flt + ϕl) and the carrier signal is cos(2π fct).

Then the upper sideband modulation of the signal ml(t) is

m′l(t)= ml(t)× cos(2π fct)−H[ml(t)]×H[cos(2π fct)]

= Al cos(2π flt + ϕl)× cos(2π fct)− Al sin(2π flt + ϕl)× sin(2π fct)

= Al cos[2π( fl + fc)t + ϕl ]

(14)

and the lower sideband modulation of the signal mt(t) is

m′t(t)= mt(t)× cos(2π fct) +H[mt(t)]×H[cos(2π fct)]

= At cos(2π ftt + ϕt)× cos(2π fct) + At sin(2π ftt + ϕt)× sin(2π fct)

= At cos[2π( ft − fc)t + ϕt]

(15)
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If the carrier frequency is given as fc = ft − fl , then Equations (14) and (15) can be expressed
as, m′l(t) = Al cos(2π ftt + ϕl), m′t(t) = At cos(2π flt + ϕt). Therefore, the frequencies of mt(t) and
ml(t) are exchanged. This is the principle of frequency exchange. For a given sampling frequency fs,
if the sampling ratio of the target signal mt(t) is less than 50, i.e., fs/ ft < 50, mt(t) is called the low
sampling ratio signal. Through frequency exchange, the amplitude and phase of mt(t) is exchanged to
the reference low frequency fl , and the exchanged target signal m′t(t) is obtained. For the sampling
frequency fs, if fs/ ft > 50, the signal m′t(t) is called the high sampling ratio signal. That is to say, the
sampling ratio of the target signal mt(t) can be increased by frequency exchange. Then, if the reference
low frequency fl is compressed by R-scale into fl/R which is a small parameter, then m′t(t) will be a
small-parameter signal which can be detected by CSR. In this paper, the frequency range (0 Hz, 0.1 Hz)
is selected as reference low frequency band for the sampling frequency 5 Hz.

3.2. Signal Processing Model Based on FERSR

Usually, there are some errors between the theoretical value and the actual value of the
characteristic frequency (e.g., the fault frequency of rolling bearings), which are caused by fabrication
errors, disturbance in the process of data acquisition, and other influencing factors. Because of this,
the local information around the characteristic frequency has to be extracted rather than the single
specific signal at that frequency. Therefore, in order to ensure that the characteristic frequency is
exchanged without being missed, some filters with certain bandwidth are used to extract the target
signals. In addition, in order to avoid signal superposition during signal processing, it is required that
the passband widths of low-pass filter and band-pass filter are the same as the stopband widths of the
high-pass filter and the band-stop filter.

Figure 3 shows the signal processing model based on FERSR which includes the following steps:
First, for an original data s(t), the local information sl(t) around the reference low frequency and
the local information st(t) around the characteristic frequency are extracted respectively through a
low-pass filter and a band-pass filter. Meanwhile, the residual information s f (t) is obtained by filtering
out sl(t) and st(t) through a high-pass filter and a band-stop filter correspondingly. Secondly, the
frequencies of sl(t) and st(t) are exchanged by the frequency exchange method, then the processed
local signals s′l(t) and s′t(t) are obtained. After that, the residual signal s f (t) is added to the signals s′l(t)
and s′t(t), so as to reconstruct the frequency-exchanged signal s′(t) which has the same data length as
the original signal s(t). Finally, the response x(t′) of the FRSR system to the input signal s′(t) can be
simply obtained.
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Figure 3. The flow diagram of Frequency Exchange and Re-scaling Stochastic Resonance (FERSR).

According to Equation (9), the equation of FERSR can be expressed as

dx
dt′

= ax− bx3 + s′
(
t′
)

(16)

where s′(t′) denotes the rescaled signal of the frequency-exchanged signal s′(t).
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To achieve the goal of detecting the target signal, it is necessary to recover the frequency of
the system output x(t′). The frequency recovery involves three steps. The frequency scale of x(t′)
is recovered first, which is called inverse frequency re-scaling. Then, a low-pass filter is used to
wipe off the interference of the high-frequency components and extract information in the reference
low-frequency band which contains the target signal. Finally, the information is moved to its original
frequency band though upper sideband modulation.

It should be noted that, in order to reduce the influence of the transition band of filter, an Elliptic
filter is chosen in this paper. As shown in Figure 4, the transition band of the Elliptic filter is narrower
than that of the Chebyshev filter and Butterworth filter.
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4. Multi-Frequency Signal Detection Based on FERSR

In rotating machinery, the fault signals are usually in the form of harmonics. In order to determine
the form of fault accurately, it is necessary to detect and analyze the features of the harmonics of the
faults. The higher harmonics of some mechanical faults (e.g., those of rolling bearings) are often in
the high frequency range. Hence, it is difficult to obtain satisfactory results if a multi-frequency fault
signal analysis is performed with a relatively low sampling frequency. Based on FERSR, this section
explores the method for extracting multi-frequency signal feature, so as to realize the detection of the
first several harmonics of faults with a low sampling ratio.

Assuming that an original signal s(t) has n characteristic frequencies and the i-th characteristic
frequency is fi. Two sets of filter banks are designed for the n target signals on the basis of their
characteristic frequencies. One group is the Band-Pass Filter Bank (BPFB) composed of n Band-Pass

Filters (BPF) with passband width B, i.e., BPFB =
[

BPF1 · · · BPFi · · · BPFn

]T
. Similarly, the

other is the Band-Stop Filter Bank (BSFB) composed of n Band-Stop Filters (BSF) with stopband width B,

i.e., BSFB =
[

BSF1 · · · BSFi · · · BSFn

]T
. The pass band of the i-th band-pass filter is the same

as the stop band of the i-th band-stop filter used in the filter banks, which is ( fi − fl , fi − fl + B) . Here,
by R-scale re-scaling, the reference frequency fl is compressed into fl/R which is a small parameter.
According to the analysis in Section 3.2, only one Low-Pass Filter (LPF) and one High-Pass Filter (HPF)
are needed here to acquire and filter out the information of the original signal around the reference
frequency respectively. The pass band of LPF and stop band of HPF are still (0, B).
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The local information around each characteristic frequency can be extracted from the original
signal s(t) by BPFB, i.e.,

st(t) = s(t) ∗ BPFB = s(t) ∗



BPF1
...

BPFi
...

BPFn


=



st1(t)
...

sti(t)
...

stn(t)


(17)

and by LPF, the local information around the reference frequency can be obtained, i.e.,

sl(t) = s(t) ∗ LPF (18)

After filtering out the local information around each characteristic frequency and the reference
frequency by BSFB and HPF, the residual signal can be obtained, i.e.,

s f (t) = s(t) ∗ HPF ∗ BSFB = s(t) ∗ HPF ∗



BSF1
...

BSFi
...

BSFn


=



s f 1(t)
...

s f i(t)
...

s f n(t)


(19)

The obtained local characteristic information is shifted from each characteristic frequency to the
reference frequency respectively by lower sideband modulation, that is

s′t1(t) = st1(t)× cos(2π fc1t) +H[st1(t)]×H[cos(2π fc1t)]
...

s′ti(t) = sti(t)× cos(2π fcit) +H[sti(t)]×H[cos(2π fcit)]
...

s′tn(t) = stn(t)× cos(2π fcnt) +H[stn(t)]×H[cos(2π fcnt)]

(20)

The information around the reference frequency is shifted to each characteristic frequency
respectively by upper sideband modulation, that is

s′l1(t) = sl(t)× cos(2π fc1t)−H[sl(t)]×H[cos(2π fc1t)]
...

s′li(t) = sl(t)× cos(2π fcit)−H[sl(t)]×H[cos(2π fcit)]
...

s′ln(t) = sl(t)× cos(2π fcnt)−H[sl(t)]×H[cos(2π fcnt)]

(21)

where the i-th carrier frequency is fci = fi − fl . Therefore, n sets of frequency-exchanged signal are
given by 

s′1(t)
...

s′i(t)
...

s′n(t)


=



s′t1(t)
...

s′ti(t)
...

s′tn(t)


+



s′l1(t)
...

s′li(t)
...

s′ln(t)


+



s f 1(t)
...

s f i(t)
...

s f n(t)


(22)
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Then, these n sets of signals are rescaled and input into the CSR system, the equations of FERSR
can be obtained as

dx1(t′)/dt′
...

dxi(t′)/dt′
...

dxn(t′)/dt′


=



a1
. . .

ai
. . .

an





x1
...

xi
...

xn


−



b1
. . .

bi
. . .

bn





x3
1
...

x3
i
...

x3
n


+



s′1(t
′)

...
s′i(t
′)

...
s′n(t′)


(23)

where s′i(t
′) denotes the rescaled signal of the frequency-exchanged signal s′i(t), the rescaled time is

t′ = tR, and the system parameters of the i-th target signal are ai and bi which can be obtained by
parameter optimization algorithms [37].

Using the fourth-order Runge-Kutta method to solve the Equation (23), the results of the target

signals processed by FRSR can be expressed as
[

x1(t′) · · · xi(t′) · · · xn(t′)
]T

. After frequency

recovery, the recovered signals
[

x1(t) · · · xi(t) · · · xn(t)
]T

can be obtained. And then the
target signals are observed clearly in the three-dimensional frequency spectrogram of the recovered

signals
[

X1(j2π f ) · · · Xi(j2π f ) · · · Xn(j2π f )
]T

.

5. Numerical Simulation and Experimental Verification

5.1. Numerical Simulation

In a practical engineering system, the frequencies of target signals are usually arbitrary, or there
is a certain mathematical relationship between them. In order to illustrate the effectiveness of the
method of multi-frequency signal detection based on FERSR, this section analyzes the simulated
multi-frequency signal with several arbitrary characteristic frequencies.

The original multi-frequency signal s1(t), composed of three sinusoidal signals and Gaussian
white noise, is defined as

s1(t) = A1 × sin(2π f1t) + A2 × sin(2π f2t) + A3 × sin(2π f3t) + n(t) (24)

where n(t) denotes the Gaussian white noise with noise intensity 0.8, and three sinusoidal signals have
the same amplitude 0.1 and different frequencies, e.g., f1 = 42 Hz, f2 = 95 Hz, and f3 = 243 Hz. The
sampling frequency fs = 1000 Hz and the number of sampling points N = 4000. The time-domain
waveform and frequency spectrum of the original signal are shown in Figure 5a,b. It is clear that
it is difficult to identify the three signals from the spectrum due to the presence of noise. If the
original signal is processed directly by FRSR, as shown in Figure 5d, it is also difficult to find out
these signals from the output of the FRSR system, with the parameters a = 0.5, b = 4, and the scale
factor R = 200. It should be noted that Figure 5c,d shows the recovered time-domain waveform and
frequency spectrum of the FRSR system response. There are three reasons for the failure of FRSR.
First, the sampling ratios of the signals (i.e., 1000/42 ≈ 23.8, 1000/95 ≈ 10.53, 1000/243 ≈ 4.12) are
less than 50, which do not meet the large sampling ratio requirement of FRSR. Second, the rescaled
characteristic frequencies (i.e., 42/200 = 0.21 Hz, 95/200 = 0.475 Hz and 243/200 = 1.215 Hz) are not
small parameters which should be far less than 1. Finally, even though a large enough scale factor (e.g.,
R = 2000) can ensure that the rescaled target signals are small-parameter signals, the output of the
FRSR system is divergent. Therefore, when several target signals exist with low sampling ratios, the
detection of these signals cannot be realized directly by FRSR. In the next part, the signal s1(t) will be
processed by FERSR.
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Figure 5. Signal processing based on Frequency Re-scaling Stochastic Resonance (FRSR). (a,b) are the
time-domain waveform and frequency spectrum of the original signal; (c,d) are time-domain waveform
and frequency spectrum of the response of the FRSR system with scale factor R = 200.

In order to ensure the comparability of these two methods, the bi-stable system parameters a = 0.5,
b = 4 and the scale factor R = 200 are still used for processing the original signal s1(t) by FERSR. If
the reference frequency fl = 8 Hz, then the rescaled reference frequency fl/R = 8/200 = 0.04 Hz
which meets the small-parameter conditions. The sampling ratio of reference low-frequency signal
(i.e., 1000/8 = 125) is greater than 50. And the bandwidth of the filters B is 32 Hz. According to the
analysis in Section 4, a band-pass filter bank BPFB and a band-stop filter bank BSFB are designed on
the basis of the frequencies f1, f2 and f3 correspondingly. While a low-pass filter LPF and a high-pass
filter HPF are designed on the basis of the reference frequency fl respectively.

Through SSB modulation, the local information around each characteristic frequency extracted
by BPFB is exchanged with that around the reference frequency fl extracted by LPF. The three carrier
frequencies are 34 Hz, 87 Hz, and 235 Hz. The responses of the FERSR system to the three exchanged
signals are shown in Figure 6. It can be observed that the target signals have obvious spectral peaks at
the rescaled reference frequency (0.04 Hz).

In order to determine the presence of the target signals clearly and accurately, the frequency
spectra of the responses of the FERSR system to the signals are processed through frequency recovery.
As shown in Figure 7, the processed frequency spectra are exhibited in a three-dimensional frequency
spectrogram. The multi-frequency non-harmonic signal can be read out from Figure 7. To demonstrate
the application of the proposed method, this section presents two case studies concerning the
diagnosis of a rolling bearing outer ring fault and a rotor shaft bending fault. The method is used
to detect the weak multi-frequency fault signal composed of the first several harmonics of fault
characteristic frequency.
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Figure 6. The detection of multi-frequency non-harmonic signal based on FERSR. (a,c,e) are the
time-domain waveforms of the response of the FERSR system to the target signals with 42 Hz, 95 Hz,
and 243 Hz respectively; (b,d,f) are the corresponding frequency spectra of the response of the FERSR
system to the target signals.
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Figure 7. Three-dimensional spectrogram of the multi-frequency non-harmonic signal processed by
FERSR and frequency recovery.

5.2. Case 1: Application to Fault Diagnosis of Rolling Bearing Outer Ring

Figure 8a shows the test rig for the rolling bearings of high-speed train. The full load weight
of each carriage is 17 t, and every carriage has eight sets of rolling bearings, whose load weight is
2125 kg. To simulate the full-load working conditions of the bearing, the load is applied on the outer
ring of the rolling bearing by a semi-circular cover plate which is pressed by a bolt frame structure
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and three loaded springs, as shown in Figure 8b. The stiffness coefficient of the springs is 300 N/mm.
Under full load, the compressed length of the springs is 23.6 mm. The rolling bearing fault detection of
the high-speed train is carried out on the test rig and the data acquisition system is shown in Figure 9.
Several sensors (LC0103TA accelerometer, Lance Technologies Inc., Buffalo, NY, USA) are fixed on the
cover of the rolling bearing and the platform of the test rig. The accelerometer mounted on the cover is
used to collect the vibration signals of the rolling bearing. NI PXI-1033 is used to collect data from the
accelerometer at a sampling frequency of fs = 1000 Hz and sampling duration of 10 s.
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The fault of the outer ring of the rolling bearing is a common fault, which may have resulted from
poor lubrication, foreign matter invasion, and other factors. This kind of fault often occurs through
abrasion, pitting and other fatigue failure after long-term use. When defects are formed on the surface
of the outer ring (e.g., a pitting fault), the characteristic frequency of the fault can be calculated by the
following formula

fbo =
Z
2

(
1− d

D
cos α

)
fz (25)

where Z is the number of rolling elements, d is the diameter of the rolling element, D is the pitch
diameter, α is the contact angle and fz is the rotating frequency of the rotor. According to the parameters
of the tested rolling bearing listed in Table 1, the characteristic frequency of the outer ring fault is
calculated to be fb0 = 7.3× fz.

In the experiment, the rotating speed is 600 rpm, which means the rotating frequency fz = 10 Hz.
Therefore, for an outer ring pitting fault, the frequency fbo should be close to 73 Hz. Figure 10 shows
the original waveform and spectrum of the bearing fault signal. As shown in Figure 10b, except for the
fourth harmonic of fbo, its first three harmonics are not able to be recognized because of the strong
background noise.
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Table 1. The main information on the tested rolling bearing.

Pitch Diameter D
(mm)

Rolling Element
Diameter d (mm)

Number of Rolling
Elements Z

Contact Angle α
(◦)

185 25.25 17 0

Sensors 2018, 18, x FOR PEER REVIEW  13 of 19 

 

Table 1. The main information on the tested rolling bearing. 

Pitch Diameter D 
(mm) 

Rolling Element 
Diameter d (mm) 

Number of Rolling 
Elements Z 

Contact Angle 
  (°) 

185 25.25 17 0 

In the experiment, the rotating speed is 600 rpm, which means the rotating frequency zf  = 10 

Hz. Therefore, for an outer ring pitting fault, the frequency bof  should be close to 73 Hz. Figure 10 
shows the original waveform and spectrum of the bearing fault signal. As shown in Figure 10b, except 
for the fourth harmonic of bof , its first three harmonics are not able to be recognized because of the 
strong background noise. 

 
Figure 10. Signals recorded from the rolling bearing of the high-speed train. 

In this part, the first three harmonics of bof  are detected by the FERSR method. The sampling 
ratios of the first three harmonics (i.e., 1000/73 ≈ 13.7, 1000/146 ≈ 6.85 and 1000/219 ≈ 4.57) are less 
than 50. Setting the reference frequency lf  10  Hz and the scale factor R = 200, then the rescaled 
reference frequency is 0.05 Hz which meets the small-parameter conditions. Then the sampling ratio 
of the reference low-frequency signal (i.e., 1000/10 = 100) is greater than 50. The pass-band width or 
stop-band width B of the filters is set to 20 Hz. The FRSR system parameters are set to a = 0.01 and b 
= 4. The detection results of the first three harmonics of bof  are shown in Figure 11. After frequency 
recovery, the frequencies of these three target signals are shifted back to their original frequencies, as 
shown in Figure 12. Obviously, the signals of the bearing pitting fault can be completely identified. 

In order to compare the performance of FERSR with that of FRSR, the detection results based on 
FRSR are also given here. The scale factor and system parameters of FRSR are the same as those of 
the FERSR method. Figure 13 shows the results of the FRSR system after frequency scale recovery. 
The first three harmonics of the characteristic frequency cannot be seen clearly in Figure 13, because 
the rescaled frequencies of the target signals do not meet the small-parameter conditions for the given 
scale factor R = 200. Even though a larger scale factor is selected to ensure the rescaled frequencies 
meet the conditions, the results of FRSR are divergent and the target signals still cannot be 
recognized. The reason is that the sampling ratios of the harmonics (13.7, 6.9, and 3.5) are too low to 
satisfy the sampling ratio requirement of the FRSR method. Hence, this shows that FERSR has an 
advantage over FRSR in multi-frequency signal detection. 

0 2 4 6 8 10
-1

-0.5

0

0.5

1

0 100 200 300 400 500
0

0.05

0.1

X: 291.8

Y: 0.1309

Time/s

s(
f)

/m
·s

- 2

Frequency/Hz

s(
t)

/m
·s

-2

(a) (b)

4x bof

Figure 10. Signals recorded from the rolling bearing of the high-speed train.

In this part, the first three harmonics of fbo are detected by the FERSR method. The sampling
ratios of the first three harmonics (i.e., 1000/73 ≈ 13.7, 1000/146 ≈ 6.85 and 1000/219 ≈ 4.57) are less
than 50. Setting the reference frequency fl = 10 Hz and the scale factor R = 200, then the rescaled
reference frequency is 0.05 Hz which meets the small-parameter conditions. Then the sampling ratio
of the reference low-frequency signal (i.e., 1000/10 = 100) is greater than 50. The pass-band width or
stop-band width B of the filters is set to 20 Hz. The FRSR system parameters are set to a = 0.01 and
b = 4. The detection results of the first three harmonics of fbo are shown in Figure 11. After frequency
recovery, the frequencies of these three target signals are shifted back to their original frequencies, as
shown in Figure 12. Obviously, the signals of the bearing pitting fault can be completely identified.

In order to compare the performance of FERSR with that of FRSR, the detection results based on
FRSR are also given here. The scale factor and system parameters of FRSR are the same as those of the
FERSR method. Figure 13 shows the results of the FRSR system after frequency scale recovery. The
first three harmonics of the characteristic frequency cannot be seen clearly in Figure 13, because the
rescaled frequencies of the target signals do not meet the small-parameter conditions for the given
scale factor R = 200. Even though a larger scale factor is selected to ensure the rescaled frequencies
meet the conditions, the results of FRSR are divergent and the target signals still cannot be recognized.
The reason is that the sampling ratios of the harmonics (13.7, 6.9, and 3.5) are too low to satisfy the
sampling ratio requirement of the FRSR method. Hence, this shows that FERSR has an advantage over
FRSR in multi-frequency signal detection.

To further verify the effectiveness of FERSR, the fault diagnosis method based on Singular Value
Decomposition (SVD) and envelope analysis is used to extract the weak fault feature from the collected
vibration signals. The specific implementation process of this method is given in the reference [38].
The SVD component signals and their envelope spectrums are shown in Figure 14. The fault feature
cannot be recognized from the envelope spectrums of the SVD component signals. By comparing the
detection results in Figures 12 and 14, it can be concluded that FERSR has better performance in weak
fault signal detection.
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Figure 11. Fault detection of bearing outer ring based on FERSR. (a,b) are time-domain waveform and
frequency spectrum of the detection results of the first harmonic. (c,d) are that of the second harmonic.
(e,f) are that of the third harmonic.
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Figure 12. Three-dimensional spectrogram of the bearing outer ring fault signal based on FERSR and
frequency recovery.
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Figure 13. The detection results based on FRSR after frequency scale recovery.
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Figure 14. The Singular Value Decomposition (SVD) component signals (a,c,e) and their envelope
spectrums (b,d,f).

5.3. Case 2: Application to Diagnosis of Rotor Shaft-Bending Fault

After long-term running in complex and severe conditions, the shafts of the rotor-bearing systems
are usually bent to different degrees, resulting in malfunctions of the systems, which may affect the
safe operation of the equipment. The vibration signal of the rotator caused by shaft bending has
obvious several harmonics of characteristic frequency. Therefore, attention should be paid to all the
features of these components in bending fault detection. Figure 15 shows the sliding-bearing test rig.
The diameter of the shaft is φ12 mm. Due to the deviation of 0.38 mm between the shaft axis and
the rotation axis, the shaft-bending and imbalance faults appear in the sliding-bearing rotor system.
To simulate the weak fault conditions, the vibration signals of the shaft-bending fault are obtained
from an accelerometer (LC0103TA) mounted on an experimental table at a distance of 0.5 m from
the bearing base. Through the damping of the bearing and experiment structure, the fault signal
components are attenuated, and then recorded by the sensor. In the experiment, the running speed
of the rotor is 1680 rpm (i.e., rotating frequency of the shaft is 28 Hz). The data acquisition device NI
PXI-1033 is used again to collect data from the sensor at a sampling frequency 1000 Hz and for the
duration of 2 s, so that the fault signal has a relatively low sampling ratio.Sensors 2018, 18, x FOR PEER REVIEW  16 of 19 
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Figure 15. Sliding-bearing test rig for shaft-bending fault experiments.
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Because the sensor is fixed far from the rotor-bearing base, the collected fault signal has been
weakened. From the raw data shown in Figure 16, the first four harmonics of the rotating frequency
are too weak to be observed, due to the interference from the background noise, higher harmonics,
and other irrelevant components. Therefore, it is hard to determine whether the fault exists or not. In
order to detect the fault signal and its low-order harmonic components, in the following part, the raw
data are processed by the proposed method FERSR.
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Figure 16. Raw data of the shaft-bending fault (a) waveform; (b) global spectrum.

First, the first four harmonics of the characteristic frequency are set as target signals. Then the
sampling ratios of the first four harmonics (i.e., 1000/28 ≈ 35.7, 1000/56 ≈ 17.85, 1000/84 ≈ 11.9, and
1000/112 ≈ 8.93) are less than 50. The reference frequency is set to 4 Hz and the scale factor R is set to
200. Accordingly, the sampling ratio of reference low-frequency signal (i.e., 1000/4 = 250) is greater
than 50. And the rescaled reference frequency is 0.02 Hz which meets the small-parameter conditions.
The filters used in this case have same stop-band width or pass-band width, i.e., B = 20 Hz. The system
parameters are a = 0.1 and b = 10. After processing by FERSR and frequency recovery, the spectra of the
four target signals are shown in Figure 17. Therefore, there are obvious spectral peaks which can be
identified at the frequencies of the signals (i.e., 28 Hz, 55.5 Hz, 83 Hz, and 112 Hz), so that the presence
of the shaft-bending fault of the rotor system can be determined based on FERSR.
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5.4. Discussion

Although the SR theory has an advantage in weak signal detection, it has still many limitations in
the detection of fault signals in some specific systems, such as, rotating machinery systems. On the one
hand, the characteristic frequency of the fault signal usually does not meet the small-parameter
conditions. On the other hand, the diagnosis of the mechanical fault usually needs to detect
the multi-frequency signals composed of the fault signal and its higher harmonic components.
However, the existing methods based on SR cannot transform all the characteristic frequencies of the
multi-frequency signals into small-parameter frequencies by a single treatment, and many of them are
also limited by the sampling ratio of the fault signals.

The FERSR method proposed in this paper overcomes the above-mentioned limitations.
Compared to the CSR and FRSR methods, this method has three advantages: (i) FERSR is superior
in detecting a weak low-sampling-ratio signal. There is no limitation of sampling ratio for FERSR to
process the weak fault signals. That is to say, FERSR has a broader frequency detection range than CSR
and FRSR, as shown in Table 2; (ii) The sampling frequency and the number of sampling points needed
by FERSR are lower and smaller than that by CSR and FRSR, which makes FERSR more efficient in
practical application; (iii) The multi-frequency signal detection method based on FERSR provide a
promising tool for fault diagnosis of rotating machines.

Table 2. The frequency detection ranges of different methods.

Methods Frequency Detection Range

CSR Far less than 1 Hz
FRSR (0, fs/50), fs is sampling frequency

FERSR (0, fs/2)

The detection result of the simulation shows that FERSR has a better detection performance.
Two practical cases demonstrate the feasibility of the proposed approach in practical engineering
application. However, the successful application of this method relies on some prior knowledge. It is
not so convenient when compared with some adaptive methods. This problem will be solved by
introducing some intelligent algorithms into the FERSR method in future work.

6. Conclusions

Stochastic Resonance (SR) is a novel phenomenon produced in a nonlinear dynamical system.
SR theory can provide a promising tool for weak signal detection and incipient fault diagnosis in
engineering applications. However, there are some limitations for the signal detection methods based
on SR theory, such as small-parameter condition, high sampling frequency, large data length and so on.
To overcome these shortcomings and realize multi-frequency signal detection, the method, Frequency
Exchange and Re-scaling Stochastic Resonance (FERSR), was proposed in this paper.

Frequency exchange is carried out in time domain by a filter technique, which can prevent
spectrum leakage caused by FFT in the frequency domain. Then, the technique of designing
equal-bandwidth filters used in the method can prevent the omission of target signals in the process of
frequency exchange. Based on that, a frequency-exchange scheme for multi-frequency signal detection
was introduced in Section 4. To verify the reliability and applicability of the proposed method,
a simulation and two practical cases were conducted, and the detection results and comparisons
analyzed and discussed. The results of analysis show that the FERSR has a better detection performance
than other algorithms such as CSR and FRSR. In the future, some intelligent algorithms will be
introduced into the FERSR model, to make FERSR more adaptive and useful for weak multi-frequency
signal detection and incipient fault diagnosis.
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